1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/crypto.h> 12 #include <linux/string.h> 13 14 struct crypto_ahash; 15 16 /** 17 * DOC: Message Digest Algorithm Definitions 18 * 19 * These data structures define modular message digest algorithm 20 * implementations, managed via crypto_register_ahash(), 21 * crypto_register_shash(), crypto_unregister_ahash() and 22 * crypto_unregister_shash(). 23 */ 24 25 /** 26 * struct hash_alg_common - define properties of message digest 27 * @digestsize: Size of the result of the transformation. A buffer of this size 28 * must be available to the @final and @finup calls, so they can 29 * store the resulting hash into it. For various predefined sizes, 30 * search include/crypto/ using 31 * git grep _DIGEST_SIZE include/crypto. 32 * @statesize: Size of the block for partial state of the transformation. A 33 * buffer of this size must be passed to the @export function as it 34 * will save the partial state of the transformation into it. On the 35 * other side, the @import function will load the state from a 36 * buffer of this size as well. 37 * @base: Start of data structure of cipher algorithm. The common data 38 * structure of crypto_alg contains information common to all ciphers. 39 * The hash_alg_common data structure now adds the hash-specific 40 * information. 41 */ 42 struct hash_alg_common { 43 unsigned int digestsize; 44 unsigned int statesize; 45 46 struct crypto_alg base; 47 }; 48 49 struct ahash_request { 50 struct crypto_async_request base; 51 52 unsigned int nbytes; 53 struct scatterlist *src; 54 u8 *result; 55 56 /* This field may only be used by the ahash API code. */ 57 void *priv; 58 59 void *__ctx[] CRYPTO_MINALIGN_ATTR; 60 }; 61 62 #define AHASH_REQUEST_ON_STACK(name, ahash) \ 63 char __##name##_desc[sizeof(struct ahash_request) + \ 64 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \ 65 struct ahash_request *name = (void *)__##name##_desc 66 67 /** 68 * struct ahash_alg - asynchronous message digest definition 69 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 70 * state of the HASH transformation at the beginning. This shall fill in 71 * the internal structures used during the entire duration of the whole 72 * transformation. No data processing happens at this point. Driver code 73 * implementation must not use req->result. 74 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 75 * function actually pushes blocks of data from upper layers into the 76 * driver, which then passes those to the hardware as seen fit. This 77 * function must not finalize the HASH transformation by calculating the 78 * final message digest as this only adds more data into the 79 * transformation. This function shall not modify the transformation 80 * context, as this function may be called in parallel with the same 81 * transformation object. Data processing can happen synchronously 82 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 83 * req->result. 84 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 85 * transformation and retrieves the resulting hash from the driver and 86 * pushes it back to upper layers. No data processing happens at this 87 * point unless hardware requires it to finish the transformation 88 * (then the data buffered by the device driver is processed). 89 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 90 * combination of @update and @final calls issued in sequence. As some 91 * hardware cannot do @update and @final separately, this callback was 92 * added to allow such hardware to be used at least by IPsec. Data 93 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 94 * at this point. 95 * @digest: Combination of @init and @update and @final. This function 96 * effectively behaves as the entire chain of operations, @init, 97 * @update and @final issued in sequence. Just like @finup, this was 98 * added for hardware which cannot do even the @finup, but can only do 99 * the whole transformation in one run. Data processing can happen 100 * synchronously [SHASH] or asynchronously [AHASH] at this point. 101 * @setkey: Set optional key used by the hashing algorithm. Intended to push 102 * optional key used by the hashing algorithm from upper layers into 103 * the driver. This function can store the key in the transformation 104 * context or can outright program it into the hardware. In the former 105 * case, one must be careful to program the key into the hardware at 106 * appropriate time and one must be careful that .setkey() can be 107 * called multiple times during the existence of the transformation 108 * object. Not all hashing algorithms do implement this function as it 109 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 110 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 111 * this function. This function must be called before any other of the 112 * @init, @update, @final, @finup, @digest is called. No data 113 * processing happens at this point. 