1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/crypto.h> 12 #include <linux/scatterlist.h> 13 #include <linux/slab.h> 14 #include <linux/string.h> 15 16 /* Set this bit for virtual address instead of SG list. */ 17 #define CRYPTO_AHASH_REQ_VIRT 0x00000001 18 19 #define CRYPTO_AHASH_REQ_PRIVATE \ 20 CRYPTO_AHASH_REQ_VIRT 21 22 struct crypto_ahash; 23 24 /** 25 * DOC: Message Digest Algorithm Definitions 26 * 27 * These data structures define modular message digest algorithm 28 * implementations, managed via crypto_register_ahash(), 29 * crypto_register_shash(), crypto_unregister_ahash() and 30 * crypto_unregister_shash(). 31 */ 32 33 /* 34 * struct hash_alg_common - define properties of message digest 35 * @digestsize: Size of the result of the transformation. A buffer of this size 36 * must be available to the @final and @finup calls, so they can 37 * store the resulting hash into it. For various predefined sizes, 38 * search include/crypto/ using 39 * git grep _DIGEST_SIZE include/crypto. 40 * @statesize: Size of the block for partial state of the transformation. A 41 * buffer of this size must be passed to the @export function as it 42 * will save the partial state of the transformation into it. On the 43 * other side, the @import function will load the state from a 44 * buffer of this size as well. 45 * @base: Start of data structure of cipher algorithm. The common data 46 * structure of crypto_alg contains information common to all ciphers. 47 * The hash_alg_common data structure now adds the hash-specific 48 * information. 49 */ 50 #define HASH_ALG_COMMON { \ 51 unsigned int digestsize; \ 52 unsigned int statesize; \ 53 \ 54 struct crypto_alg base; \ 55 } 56 struct hash_alg_common HASH_ALG_COMMON; 57 58 struct ahash_request { 59 struct crypto_async_request base; 60 61 unsigned int nbytes; 62 union { 63 struct scatterlist *src; 64 const u8 *svirt; 65 }; 66 u8 *result; 67 68 struct scatterlist sg_head[2]; 69 crypto_completion_t saved_complete; 70 void *saved_data; 71 72 void *__ctx[] CRYPTO_MINALIGN_ATTR; 73 }; 74 75 /** 76 * struct ahash_alg - asynchronous message digest definition 77 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 78 * state of the HASH transformation at the beginning. This shall fill in 79 * the internal structures used during the entire duration of the whole 80 * transformation. No data processing happens at this point. Driver code 81 * implementation must not use req->result. 82 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 83 * function actually pushes blocks of data from upper layers into the 84 * driver, which then passes those to the hardware as seen fit. This 85 * function must not finalize the HASH transformation by calculating the 86 * final message digest as this only adds more data into the 87 * transformation. This function shall not modify the transformation 88 * context, as this function may be called in parallel with the same 89 * transformation object. Data processing can happen synchronously 90 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 91 * req->result. 92 * For block-only algorithms, @update must return the number 93 * of bytes to store in the API partial block buffer. 94 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 95 * transformation and retrieves the resulting hash from the driver and 96 * pushes it back to upper layers. No data processing happens at this 97 * point unless hardware requires it to finish the transformation 98 * (then the data buffered by the device driver is processed). 99 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 100 * combination of @update and @final calls issued in sequence. As some 101 * hardware cannot do @update and @final separately, this callback was 102 * added to allow such hardware to be used at least by IPsec. Data 103 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 104 * at this point. 105 * @digest: Combination of @init and @update and @final. This function 106 * effectively behaves as the entire chain of operations, @init, 107 * @update and @final issued in sequence. Just like @finup, this was 108 * added for hardware which cannot do even the @finup, but can only do 109 * the whole transformation in one run. Data processing can happen 110 * synchronously [SHASH] or asynchronously [AHASH] at this point. 