1 /* 2 * Hash: Hash algorithms under the crypto API 3 * 4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 13 #ifndef _CRYPTO_HASH_H 14 #define _CRYPTO_HASH_H 15 16 #include <linux/crypto.h> 17 #include <linux/string.h> 18 19 struct crypto_ahash; 20 21 /** 22 * DOC: Message Digest Algorithm Definitions 23 * 24 * These data structures define modular message digest algorithm 25 * implementations, managed via crypto_register_ahash(), 26 * crypto_register_shash(), crypto_unregister_ahash() and 27 * crypto_unregister_shash(). 28 */ 29 30 /** 31 * struct hash_alg_common - define properties of message digest 32 * @digestsize: Size of the result of the transformation. A buffer of this size 33 * must be available to the @final and @finup calls, so they can 34 * store the resulting hash into it. For various predefined sizes, 35 * search include/crypto/ using 36 * git grep _DIGEST_SIZE include/crypto. 37 * @statesize: Size of the block for partial state of the transformation. A 38 * buffer of this size must be passed to the @export function as it 39 * will save the partial state of the transformation into it. On the 40 * other side, the @import function will load the state from a 41 * buffer of this size as well. 42 * @base: Start of data structure of cipher algorithm. The common data 43 * structure of crypto_alg contains information common to all ciphers. 44 * The hash_alg_common data structure now adds the hash-specific 45 * information. 46 */ 47 struct hash_alg_common { 48 unsigned int digestsize; 49 unsigned int statesize; 50 51 struct crypto_alg base; 52 }; 53 54 struct ahash_request { 55 struct crypto_async_request base; 56 57 unsigned int nbytes; 58 struct scatterlist *src; 59 u8 *result; 60 61 /* This field may only be used by the ahash API code. */ 62 void *priv; 63 64 void *__ctx[] CRYPTO_MINALIGN_ATTR; 65 }; 66 67 #define AHASH_REQUEST_ON_STACK(name, ahash) \ 68 char __##name##_desc[sizeof(struct ahash_request) + \ 69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \ 70 struct ahash_request *name = (void *)__##name##_desc 71 72 /** 73 * struct ahash_alg - asynchronous message digest definition 74 * @init: Initialize the transformation context. Intended only to initialize the 75 * state of the HASH transformation at the beginning. This shall fill in 76 * the internal structures used during the entire duration of the whole 77 * transformation. No data processing happens at this point. 78 * Note: mandatory. 79 * @update: Push a chunk of data into the driver for transformation. This 80 * function actually pushes blocks of data from upper layers into the 81 * driver, which then passes those to the hardware as seen fit. This 82 * function must not finalize the HASH transformation by calculating the 83 * final message digest as this only adds more data into the 84 * transformation. This function shall not modify the transformation 85 * context, as this function may be called in parallel with the same 86 * transformation object. Data processing can happen synchronously 87 * [SHASH] or asynchronously [AHASH] at this point. 88 * Note: mandatory. 89 * @final: Retrieve result from the driver. This function finalizes the 90 * transformation and retrieves the resulting hash from the driver and 91 * pushes it back to upper layers. No data processing happens at this 92 * point unless hardware requires it to finish the transformation 93 * (then the data buffered by the device driver is processed). 94 * Note: mandatory. 95 * @finup: Combination of @update and @final. This function is effectively a 96 * combination of @update and @final calls issued in sequence. As some 97 * hardware cannot do @update and @final separately, this callback was 98 * added to allow such hardware to be used at least by IPsec. Data 99 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 100 * at this point. 101 * Note: optional. 102 * @digest: Combination of @init and @update and @final. This function 103 * effectively behaves as the entire chain of operations, @init, 104 * @update and @final issued in sequence. Just like @finup, this was 105 * added for hardware which cannot do even the @finup, but can only do 106 * the whole transformation in one run. Data processing can happen 107 * synchronously [SHASH] or asynchronously [AHASH] at this point. 