114 * @export: Export partial state of the transformation. This function dumps the 115 * entire state of the ongoing transformation into a provided block of 116 * data so it can be @import 'ed back later on. This is useful in case 117 * you want to save partial result of the transformation after 118 * processing certain amount of data and reload this partial result 119 * multiple times later on for multiple re-use. No data processing 120 * happens at this point. Driver must not use req->result. 121 * @import: Import partial state of the transformation. This function loads the 122 * entire state of the ongoing transformation from a provided block of 123 * data so the transformation can continue from this point onward. No 124 * data processing happens at this point. Driver must not use 125 * req->result. 126 * @halg: see struct hash_alg_common 127 */ 128 struct ahash_alg { 129 int (*init)(struct ahash_request *req); 130 int (*update)(struct ahash_request *req); 131 int (*final)(struct ahash_request *req); 132 int (*finup)(struct ahash_request *req); 133 int (*digest)(struct ahash_request *req); 134 int (*export)(struct ahash_request *req, void *out); 135 int (*import)(struct ahash_request *req, const void *in); 136 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 137 unsigned int keylen); 138 139 struct hash_alg_common halg; 140 }; 141 142 struct shash_desc { 143 struct crypto_shash *tfm; 144 void *__ctx[] CRYPTO_MINALIGN_ATTR; 145 }; 146 147 #define HASH_MAX_DIGESTSIZE 64 148 149 /* 150 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' 151 * containing a 'struct sha3_state'. 152 */ 153 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 154 155 #define HASH_MAX_STATESIZE 512 156 157 #define SHASH_DESC_ON_STACK(shash, ctx) \ 158 char __##shash##_desc[sizeof(struct shash_desc) + \ 159 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \ 160 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 161 162 /** 163 * struct shash_alg - synchronous message digest definition 164 * @init: see struct ahash_alg 165 * @update: see struct ahash_alg 166 * @final: see struct ahash_alg 167 * @finup: see struct ahash_alg 168 * @digest: see struct ahash_alg 169 * @export: see struct ahash_alg 170 * @import: see struct ahash_alg 171 * @setkey: see struct ahash_alg 172 * @init_tfm: Initialize the cryptographic transformation object. 173 * This function is called only once at the instantiation 174 * time, right after the transformation context was 175 * allocated. In case the cryptographic hardware has 176 * some special requirements which need to be handled 177 * by software, this function shall check for the precise 178 * requirement of the transformation and put any software 179 * fallbacks in place. 180 * @exit_tfm: Deinitialize the cryptographic transformation object. 181 * This is a counterpart to @init_tfm, used to remove 182 * various changes set in @init_tfm. 183 * @digestsize: see struct ahash_alg 184 * @statesize: see struct ahash_alg 185 * @descsize: Size of the operational state for the message digest. This state 186 * size is the memory size that needs to be allocated for 187 * shash_desc.__ctx 188 * @base: internally used 189 */ 190 struct shash_alg { 191 int (*init)(struct shash_desc *desc); 192 int (*update)(struct shash_desc *desc, const u8 *data, 193 unsigned int len); 194 int (*final)(struct shash_desc *desc, u8 *out); 195 int (*finup)(struct shash_desc *desc, const u8 *data, 196 unsigned int len, u8 *out); 197 int (*digest)(struct shash_desc *desc, const u8 *data, 198 unsigned int len, u8 *out); 199 int (*export)(struct shash_desc *desc, void *out); 200 int (*import)(struct shash_desc *desc, const void *in); 201 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 202 unsigned int keylen); 203 int (*init_tfm)(struct crypto_shash *tfm); 204 void (*exit_tfm)(struct crypto_shash *tfm); 205 206 unsigned int descsize; 207 208 /* These fields must match hash_alg_common. */ 209 unsigned int digestsize 210 __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); 211 unsigned int statesize; 212 213 struct crypto_alg base; 214 }; 215 216 struct crypto_ahash { 217 int (*init)(struct ahash_request *req); 218 int (*update)(struct ahash_request *req); 219 int (*final)(struct ahash_request *req); 220 int (*finup)(struct ahash_request *req); 221 int (*digest)(struct ahash_request *req); 222 int (*export)(struct ahash_request *req, void *out); 223 int (*import)(struct ahash_request *req, const void *in); 224 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 225 unsigned int keylen); 226 227 unsigned int reqsize; 228 struct crypto_tfm base; 229 }; 230 231 struct crypto_shash { 232 unsigned int descsize; 233 struct crypto_tfm base; 234 }; 235 236 /** 237 * DOC: Asynchronous Message Digest API 238 * 239 * The asynchronous message digest API is used with the ciphers of type 240 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 241 * 242 * The asynchronous cipher operation discussion provided for the 243 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 244 */ 245 246 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 247 { 248 return container_of(tfm, struct crypto_ahash, base); 249 } 250 251 /** 252 * crypto_alloc_ahash() - allocate ahash cipher handle 253 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 254 * ahash cipher 255 * @type: specifies the type of the cipher 256 * @mask: specifies the mask for the cipher 257 * 258 * Allocate a cipher handle for an ahash. The returned struct 259 * crypto_ahash is the cipher handle that is required for any subsequent 260 * API invocation for that ahash. 