xref: /linux/include/crypto/sha256_base.h (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * sha256_base.h - core logic for SHA-256 implementations
4  *
5  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #ifndef _CRYPTO_SHA256_BASE_H
9 #define _CRYPTO_SHA256_BASE_H
10 
11 #include <asm/byteorder.h>
12 #include <asm/unaligned.h>
13 #include <crypto/internal/hash.h>
14 #include <crypto/sha2.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 
18 typedef void (sha256_block_fn)(struct sha256_state *sst, u8 const *src,
19 			       int blocks);
20 
21 static inline int sha224_base_init(struct shash_desc *desc)
22 {
23 	struct sha256_state *sctx = shash_desc_ctx(desc);
24 
25 	sha224_init(sctx);
26 	return 0;
27 }
28 
29 static inline int sha256_base_init(struct shash_desc *desc)
30 {
31 	struct sha256_state *sctx = shash_desc_ctx(desc);
32 
33 	sha256_init(sctx);
34 	return 0;
35 }
36 
37 static inline int lib_sha256_base_do_update(struct sha256_state *sctx,
38 					    const u8 *data,
39 					    unsigned int len,
40 					    sha256_block_fn *block_fn)
41 {
42 	unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
43 
44 	sctx->count += len;
45 
46 	if (unlikely((partial + len) >= SHA256_BLOCK_SIZE)) {
47 		int blocks;
48 
49 		if (partial) {
50 			int p = SHA256_BLOCK_SIZE - partial;
51 
52 			memcpy(sctx->buf + partial, data, p);
53 			data += p;
54 			len -= p;
55 
56 			block_fn(sctx, sctx->buf, 1);
57 		}
58 
59 		blocks = len / SHA256_BLOCK_SIZE;
60 		len %= SHA256_BLOCK_SIZE;
61 
62 		if (blocks) {
63 			block_fn(sctx, data, blocks);
64 			data += blocks * SHA256_BLOCK_SIZE;
65 		}
66 		partial = 0;
67 	}
68 	if (len)
69 		memcpy(sctx->buf + partial, data, len);
70 
71 	return 0;
72 }
73 
74 static inline int sha256_base_do_update(struct shash_desc *desc,
75 					const u8 *data,
76 					unsigned int len,
77 					sha256_block_fn *block_fn)
78 {
79 	struct sha256_state *sctx = shash_desc_ctx(desc);
80 
81 	return lib_sha256_base_do_update(sctx, data, len, block_fn);
82 }
83 
84 static inline int lib_sha256_base_do_finalize(struct sha256_state *sctx,
85 					      sha256_block_fn *block_fn)
86 {
87 	const int bit_offset = SHA256_BLOCK_SIZE - sizeof(__be64);
88 	__be64 *bits = (__be64 *)(sctx->buf + bit_offset);
89 	unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
90 
91 	sctx->buf[partial++] = 0x80;
92 	if (partial > bit_offset) {
93 		memset(sctx->buf + partial, 0x0, SHA256_BLOCK_SIZE - partial);
94 		partial = 0;
95 
96 		block_fn(sctx, sctx->buf, 1);
97 	}
98 
99 	memset(sctx->buf + partial, 0x0, bit_offset - partial);
100 	*bits = cpu_to_be64(sctx->count << 3);
101 	block_fn(sctx, sctx->buf, 1);
102 
103 	return 0;
104 }
105 
106 static inline int sha256_base_do_finalize(struct shash_desc *desc,
107 					  sha256_block_fn *block_fn)
108 {
109 	struct sha256_state *sctx = shash_desc_ctx(desc);
110 
111 	return lib_sha256_base_do_finalize(sctx, block_fn);
112 }
113 
114 static inline int lib_sha256_base_finish(struct sha256_state *sctx, u8 *out,
115 					 unsigned int digest_size)
116 {
117 	__be32 *digest = (__be32 *)out;
118 	int i;
119 
120 	for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be32))
121 		put_unaligned_be32(sctx->state[i], digest++);
122 
123 	memzero_explicit(sctx, sizeof(*sctx));
124 	return 0;
125 }
126 
127 static inline int sha256_base_finish(struct shash_desc *desc, u8 *out)
128 {
129 	unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
130 	struct sha256_state *sctx = shash_desc_ctx(desc);
131 
132 	return lib_sha256_base_finish(sctx, out, digest_size);
133 }
134 
135 #endif /* _CRYPTO_SHA256_BASE_H */
136