108 * @setkey: Set optional key used by the hashing algorithm. Intended to push 109 * optional key used by the hashing algorithm from upper layers into 110 * the driver. This function can store the key in the transformation 111 * context or can outright program it into the hardware. In the former 112 * case, one must be careful to program the key into the hardware at 113 * appropriate time and one must be careful that .setkey() can be 114 * called multiple times during the existence of the transformation 115 * object. Not all hashing algorithms do implement this function as it 116 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 117 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 118 * this function. This function must be called before any other of the 119 * @init, @update, @final, @finup, @digest is called. No data 120 * processing happens at this point. 121 * @export: Export partial state of the transformation. This function dumps the 122 * entire state of the ongoing transformation into a provided block of 123 * data so it can be @import 'ed back later on. This is useful in case 124 * you want to save partial result of the transformation after 125 * processing certain amount of data and reload this partial result 126 * multiple times later on for multiple re-use. No data processing 127 * happens at this point. 128 * @import: Import partial state of the transformation. This function loads the 129 * entire state of the ongoing transformation from a provided block of 130 * data so the transformation can continue from this point onward. No 131 * data processing happens at this point. 132 * @halg: see struct hash_alg_common 133 */ 134 struct ahash_alg { 135 int (*init)(struct ahash_request *req); 136 int (*update)(struct ahash_request *req); 137 int (*final)(struct ahash_request *req); 138 int (*finup)(struct ahash_request *req); 139 int (*digest)(struct ahash_request *req); 140 int (*export)(struct ahash_request *req, void *out); 141 int (*import)(struct ahash_request *req, const void *in); 142 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 143 unsigned int keylen); 144 145 struct hash_alg_common halg; 146 }; 147 148 struct shash_desc { 149 struct crypto_shash *tfm; 150 u32 flags; 151 152 void *__ctx[] CRYPTO_MINALIGN_ATTR; 153 }; 154 155 #define SHASH_DESC_ON_STACK(shash, ctx) \ 156 char __##shash##_desc[sizeof(struct shash_desc) + \ 157 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \ 158 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 159 160 /** 161 * struct shash_alg - synchronous message digest definition 162 * @init: see struct ahash_alg 163 * @update: see struct ahash_alg 164 * @final: see struct ahash_alg 165 * @finup: see struct ahash_alg 166 * @digest: see struct ahash_alg 167 * @export: see struct ahash_alg 168 * @import: see struct ahash_alg 169 * @setkey: see struct ahash_alg 170 * @digestsize: see struct ahash_alg 171 * @statesize: see struct ahash_alg 172 * @descsize: Size of the operational state for the message digest. This state 173 * size is the memory size that needs to be allocated for 174 * shash_desc.__ctx 175 * @base: internally used 176 */ 177 struct shash_alg { 178 int (*init)(struct shash_desc *desc); 179 int (*update)(struct shash_desc *desc, const u8 *data, 180 unsigned int len); 181 int (*final)(struct shash_desc *desc, u8 *out); 182 int (*finup)(struct shash_desc *desc, const u8 *data, 183 unsigned int len, u8 *out); 184 int (*digest)(struct shash_desc *desc, const u8 *data, 185 unsigned int len, u8 *out); 186 int (*export)(struct shash_desc *desc, void *out); 187 int (*import)(struct shash_desc *desc, const void *in); 188 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 189 unsigned int keylen); 190 191 unsigned int descsize; 192 193 /* These fields must match hash_alg_common. */ 194 unsigned int digestsize 195 __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); 196 unsigned int statesize; 197 198 struct crypto_alg base; 199 }; 200 201 struct crypto_ahash { 202 int (*init)(struct ahash_request *req); 203 int (*update)(struct ahash_request *req); 204 int (*final)(struct ahash_request *req); 205 int (*finup)(struct ahash_request *req); 206 int (*digest)(struct ahash_request *req); 207 int (*export)(struct ahash_request *req, void *out); 208 int (*import)(struct ahash_request *req, const void *in); 209 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 210 unsigned int keylen); 211 212 unsigned int reqsize; 213 bool has_setkey; 214 struct crypto_tfm base; 215 }; 216 217 struct crypto_shash { 218 unsigned int descsize; 219 struct crypto_tfm base; 220 }; 221 222 /** 223 * DOC: Asynchronous Message Digest API 224 * 225 * The asynchronous message digest API is used with the ciphers of type 226 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 227 * 228 * The asynchronous cipher operation discussion provided for the 229 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well. 230 */ 231 232 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 233 { 234 return container_of(tfm, struct crypto_ahash, base); 235 } 236 237 /** 238 * crypto_alloc_ahash() - allocate ahash cipher handle 239 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 240 * ahash cipher 241 * @type: specifies the type of the cipher 242 * @mask: specifies the mask for the cipher 243 * 244 * Allocate a cipher handle for an ahash. The returned struct 245 * crypto_ahash is the cipher handle that is required for any subsequent 246 * API invocation for that ahash. 