261 * 262 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 263 * of an error, PTR_ERR() returns the error code. 264 */ 265 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 266 u32 mask); 267 268 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 269 { 270 return &tfm->base; 271 } 272 273 /** 274 * crypto_free_ahash() - zeroize and free the ahash handle 275 * @tfm: cipher handle to be freed 276 */ 277 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 278 { 279 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 280 } 281 282 /** 283 * crypto_has_ahash() - Search for the availability of an ahash. 284 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 285 * ahash 286 * @type: specifies the type of the ahash 287 * @mask: specifies the mask for the ahash 288 * 289 * Return: true when the ahash is known to the kernel crypto API; false 290 * otherwise 291 */ 292 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 293 294 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 295 { 296 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 297 } 298 299 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 300 { 301 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 302 } 303 304 static inline unsigned int crypto_ahash_alignmask( 305 struct crypto_ahash *tfm) 306 { 307 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 308 } 309 310 /** 311 * crypto_ahash_blocksize() - obtain block size for cipher 312 * @tfm: cipher handle 313 * 314 * The block size for the message digest cipher referenced with the cipher 315 * handle is returned. 316 * 317 * Return: block size of cipher 318 */ 319 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 320 { 321 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 322 } 323 324 static inline struct hash_alg_common *__crypto_hash_alg_common( 325 struct crypto_alg *alg) 326 { 327 return container_of(alg, struct hash_alg_common, base); 328 } 329 330 static inline struct hash_alg_common *crypto_hash_alg_common( 331 struct crypto_ahash *tfm) 332 { 333 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 334 } 335 336 /** 337 * crypto_ahash_digestsize() - obtain message digest size 338 * @tfm: cipher handle 339 * 340 * The size for the message digest created by the message digest cipher 341 * referenced with the cipher handle is returned. 342 * 343 * 344 * Return: message digest size of cipher 345 */ 346 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 347 { 348 return crypto_hash_alg_common(tfm)->digestsize; 349 } 350 351 /** 352 * crypto_ahash_statesize() - obtain size of the ahash state 353 * @tfm: cipher handle 354 * 355 * Return the size of the ahash state. With the crypto_ahash_export() 356 * function, the caller can export the state into a buffer whose size is 357 * defined with this function. 358 * 359 * Return: size of the ahash state 360 */ 361 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 362 { 363 return crypto_hash_alg_common(tfm)->statesize; 364 } 365 366 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 367 { 368 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 369 } 370 371 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 372 { 373 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 374 } 375 376 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 377 { 378 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 379 } 380 381 /** 382 * crypto_ahash_reqtfm() - obtain cipher handle from request 383 * @req: asynchronous request handle that contains the reference to the ahash 384 * cipher handle 385 * 386 * Return the ahash cipher handle that is registered with the asynchronous 387 * request handle ahash_request. 388 * 389 * Return: ahash cipher handle 390 */ 391 static inline struct crypto_ahash *crypto_ahash_reqtfm( 392 struct ahash_request *req) 393 { 394 return __crypto_ahash_cast(req->base.tfm); 395 } 396 397 /** 398 * crypto_ahash_reqsize() - obtain size of the request data structure 399 * @tfm: cipher handle 400 * 401 * Return: size of the request data 402 */ 403 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 404 { 405 return tfm->reqsize; 406 } 407 408 static inline void *ahash_request_ctx(struct ahash_request *req) 409 { 410 return req->__ctx; 411 } 412 413 /** 414 * crypto_ahash_setkey - set key for cipher handle 415 * @tfm: cipher handle 416 * @key: buffer holding the key 417 * @keylen: length of the key in bytes 418 * 419 * The caller provided key is set for the ahash cipher. The cipher 420 * handle must point to a keyed hash in order for this function to succeed. 