111 * @setkey: Set optional key used by the hashing algorithm. Intended to push 112 * optional key used by the hashing algorithm from upper layers into 113 * the driver. This function can store the key in the transformation 114 * context or can outright program it into the hardware. In the former 115 * case, one must be careful to program the key into the hardware at 116 * appropriate time and one must be careful that .setkey() can be 117 * called multiple times during the existence of the transformation 118 * object. Not all hashing algorithms do implement this function as it 119 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 120 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 121 * this function. This function must be called before any other of the 122 * @init, @update, @final, @finup, @digest is called. No data 123 * processing happens at this point. 124 * @export: Export partial state of the transformation. This function dumps the 125 * entire state of the ongoing transformation into a provided block of 126 * data so it can be @import 'ed back later on. This is useful in case 127 * you want to save partial result of the transformation after 128 * processing certain amount of data and reload this partial result 129 * multiple times later on for multiple re-use. No data processing 130 * happens at this point. Driver must not use req->result. 131 * @import: Import partial state of the transformation. This function loads the 132 * entire state of the ongoing transformation from a provided block of 133 * data so the transformation can continue from this point onward. No 134 * data processing happens at this point. Driver must not use 135 * req->result. 136 * @export_core: Export partial state without partial block. Only defined 137 * for algorithms that are not block-only. 138 * @import_core: Import partial state without partial block. Only defined 139 * for algorithms that are not block-only. 140 * @init_tfm: Initialize the cryptographic transformation object. 141 * This function is called only once at the instantiation 142 * time, right after the transformation context was 143 * allocated. In case the cryptographic hardware has 144 * some special requirements which need to be handled 145 * by software, this function shall check for the precise 146 * requirement of the transformation and put any software 147 * fallbacks in place. 148 * @exit_tfm: Deinitialize the cryptographic transformation object. 149 * This is a counterpart to @init_tfm, used to remove 150 * various changes set in @init_tfm. 151 * @clone_tfm: Copy transform into new object, may allocate memory. 152 * @halg: see struct hash_alg_common 153 */ 154 struct ahash_alg { 155 int (*init)(struct ahash_request *req); 156 int (*update)(struct ahash_request *req); 157 int (*final)(struct ahash_request *req); 158 int (*finup)(struct ahash_request *req); 159 int (*digest)(struct ahash_request *req); 160 int (*export)(struct ahash_request *req, void *out); 161 int (*import)(struct ahash_request *req, const void *in); 162 int (*export_core)(struct ahash_request *req, void *out); 163 int (*import_core)(struct ahash_request *req, const void *in); 164 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 165 unsigned int keylen); 166 int (*init_tfm)(struct crypto_ahash *tfm); 167 void (*exit_tfm)(struct crypto_ahash *tfm); 168 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src); 169 170 struct hash_alg_common halg; 171 }; 172 173 struct shash_desc { 174 struct crypto_shash *tfm; 175 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 176 }; 177 178 #define HASH_MAX_DIGESTSIZE 64 179 180 /* Worst case is sha3-224. */ 181 #define HASH_MAX_STATESIZE 200 + 144 + 1 182 183 /* 184 * Worst case is hmac(sha3-224-s390). Its context is a nested 'shash_desc' 185 * containing a 'struct s390_sha_ctx'. 186 */ 187 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 188 #define MAX_SYNC_HASH_REQSIZE (sizeof(struct ahash_request) + \ 189 HASH_MAX_DESCSIZE) 190 191 #define SHASH_DESC_ON_STACK(shash, ctx) \ 192 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 193 __aligned(__alignof__(struct shash_desc)); \ 194 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 195 196 #define HASH_REQUEST_ON_STACK(name, _tfm) \ 197 char __##name##_req[sizeof(struct ahash_request) + \ 198 MAX_SYNC_HASH_REQSIZE] CRYPTO_MINALIGN_ATTR; \ 199 struct ahash_request *name = \ 200 ahash_request_on_stack_init(__##name##_req, (_tfm)) 201 202 #define HASH_REQUEST_CLONE(name, gfp) \ 203 hash_request_clone(name, sizeof(__##name##_req), gfp) 204 205 /** 206 * struct shash_alg - synchronous message digest definition 207 * @init: see struct ahash_alg 208 * @update: see struct ahash_alg 209 * @final: see struct ahash_alg 210 * @finup: see struct ahash_alg 211 * @digest: see struct ahash_alg 212 * @export: see struct ahash_alg 213 * @import: see struct ahash_alg 214 * @export_core: see struct ahash_alg 215 * @import_core: see struct ahash_alg 216 * @setkey: see struct ahash_alg 217 * @init_tfm: Initialize the cryptographic transformation object. 