247 * 248 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 249 * of an error, PTR_ERR() returns the error code. 250 */ 251 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 252 u32 mask); 253 254 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 255 { 256 return &tfm->base; 257 } 258 259 /** 260 * crypto_free_ahash() - zeroize and free the ahash handle 261 * @tfm: cipher handle to be freed 262 */ 263 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 264 { 265 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 266 } 267 268 /** 269 * crypto_has_ahash() - Search for the availability of an ahash. 270 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 271 * ahash 272 * @type: specifies the type of the ahash 273 * @mask: specifies the mask for the ahash 274 * 275 * Return: true when the ahash is known to the kernel crypto API; false 276 * otherwise 277 */ 278 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 279 280 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 281 { 282 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 283 } 284 285 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 286 { 287 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 288 } 289 290 static inline unsigned int crypto_ahash_alignmask( 291 struct crypto_ahash *tfm) 292 { 293 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 294 } 295 296 /** 297 * crypto_ahash_blocksize() - obtain block size for cipher 298 * @tfm: cipher handle 299 * 300 * The block size for the message digest cipher referenced with the cipher 301 * handle is returned. 302 * 303 * Return: block size of cipher 304 */ 305 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 306 { 307 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 308 } 309 310 static inline struct hash_alg_common *__crypto_hash_alg_common( 311 struct crypto_alg *alg) 312 { 313 return container_of(alg, struct hash_alg_common, base); 314 } 315 316 static inline struct hash_alg_common *crypto_hash_alg_common( 317 struct crypto_ahash *tfm) 318 { 319 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 320 } 321 322 /** 323 * crypto_ahash_digestsize() - obtain message digest size 324 * @tfm: cipher handle 325 * 326 * The size for the message digest created by the message digest cipher 327 * referenced with the cipher handle is returned. 328 * 329 * 330 * Return: message digest size of cipher 331 */ 332 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 333 { 334 return crypto_hash_alg_common(tfm)->digestsize; 335 } 336 337 /** 338 * crypto_ahash_statesize() - obtain size of the ahash state 339 * @tfm: cipher handle 340 * 341 * Return the size of the ahash state. With the crypto_ahash_export() 342 * function, the caller can export the state into a buffer whose size is 343 * defined with this function. 344 * 345 * Return: size of the ahash state 346 */ 347 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 348 { 349 return crypto_hash_alg_common(tfm)->statesize; 350 } 351 352 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 353 { 354 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 355 } 356 357 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 358 { 359 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 360 } 361 362 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 363 { 364 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 365 } 366 367 /** 368 * crypto_ahash_reqtfm() - obtain cipher handle from request 369 * @req: asynchronous request handle that contains the reference to the ahash 370 * cipher handle 371 * 372 * Return the ahash cipher handle that is registered with the asynchronous 373 * request handle ahash_request. 374 * 375 * Return: ahash cipher handle 376 */ 377 static inline struct crypto_ahash *crypto_ahash_reqtfm( 378 struct ahash_request *req) 379 { 380 return __crypto_ahash_cast(req->base.tfm); 381 } 382 383 /** 384 * crypto_ahash_reqsize() - obtain size of the request data structure 385 * @tfm: cipher handle 386 * 387 * Return: size of the request data 388 */ 389 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 390 { 391 return tfm->reqsize; 392 } 393 394 static inline void *ahash_request_ctx(struct ahash_request *req) 395 { 396 return req->__ctx; 397 } 398 399 /** 400 * crypto_ahash_setkey - set key for cipher handle 401 * @tfm: cipher handle 402 * @key: buffer holding the key 403 * @keylen: length of the key in bytes 404 * 405 * The caller provided key is set for the ahash cipher. The cipher 406 * handle must point to a keyed hash in order for this function to succeed. 