421 * 422 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 423 */ 424 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 425 unsigned int keylen); 426 427 /** 428 * crypto_ahash_finup() - update and finalize message digest 429 * @req: reference to the ahash_request handle that holds all information 430 * needed to perform the cipher operation 431 * 432 * This function is a "short-hand" for the function calls of 433 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 434 * meaning as discussed for those separate functions. 435 * 436 * Return: see crypto_ahash_final() 437 */ 438 int crypto_ahash_finup(struct ahash_request *req); 439 440 /** 441 * crypto_ahash_final() - calculate message digest 442 * @req: reference to the ahash_request handle that holds all information 443 * needed to perform the cipher operation 444 * 445 * Finalize the message digest operation and create the message digest 446 * based on all data added to the cipher handle. The message digest is placed 447 * into the output buffer registered with the ahash_request handle. 448 * 449 * Return: 450 * 0 if the message digest was successfully calculated; 451 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; 452 * -EBUSY if queue is full and request should be resubmitted later; 453 * other < 0 if an error occurred 454 */ 455 int crypto_ahash_final(struct ahash_request *req); 456 457 /** 458 * crypto_ahash_digest() - calculate message digest for a buffer 459 * @req: reference to the ahash_request handle that holds all information 460 * needed to perform the cipher operation 461 * 462 * This function is a "short-hand" for the function calls of crypto_ahash_init, 463 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 464 * meaning as discussed for those separate three functions. 465 * 466 * Return: see crypto_ahash_final() 467 */ 468 int crypto_ahash_digest(struct ahash_request *req); 469 470 /** 471 * crypto_ahash_export() - extract current message digest state 472 * @req: reference to the ahash_request handle whose state is exported 473 * @out: output buffer of sufficient size that can hold the hash state 474 * 475 * This function exports the hash state of the ahash_request handle into the 476 * caller-allocated output buffer out which must have sufficient size (e.g. by 477 * calling crypto_ahash_statesize()). 478 * 479 * Return: 0 if the export was successful; < 0 if an error occurred 480 */ 481 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 482 { 483 return crypto_ahash_reqtfm(req)->export(req, out); 484 } 485 486 /** 487 * crypto_ahash_import() - import message digest state 488 * @req: reference to ahash_request handle the state is imported into 489 * @in: buffer holding the state 490 * 491 * This function imports the hash state into the ahash_request handle from the 492 * input buffer. That buffer should have been generated with the 493 * crypto_ahash_export function. 494 * 495 * Return: 0 if the import was successful; < 0 if an error occurred 496 */ 497 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 498 { 499 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 500 501 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 502 return -ENOKEY; 503 504 return tfm->import(req, in); 505 } 506 507 /** 508 * crypto_ahash_init() - (re)initialize message digest handle 509 * @req: ahash_request handle that already is initialized with all necessary 510 * data using the ahash_request_* API functions 511 * 512 * The call (re-)initializes the message digest referenced by the ahash_request 513 * handle. Any potentially existing state created by previous operations is 514 * discarded. 515 * 516 * Return: see crypto_ahash_final() 517 */ 518 static inline int crypto_ahash_init(struct ahash_request *req) 519 { 520 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 521 522 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 523 return -ENOKEY; 524 525 return tfm->init(req); 526 } 527 528 /** 529 * crypto_ahash_update() - add data to message digest for processing 530 * @req: ahash_request handle that was previously initialized with the 531 * crypto_ahash_init call. 532 * 533 * Updates the message digest state of the &ahash_request handle. The input data 534 * is pointed to by the scatter/gather list registered in the &ahash_request 535 * handle 536 * 537 * Return: see crypto_ahash_final() 538 */ 539 static inline int crypto_ahash_update(struct ahash_request *req) 540 { 541 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 542 struct crypto_alg *alg = tfm->base.__crt_alg; 543 unsigned int nbytes = req->nbytes; 544 int ret; 545 546 crypto_stats_get(alg); 547 ret = crypto_ahash_reqtfm(req)->update(req); 548 crypto_stats_ahash_update(nbytes, ret, alg); 549 return ret; 550 } 551 552 /** 553 * DOC: Asynchronous Hash Request Handle 554 * 555 * The &ahash_request data structure contains all pointers to data 556 * required for the asynchronous cipher operation. This includes the cipher 557 * handle (which can be used by multiple &ahash_request instances), pointer 558 * to plaintext and the message digest output buffer, asynchronous callback 559 * function, etc. It acts as a handle to the ahash_request_* API calls in a 560 * similar way as ahash handle to the crypto_ahash_* API calls. 