218 * This function is called only once at the instantiation 219 * time, right after the transformation context was 220 * allocated. In case the cryptographic hardware has 221 * some special requirements which need to be handled 222 * by software, this function shall check for the precise 223 * requirement of the transformation and put any software 224 * fallbacks in place. 225 * @exit_tfm: Deinitialize the cryptographic transformation object. 226 * This is a counterpart to @init_tfm, used to remove 227 * various changes set in @init_tfm. 228 * @clone_tfm: Copy transform into new object, may allocate memory. 229 * @descsize: Size of the operational state for the message digest. This state 230 * size is the memory size that needs to be allocated for 231 * shash_desc.__ctx 232 * @halg: see struct hash_alg_common 233 * @HASH_ALG_COMMON: see struct hash_alg_common 234 */ 235 struct shash_alg { 236 int (*init)(struct shash_desc *desc); 237 int (*update)(struct shash_desc *desc, const u8 *data, 238 unsigned int len); 239 int (*final)(struct shash_desc *desc, u8 *out); 240 int (*finup)(struct shash_desc *desc, const u8 *data, 241 unsigned int len, u8 *out); 242 int (*digest)(struct shash_desc *desc, const u8 *data, 243 unsigned int len, u8 *out); 244 int (*export)(struct shash_desc *desc, void *out); 245 int (*import)(struct shash_desc *desc, const void *in); 246 int (*export_core)(struct shash_desc *desc, void *out); 247 int (*import_core)(struct shash_desc *desc, const void *in); 248 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 249 unsigned int keylen); 250 int (*init_tfm)(struct crypto_shash *tfm); 251 void (*exit_tfm)(struct crypto_shash *tfm); 252 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src); 253 254 unsigned int descsize; 255 256 union { 257 struct HASH_ALG_COMMON; 258 struct hash_alg_common halg; 259 }; 260 }; 261 #undef HASH_ALG_COMMON 262 263 struct crypto_ahash { 264 bool using_shash; /* Underlying algorithm is shash, not ahash */ 265 unsigned int statesize; 266 unsigned int reqsize; 267 struct crypto_tfm base; 268 }; 269 270 struct crypto_shash { 271 struct crypto_tfm base; 272 }; 273 274 /** 275 * DOC: Asynchronous Message Digest API 276 * 277 * The asynchronous message digest API is used with the ciphers of type 278 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 279 * 280 * The asynchronous cipher operation discussion provided for the 281 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 282 */ 283 284 static inline bool ahash_req_on_stack(struct ahash_request *req) 285 { 286 return crypto_req_on_stack(&req->base); 287 } 288 289 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 290 { 291 return container_of(tfm, struct crypto_ahash, base); 292 } 293 294 /** 295 * crypto_alloc_ahash() - allocate ahash cipher handle 296 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 297 * ahash cipher 298 * @type: specifies the type of the cipher 299 * @mask: specifies the mask for the cipher 300 * 301 * Allocate a cipher handle for an ahash. The returned struct 302 * crypto_ahash is the cipher handle that is required for any subsequent 303 * API invocation for that ahash. 304 * 305 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 306 * of an error, PTR_ERR() returns the error code. 307 */ 308 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 309 u32 mask); 310 311 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm); 312 313 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 314 { 315 return &tfm->base; 316 } 317 318 /** 319 * crypto_free_ahash() - zeroize and free the ahash handle 320 * @tfm: cipher handle to be freed 321 * 322 * If @tfm is a NULL or error pointer, this function does nothing. 323 */ 324 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 325 { 326 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 327 } 328 329 /** 330 * crypto_has_ahash() - Search for the availability of an ahash. 331 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 332 * ahash 333 * @type: specifies the type of the ahash 334 * @mask: specifies the mask for the ahash 335 * 336 * Return: true when the ahash is known to the kernel crypto API; false 337 * otherwise 338 */ 339 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 340 341 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 342 { 343 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 344 } 345 346 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 347 { 348 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 349 } 350 351 /** 352 * crypto_ahash_blocksize() - obtain block size for cipher 353 * @tfm: cipher handle 354 * 355 * The block size for the message digest cipher referenced with the cipher 356 * handle is returned. 