407 * 408 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 409 */ 410 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 411 unsigned int keylen); 412 413 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm) 414 { 415 return tfm->has_setkey; 416 } 417 418 /** 419 * crypto_ahash_finup() - update and finalize message digest 420 * @req: reference to the ahash_request handle that holds all information 421 * needed to perform the cipher operation 422 * 423 * This function is a "short-hand" for the function calls of 424 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 425 * meaning as discussed for those separate functions. 426 * 427 * Return: see crypto_ahash_final() 428 */ 429 int crypto_ahash_finup(struct ahash_request *req); 430 431 /** 432 * crypto_ahash_final() - calculate message digest 433 * @req: reference to the ahash_request handle that holds all information 434 * needed to perform the cipher operation 435 * 436 * Finalize the message digest operation and create the message digest 437 * based on all data added to the cipher handle. The message digest is placed 438 * into the output buffer registered with the ahash_request handle. 439 * 440 * Return: 441 * 0 if the message digest was successfully calculated; 442 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; 443 * -EBUSY if queue is full and request should be resubmitted later; 444 * other < 0 if an error occurred 445 */ 446 int crypto_ahash_final(struct ahash_request *req); 447 448 /** 449 * crypto_ahash_digest() - calculate message digest for a buffer 450 * @req: reference to the ahash_request handle that holds all information 451 * needed to perform the cipher operation 452 * 453 * This function is a "short-hand" for the function calls of crypto_ahash_init, 454 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 455 * meaning as discussed for those separate three functions. 456 * 457 * Return: see crypto_ahash_final() 458 */ 459 int crypto_ahash_digest(struct ahash_request *req); 460 461 /** 462 * crypto_ahash_export() - extract current message digest state 463 * @req: reference to the ahash_request handle whose state is exported 464 * @out: output buffer of sufficient size that can hold the hash state 465 * 466 * This function exports the hash state of the ahash_request handle into the 467 * caller-allocated output buffer out which must have sufficient size (e.g. by 468 * calling crypto_ahash_statesize()). 469 * 470 * Return: 0 if the export was successful; < 0 if an error occurred 471 */ 472 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 473 { 474 return crypto_ahash_reqtfm(req)->export(req, out); 475 } 476 477 /** 478 * crypto_ahash_import() - import message digest state 479 * @req: reference to ahash_request handle the state is imported into 480 * @in: buffer holding the state 481 * 482 * This function imports the hash state into the ahash_request handle from the 483 * input buffer. That buffer should have been generated with the 484 * crypto_ahash_export function. 485 * 486 * Return: 0 if the import was successful; < 0 if an error occurred 487 */ 488 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 489 { 490 return crypto_ahash_reqtfm(req)->import(req, in); 491 } 492 493 /** 494 * crypto_ahash_init() - (re)initialize message digest handle 495 * @req: ahash_request handle that already is initialized with all necessary 496 * data using the ahash_request_* API functions 497 * 498 * The call (re-)initializes the message digest referenced by the ahash_request 499 * handle. Any potentially existing state created by previous operations is 500 * discarded. 501 * 502 * Return: see crypto_ahash_final() 503 */ 504 static inline int crypto_ahash_init(struct ahash_request *req) 505 { 506 return crypto_ahash_reqtfm(req)->init(req); 507 } 508 509 /** 510 * crypto_ahash_update() - add data to message digest for processing 511 * @req: ahash_request handle that was previously initialized with the 512 * crypto_ahash_init call. 513 * 514 * Updates the message digest state of the &ahash_request handle. The input data 515 * is pointed to by the scatter/gather list registered in the &ahash_request 516 * handle 517 * 518 * Return: see crypto_ahash_final() 519 */ 520 static inline int crypto_ahash_update(struct ahash_request *req) 521 { 522 return crypto_ahash_reqtfm(req)->update(req); 523 } 524 525 /** 526 * DOC: Asynchronous Hash Request Handle 527 * 528 * The &ahash_request data structure contains all pointers to data 529 * required for the asynchronous cipher operation. This includes the cipher 530 * handle (which can be used by multiple &ahash_request instances), pointer 531 * to plaintext and the message digest output buffer, asynchronous callback 532 * function, etc. It acts as a handle to the ahash_request_* API calls in a 533 * similar way as ahash handle to the crypto_ahash_* API calls. 