561 */ 562 563 /** 564 * ahash_request_set_tfm() - update cipher handle reference in request 565 * @req: request handle to be modified 566 * @tfm: cipher handle that shall be added to the request handle 567 * 568 * Allow the caller to replace the existing ahash handle in the request 569 * data structure with a different one. 570 */ 571 static inline void ahash_request_set_tfm(struct ahash_request *req, 572 struct crypto_ahash *tfm) 573 { 574 req->base.tfm = crypto_ahash_tfm(tfm); 575 } 576 577 /** 578 * ahash_request_alloc() - allocate request data structure 579 * @tfm: cipher handle to be registered with the request 580 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 581 * 582 * Allocate the request data structure that must be used with the ahash 583 * message digest API calls. During 584 * the allocation, the provided ahash handle 585 * is registered in the request data structure. 586 * 587 * Return: allocated request handle in case of success, or NULL if out of memory 588 */ 589 static inline struct ahash_request *ahash_request_alloc( 590 struct crypto_ahash *tfm, gfp_t gfp) 591 { 592 struct ahash_request *req; 593 594 req = kmalloc(sizeof(struct ahash_request) + 595 crypto_ahash_reqsize(tfm), gfp); 596 597 if (likely(req)) 598 ahash_request_set_tfm(req, tfm); 599 600 return req; 601 } 602 603 /** 604 * ahash_request_free() - zeroize and free the request data structure 605 * @req: request data structure cipher handle to be freed 606 */ 607 static inline void ahash_request_free(struct ahash_request *req) 608 { 609 kzfree(req); 610 } 611 612 static inline void ahash_request_zero(struct ahash_request *req) 613 { 614 memzero_explicit(req, sizeof(*req) + 615 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 616 } 617 618 static inline struct ahash_request *ahash_request_cast( 619 struct crypto_async_request *req) 620 { 621 return container_of(req, struct ahash_request, base); 622 } 623 624 /** 625 * ahash_request_set_callback() - set asynchronous callback function 626 * @req: request handle 627 * @flags: specify zero or an ORing of the flags 628 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 629 * increase the wait queue beyond the initial maximum size; 630 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 631 * @compl: callback function pointer to be registered with the request handle 632 * @data: The data pointer refers to memory that is not used by the kernel 633 * crypto API, but provided to the callback function for it to use. Here, 634 * the caller can provide a reference to memory the callback function can 635 * operate on. As the callback function is invoked asynchronously to the 636 * related functionality, it may need to access data structures of the 637 * related functionality which can be referenced using this pointer. The 638 * callback function can access the memory via the "data" field in the 639 * &crypto_async_request data structure provided to the callback function. 640 * 641 * This function allows setting the callback function that is triggered once 642 * the cipher operation completes. 643 * 644 * The callback function is registered with the &ahash_request handle and 645 * must comply with the following template:: 646 * 647 * void callback_function(struct crypto_async_request *req, int error) 648 */ 649 static inline void ahash_request_set_callback(struct ahash_request *req, 650 u32 flags, 651 crypto_completion_t compl, 652 void *data) 653 { 654 req->base.complete = compl; 655 req->base.data = data; 656 req->base.flags = flags; 657 } 658 659 /** 660 * ahash_request_set_crypt() - set data buffers 661 * @req: ahash_request handle to be updated 662 * @src: source scatter/gather list 663 * @result: buffer that is filled with the message digest -- the caller must 664 * ensure that the buffer has sufficient space by, for example, calling 665 * crypto_ahash_digestsize() 666 * @nbytes: number of bytes to process from the source scatter/gather list 667 * 668 * By using this call, the caller references the source scatter/gather list. 669 * The source scatter/gather list points to the data the message digest is to 670 * be calculated for. 671 */ 672 static inline void ahash_request_set_crypt(struct ahash_request *req, 673 struct scatterlist *src, u8 *result, 674 unsigned int nbytes) 675 { 676 req->src = src; 677 req->nbytes = nbytes; 678 req->result = result; 679 } 680 681 /** 682 * DOC: Synchronous Message Digest API 683 * 684 * The synchronous message digest API is used with the ciphers of type 685 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 686 * 687 * The message digest API is able to maintain state information for the 688 * caller. 689 * 690 * The synchronous message digest API can store user-related context in in its 691 * shash_desc request data structure. 