357 * 358 * Return: block size of cipher 359 */ 360 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 361 { 362 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 363 } 364 365 static inline struct hash_alg_common *__crypto_hash_alg_common( 366 struct crypto_alg *alg) 367 { 368 return container_of(alg, struct hash_alg_common, base); 369 } 370 371 static inline struct hash_alg_common *crypto_hash_alg_common( 372 struct crypto_ahash *tfm) 373 { 374 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 375 } 376 377 /** 378 * crypto_ahash_digestsize() - obtain message digest size 379 * @tfm: cipher handle 380 * 381 * The size for the message digest created by the message digest cipher 382 * referenced with the cipher handle is returned. 383 * 384 * 385 * Return: message digest size of cipher 386 */ 387 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 388 { 389 return crypto_hash_alg_common(tfm)->digestsize; 390 } 391 392 /** 393 * crypto_ahash_statesize() - obtain size of the ahash state 394 * @tfm: cipher handle 395 * 396 * Return the size of the ahash state. With the crypto_ahash_export() 397 * function, the caller can export the state into a buffer whose size is 398 * defined with this function. 399 * 400 * Return: size of the ahash state 401 */ 402 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 403 { 404 return tfm->statesize; 405 } 406 407 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 408 { 409 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 410 } 411 412 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 413 { 414 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 415 } 416 417 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 418 { 419 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 420 } 421 422 /** 423 * crypto_ahash_reqtfm() - obtain cipher handle from request 424 * @req: asynchronous request handle that contains the reference to the ahash 425 * cipher handle 426 * 427 * Return the ahash cipher handle that is registered with the asynchronous 428 * request handle ahash_request. 429 * 430 * Return: ahash cipher handle 431 */ 432 static inline struct crypto_ahash *crypto_ahash_reqtfm( 433 struct ahash_request *req) 434 { 435 return __crypto_ahash_cast(req->base.tfm); 436 } 437 438 /** 439 * crypto_ahash_reqsize() - obtain size of the request data structure 440 * @tfm: cipher handle 441 * 442 * Return: size of the request data 443 */ 444 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 445 { 446 return tfm->reqsize; 447 } 448 449 static inline void *ahash_request_ctx(struct ahash_request *req) 450 { 451 return req->__ctx; 452 } 453 454 /** 455 * crypto_ahash_setkey - set key for cipher handle 456 * @tfm: cipher handle 457 * @key: buffer holding the key 458 * @keylen: length of the key in bytes 459 * 460 * The caller provided key is set for the ahash cipher. The cipher 461 * handle must point to a keyed hash in order for this function to succeed. 462 * 463 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 464 */ 465 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 466 unsigned int keylen); 467 468 /** 469 * crypto_ahash_finup() - update and finalize message digest 470 * @req: reference to the ahash_request handle that holds all information 471 * needed to perform the cipher operation 472 * 473 * This function is a "short-hand" for the function calls of 474 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 475 * meaning as discussed for those separate functions. 476 * 477 * Return: see crypto_ahash_final() 478 */ 479 int crypto_ahash_finup(struct ahash_request *req); 480 481 /** 482 * crypto_ahash_final() - calculate message digest 483 * @req: reference to the ahash_request handle that holds all information 484 * needed to perform the cipher operation 485 * 486 * Finalize the message digest operation and create the message digest 487 * based on all data added to the cipher handle. The message digest is placed 488 * into the output buffer registered with the ahash_request handle. 