534 */ 535 536 /** 537 * ahash_request_set_tfm() - update cipher handle reference in request 538 * @req: request handle to be modified 539 * @tfm: cipher handle that shall be added to the request handle 540 * 541 * Allow the caller to replace the existing ahash handle in the request 542 * data structure with a different one. 543 */ 544 static inline void ahash_request_set_tfm(struct ahash_request *req, 545 struct crypto_ahash *tfm) 546 { 547 req->base.tfm = crypto_ahash_tfm(tfm); 548 } 549 550 /** 551 * ahash_request_alloc() - allocate request data structure 552 * @tfm: cipher handle to be registered with the request 553 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 554 * 555 * Allocate the request data structure that must be used with the ahash 556 * message digest API calls. During 557 * the allocation, the provided ahash handle 558 * is registered in the request data structure. 559 * 560 * Return: allocated request handle in case of success, or NULL if out of memory 561 */ 562 static inline struct ahash_request *ahash_request_alloc( 563 struct crypto_ahash *tfm, gfp_t gfp) 564 { 565 struct ahash_request *req; 566 567 req = kmalloc(sizeof(struct ahash_request) + 568 crypto_ahash_reqsize(tfm), gfp); 569 570 if (likely(req)) 571 ahash_request_set_tfm(req, tfm); 572 573 return req; 574 } 575 576 /** 577 * ahash_request_free() - zeroize and free the request data structure 578 * @req: request data structure cipher handle to be freed 579 */ 580 static inline void ahash_request_free(struct ahash_request *req) 581 { 582 kzfree(req); 583 } 584 585 static inline void ahash_request_zero(struct ahash_request *req) 586 { 587 memzero_explicit(req, sizeof(*req) + 588 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 589 } 590 591 static inline struct ahash_request *ahash_request_cast( 592 struct crypto_async_request *req) 593 { 594 return container_of(req, struct ahash_request, base); 595 } 596 597 /** 598 * ahash_request_set_callback() - set asynchronous callback function 599 * @req: request handle 600 * @flags: specify zero or an ORing of the flags 601 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 602 * increase the wait queue beyond the initial maximum size; 603 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 604 * @compl: callback function pointer to be registered with the request handle 605 * @data: The data pointer refers to memory that is not used by the kernel 606 * crypto API, but provided to the callback function for it to use. Here, 607 * the caller can provide a reference to memory the callback function can 608 * operate on. As the callback function is invoked asynchronously to the 609 * related functionality, it may need to access data structures of the 610 * related functionality which can be referenced using this pointer. The 611 * callback function can access the memory via the "data" field in the 612 * &crypto_async_request data structure provided to the callback function. 613 * 614 * This function allows setting the callback function that is triggered once 615 * the cipher operation completes. 616 * 617 * The callback function is registered with the &ahash_request handle and 618 * must comply with the following template:: 619 * 620 * void callback_function(struct crypto_async_request *req, int error) 621 */ 622 static inline void ahash_request_set_callback(struct ahash_request *req, 623 u32 flags, 624 crypto_completion_t compl, 625 void *data) 626 { 627 req->base.complete = compl; 628 req->base.data = data; 629 req->base.flags = flags; 630 } 631 632 /** 633 * ahash_request_set_crypt() - set data buffers 634 * @req: ahash_request handle to be updated 635 * @src: source scatter/gather list 636 * @result: buffer that is filled with the message digest -- the caller must 637 * ensure that the buffer has sufficient space by, for example, calling 638 * crypto_ahash_digestsize() 639 * @nbytes: number of bytes to process from the source scatter/gather list 640 * 641 * By using this call, the caller references the source scatter/gather list. 642 * The source scatter/gather list points to the data the message digest is to 643 * be calculated for. 644 */ 645 static inline void ahash_request_set_crypt(struct ahash_request *req, 646 struct scatterlist *src, u8 *result, 647 unsigned int nbytes) 648 { 649 req->src = src; 650 req->nbytes = nbytes; 651 req->result = result; 652 } 653 654 /** 655 * DOC: Synchronous Message Digest API 656 * 657 * The synchronous message digest API is used with the ciphers of type 658 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 659 * 660 * The message digest API is able to maintain state information for the 661 * caller. 