692 */ 693 694 /** 695 * crypto_alloc_shash() - allocate message digest handle 696 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 697 * message digest cipher 698 * @type: specifies the type of the cipher 699 * @mask: specifies the mask for the cipher 700 * 701 * Allocate a cipher handle for a message digest. The returned &struct 702 * crypto_shash is the cipher handle that is required for any subsequent 703 * API invocation for that message digest. 704 * 705 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 706 * of an error, PTR_ERR() returns the error code. 707 */ 708 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 709 u32 mask); 710 711 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 712 { 713 return &tfm->base; 714 } 715 716 /** 717 * crypto_free_shash() - zeroize and free the message digest handle 718 * @tfm: cipher handle to be freed 719 */ 720 static inline void crypto_free_shash(struct crypto_shash *tfm) 721 { 722 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 723 } 724 725 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 726 { 727 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 728 } 729 730 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 731 { 732 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 733 } 734 735 static inline unsigned int crypto_shash_alignmask( 736 struct crypto_shash *tfm) 737 { 738 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 739 } 740 741 /** 742 * crypto_shash_blocksize() - obtain block size for cipher 743 * @tfm: cipher handle 744 * 745 * The block size for the message digest cipher referenced with the cipher 746 * handle is returned. 747 * 748 * Return: block size of cipher 749 */ 750 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 751 { 752 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 753 } 754 755 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 756 { 757 return container_of(alg, struct shash_alg, base); 758 } 759 760 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 761 { 762 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 763 } 764 765 /** 766 * crypto_shash_digestsize() - obtain message digest size 767 * @tfm: cipher handle 768 * 769 * The size for the message digest created by the message digest cipher 770 * referenced with the cipher handle is returned. 771 * 772 * Return: digest size of cipher 773 */ 774 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 775 { 776 return crypto_shash_alg(tfm)->digestsize; 777 } 778 779 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 780 { 781 return crypto_shash_alg(tfm)->statesize; 782 } 783 784 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 785 { 786 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 787 } 788 789 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 790 { 791 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 792 } 793 794 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 795 { 796 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 797 } 798 799 /** 800 * crypto_shash_descsize() - obtain the operational state size 801 * @tfm: cipher handle 802 * 803 * The size of the operational state the cipher needs during operation is 804 * returned for the hash referenced with the cipher handle. This size is 805 * required to calculate the memory requirements to allow the caller allocating 806 * sufficient memory for operational state. 807 * 808 * The operational state is defined with struct shash_desc where the size of 809 * that data structure is to be calculated as 810 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 811 * 812 * Return: size of the operational state 813 */ 814 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 815 { 816 return tfm->descsize; 817 } 818 819 static inline void *shash_desc_ctx(struct shash_desc *desc) 820 { 821 return desc->__ctx; 822 } 823 824 /** 825 * crypto_shash_setkey() - set key for message digest 826 * @tfm: cipher handle 827 * @key: buffer holding the key 828 * @keylen: length of the key in bytes 829 * 830 * The caller provided key is set for the keyed message digest cipher. The 831 * cipher handle must point to a keyed message digest cipher in order for this 832 * function to succeed. 833 * 834 * Context: Any context. 835 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 836 */ 837 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 838 unsigned int keylen); 839 840 /** 841 * crypto_shash_digest() - calculate message digest for buffer 842 * @desc: see crypto_shash_final() 843 * @data: see crypto_shash_update() 844 * @len: see crypto_shash_update() 845 * @out: see crypto_shash_final() 846 * 847 * This function is a "short-hand" for the function calls of crypto_shash_init, 848 * crypto_shash_update and crypto_shash_final. The parameters have the same 849 * meaning as discussed for those separate three functions. 850 * 851 * Context: Any context. 852 * Return: 0 if the message digest creation was successful; < 0 if an error 853 * occurred 854 */ 855 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 856 unsigned int len, u8 *out); 857 858 /** 859 * crypto_shash_tfm_digest() - calculate message digest for buffer 860 * @tfm: hash transformation object 861 * @data: see crypto_shash_update() 862 * @len: see crypto_shash_update() 863 * @out: see crypto_shash_final() 864 * 865 * This is a simplified version of crypto_shash_digest() for users who don't 866 * want to allocate their own hash descriptor (shash_desc). Instead, 867 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 868 * directly, and it allocates a hash descriptor on the stack internally. 869 * Note that this stack allocation may be fairly large. 870 * 871 * Context: Any context. 872 * Return: 0 on success; < 0 if an error occurred. 873 */ 874 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 875 unsigned int len, u8 *out); 876 877 /** 878 * crypto_shash_export() - extract operational state for message digest 879 * @desc: reference to the operational state handle whose state is exported 880 * @out: output buffer of sufficient size that can hold the hash state 881 * 882 * This function exports the hash state of the operational state handle into the 883 * caller-allocated output buffer out which must have sufficient size (e.g. by 884 * calling crypto_shash_descsize). 885 * 886 * Context: Any context. 887 * Return: 0 if the export creation was successful; < 0 if an error occurred 888 */ 889 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 890 { 891 return crypto_shash_alg(desc->tfm)->export(desc, out); 892 } 893 894 /** 895 * crypto_shash_import() - import operational state 896 * @desc: reference to the operational state handle the state imported into 897 * @in: buffer holding the state 898 * 899 * This function imports the hash state into the operational state handle from 900 * the input buffer. That buffer should have been generated with the 901 * crypto_ahash_export function. 902 * 903 * Context: Any context. 904 * Return: 0 if the import was successful; < 0 if an error occurred 905 */ 906 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 907 { 908 struct crypto_shash *tfm = desc->tfm; 909 910 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 911 return -ENOKEY; 912 913 return crypto_shash_alg(tfm)->import(desc, in); 914 } 915 916 /** 917 * crypto_shash_init() - (re)initialize message digest 918 * @desc: operational state handle that is already filled 919 * 920 * The call (re-)initializes the message digest referenced by the 921 * operational state handle. Any potentially existing state created by 922 * previous operations is discarded. 923 * 924 * Context: Any context. 925 * Return: 0 if the message digest initialization was successful; < 0 if an 926 * error occurred 927 */ 928 static inline int crypto_shash_init(struct shash_desc *desc) 929 { 930 struct crypto_shash *tfm = desc->tfm; 931 932 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 933 return -ENOKEY; 934 935 return crypto_shash_alg(tfm)->init(desc); 936 } 937 938 /** 939 * crypto_shash_update() - add data to message digest for processing 940 * @desc: operational state handle that is already initialized 941 * @data: input data to be added to the message digest 942 * @len: length of the input data 943 * 944 * Updates the message digest state of the operational state handle. 945 * 946 * Context: Any context. 947 * Return: 0 if the message digest update was successful; < 0 if an error 948 * occurred 949 */ 950 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 951 unsigned int len); 952 953 /** 954 * crypto_shash_final() - calculate message digest 955 * @desc: operational state handle that is already filled with data 956 * @out: output buffer filled with the message digest 957 * 958 * Finalize the message digest operation and create the message digest 959 * based on all data added to the cipher handle. The message digest is placed 960 * into the output buffer. The caller must ensure that the output buffer is 961 * large enough by using crypto_shash_digestsize. 962 * 963 * Context: Any context. 964 * Return: 0 if the message digest creation was successful; < 0 if an error 965 * occurred 966 */ 967 int crypto_shash_final(struct shash_desc *desc, u8 *out); 968 969 /** 970 * crypto_shash_finup() - calculate message digest of buffer 971 * @desc: see crypto_shash_final() 972 * @data: see crypto_shash_update() 973 * @len: see crypto_shash_update() 974 * @out: see crypto_shash_final() 975 * 976 * This function is a "short-hand" for the function calls of 977 * crypto_shash_update and crypto_shash_final. The parameters have the same 978 * meaning as discussed for those separate functions. 979 * 980 * Context: Any context. 981 * Return: 0 if the message digest creation was successful; < 0 if an error 982 * occurred 983 */ 984 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 985 unsigned int len, u8 *out); 986 987 static inline void shash_desc_zero(struct shash_desc *desc) 988 { 989 memzero_explicit(desc, 990 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 991 } 992 993 #endif /* _CRYPTO_HASH_H */ 994