662 * 663 * The synchronous message digest API can store user-related context in in its 664 * shash_desc request data structure. 665 */ 666 667 /** 668 * crypto_alloc_shash() - allocate message digest handle 669 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 670 * message digest cipher 671 * @type: specifies the type of the cipher 672 * @mask: specifies the mask for the cipher 673 * 674 * Allocate a cipher handle for a message digest. The returned &struct 675 * crypto_shash is the cipher handle that is required for any subsequent 676 * API invocation for that message digest. 677 * 678 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 679 * of an error, PTR_ERR() returns the error code. 680 */ 681 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 682 u32 mask); 683 684 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 685 { 686 return &tfm->base; 687 } 688 689 /** 690 * crypto_free_shash() - zeroize and free the message digest handle 691 * @tfm: cipher handle to be freed 692 */ 693 static inline void crypto_free_shash(struct crypto_shash *tfm) 694 { 695 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 696 } 697 698 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 699 { 700 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 701 } 702 703 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 704 { 705 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 706 } 707 708 static inline unsigned int crypto_shash_alignmask( 709 struct crypto_shash *tfm) 710 { 711 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 712 } 713 714 /** 715 * crypto_shash_blocksize() - obtain block size for cipher 716 * @tfm: cipher handle 717 * 718 * The block size for the message digest cipher referenced with the cipher 719 * handle is returned. 720 * 721 * Return: block size of cipher 722 */ 723 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 724 { 725 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 726 } 727 728 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 729 { 730 return container_of(alg, struct shash_alg, base); 731 } 732 733 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 734 { 735 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 736 } 737 738 /** 739 * crypto_shash_digestsize() - obtain message digest size 740 * @tfm: cipher handle 741 * 742 * The size for the message digest created by the message digest cipher 743 * referenced with the cipher handle is returned. 744 * 745 * Return: digest size of cipher 746 */ 747 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 748 { 749 return crypto_shash_alg(tfm)->digestsize; 750 } 751 752 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 753 { 754 return crypto_shash_alg(tfm)->statesize; 755 } 756 757 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 758 { 759 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 760 } 761 762 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 763 { 764 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 765 } 766 767 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 768 { 769 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 770 } 771 772 /** 773 * crypto_shash_descsize() - obtain the operational state size 774 * @tfm: cipher handle 775 * 776 * The size of the operational state the cipher needs during operation is 777 * returned for the hash referenced with the cipher handle. This size is 778 * required to calculate the memory requirements to allow the caller allocating 779 * sufficient memory for operational state. 780 * 781 * The operational state is defined with struct shash_desc where the size of 782 * that data structure is to be calculated as 783 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 784 * 785 * Return: size of the operational state 786 */ 787 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 788 { 789 return tfm->descsize; 790 } 791 792 static inline void *shash_desc_ctx(struct shash_desc *desc) 793 { 794 return desc->__ctx; 795 } 796 797 /** 798 * crypto_shash_setkey() - set key for message digest 799 * @tfm: cipher handle 800 * @key: buffer holding the key 801 * @keylen: length of the key in bytes 802 * 803 * The caller provided key is set for the keyed message digest cipher. The 804 * cipher handle must point to a keyed message digest cipher in order for this 805 * function to succeed. 806 * 807 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 808 */ 809 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 810 unsigned int keylen); 811 812 /** 813 * crypto_shash_digest() - calculate message digest for buffer 814 * @desc: see crypto_shash_final() 815 * @data: see crypto_shash_update() 816 * @len: see crypto_shash_update() 817 * @out: see crypto_shash_final() 818 * 819 * This function is a "short-hand" for the function calls of crypto_shash_init, 820 * crypto_shash_update and crypto_shash_final. The parameters have the same 821 * meaning as discussed for those separate three functions. 822 * 823 * Return: 0 if the message digest creation was successful; < 0 if an error 824 * occurred 825 */ 826 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 827 unsigned int len, u8 *out); 828 829 /** 830 * crypto_shash_export() - extract operational state for message digest 831 * @desc: reference to the operational state handle whose state is exported 832 * @out: output buffer of sufficient size that can hold the hash state 833 * 834 * This function exports the hash state of the operational state handle into the 835 * caller-allocated output buffer out which must have sufficient size (e.g. by 836 * calling crypto_shash_descsize). 837 * 838 * Return: 0 if the export creation was successful; < 0 if an error occurred 839 */ 840 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 841 { 842 return crypto_shash_alg(desc->tfm)->export(desc, out); 843 } 844 845 /** 846 * crypto_shash_import() - import operational state 847 * @desc: reference to the operational state handle the state imported into 848 * @in: buffer holding the state 849 * 850 * This function imports the hash state into the operational state handle from 851 * the input buffer. That buffer should have been generated with the 852 * crypto_ahash_export function. 853 * 854 * Return: 0 if the import was successful; < 0 if an error occurred 855 */ 856 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 857 { 858 return crypto_shash_alg(desc->tfm)->import(desc, in); 859 } 860 861 /** 862 * crypto_shash_init() - (re)initialize message digest 863 * @desc: operational state handle that is already filled 864 * 865 * The call (re-)initializes the message digest referenced by the 866 * operational state handle. Any potentially existing state created by 867 * previous operations is discarded. 868 * 869 * Return: 0 if the message digest initialization was successful; < 0 if an 870 * error occurred 871 */ 872 static inline int crypto_shash_init(struct shash_desc *desc) 873 { 874 return crypto_shash_alg(desc->tfm)->init(desc); 875 } 876 877 /** 878 * crypto_shash_update() - add data to message digest for processing 879 * @desc: operational state handle that is already initialized 880 * @data: input data to be added to the message digest 881 * @len: length of the input data 882 * 883 * Updates the message digest state of the operational state handle. 884 * 885 * Return: 0 if the message digest update was successful; < 0 if an error 886 * occurred 887 */ 888 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 889 unsigned int len); 890 891 /** 892 * crypto_shash_final() - calculate message digest 893 * @desc: operational state handle that is already filled with data 894 * @out: output buffer filled with the message digest 895 * 896 * Finalize the message digest operation and create the message digest 897 * based on all data added to the cipher handle. The message digest is placed 898 * into the output buffer. The caller must ensure that the output buffer is 899 * large enough by using crypto_shash_digestsize. 900 * 901 * Return: 0 if the message digest creation was successful; < 0 if an error 902 * occurred 903 */ 904 int crypto_shash_final(struct shash_desc *desc, u8 *out); 905 906 /** 907 * crypto_shash_finup() - calculate message digest of buffer 908 * @desc: see crypto_shash_final() 909 * @data: see crypto_shash_update() 910 * @len: see crypto_shash_update() 911 * @out: see crypto_shash_final() 912 * 913 * This function is a "short-hand" for the function calls of 914 * crypto_shash_update and crypto_shash_final. The parameters have the same 915 * meaning as discussed for those separate functions. 916 * 917 * Return: 0 if the message digest creation was successful; < 0 if an error 918 * occurred 919 */ 920 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 921 unsigned int len, u8 *out); 922 923 static inline void shash_desc_zero(struct shash_desc *desc) 924 { 925 memzero_explicit(desc, 926 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 927 } 928 929 #endif /* _CRYPTO_HASH_H */ 930