489 * 490 * Return: 491 * 0 if the message digest was successfully calculated; 492 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 493 * -EBUSY if queue is full and request should be resubmitted later; 494 * other < 0 if an error occurred 495 */ 496 static inline int crypto_ahash_final(struct ahash_request *req) 497 { 498 req->nbytes = 0; 499 return crypto_ahash_finup(req); 500 } 501 502 /** 503 * crypto_ahash_digest() - calculate message digest for a buffer 504 * @req: reference to the ahash_request handle that holds all information 505 * needed to perform the cipher operation 506 * 507 * This function is a "short-hand" for the function calls of crypto_ahash_init, 508 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 509 * meaning as discussed for those separate three functions. 510 * 511 * Return: see crypto_ahash_final() 512 */ 513 int crypto_ahash_digest(struct ahash_request *req); 514 515 /** 516 * crypto_ahash_export() - extract current message digest state 517 * @req: reference to the ahash_request handle whose state is exported 518 * @out: output buffer of sufficient size that can hold the hash state 519 * 520 * This function exports the hash state of the ahash_request handle into the 521 * caller-allocated output buffer out which must have sufficient size (e.g. by 522 * calling crypto_ahash_statesize()). 523 * 524 * Return: 0 if the export was successful; < 0 if an error occurred 525 */ 526 int crypto_ahash_export(struct ahash_request *req, void *out); 527 528 /** 529 * crypto_ahash_import() - import message digest state 530 * @req: reference to ahash_request handle the state is imported into 531 * @in: buffer holding the state 532 * 533 * This function imports the hash state into the ahash_request handle from the 534 * input buffer. That buffer should have been generated with the 535 * crypto_ahash_export function. 536 * 537 * Return: 0 if the import was successful; < 0 if an error occurred 538 */ 539 int crypto_ahash_import(struct ahash_request *req, const void *in); 540 541 /** 542 * crypto_ahash_init() - (re)initialize message digest handle 543 * @req: ahash_request handle that already is initialized with all necessary 544 * data using the ahash_request_* API functions 545 * 546 * The call (re-)initializes the message digest referenced by the ahash_request 547 * handle. Any potentially existing state created by previous operations is 548 * discarded. 549 * 550 * Return: see crypto_ahash_final() 551 */ 552 int crypto_ahash_init(struct ahash_request *req); 553 554 /** 555 * crypto_ahash_update() - add data to message digest for processing 556 * @req: ahash_request handle that was previously initialized with the 557 * crypto_ahash_init call. 558 * 559 * Updates the message digest state of the &ahash_request handle. The input data 560 * is pointed to by the scatter/gather list registered in the &ahash_request 561 * handle 562 * 563 * Return: see crypto_ahash_final() 564 */ 565 int crypto_ahash_update(struct ahash_request *req); 566 567 /** 568 * DOC: Asynchronous Hash Request Handle 569 * 570 * The &ahash_request data structure contains all pointers to data 571 * required for the asynchronous cipher operation. This includes the cipher 572 * handle (which can be used by multiple &ahash_request instances), pointer 573 * to plaintext and the message digest output buffer, asynchronous callback 574 * function, etc. It acts as a handle to the ahash_request_* API calls in a 575 * similar way as ahash handle to the crypto_ahash_* API calls. 576 */ 577 578 /** 579 * ahash_request_set_tfm() - update cipher handle reference in request 580 * @req: request handle to be modified 581 * @tfm: cipher handle that shall be added to the request handle 582 * 583 * Allow the caller to replace the existing ahash handle in the request 584 * data structure with a different one. 585 */ 586 static inline void ahash_request_set_tfm(struct ahash_request *req, 587 struct crypto_ahash *tfm) 588 { 589 crypto_request_set_tfm(&req->base, crypto_ahash_tfm(tfm)); 590 } 591 592 /** 593 * ahash_request_alloc() - allocate request data structure 594 * @tfm: cipher handle to be registered with the request 595 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 596 * 597 * Allocate the request data structure that must be used with the ahash 598 * message digest API calls. During 599 * the allocation, the provided ahash handle 600 * is registered in the request data structure. 601 * 602 * Return: allocated request handle in case of success, or NULL if out of memory 603 */ 604 static inline struct ahash_request *ahash_request_alloc_noprof( 605 struct crypto_ahash *tfm, gfp_t gfp) 606 { 607 struct ahash_request *req; 608 609 req = kmalloc_noprof(sizeof(struct ahash_request) + 610 crypto_ahash_reqsize(tfm), gfp); 611 612 if (likely(req)) 613 ahash_request_set_tfm(req, tfm); 614 615 return req; 616 } 617 #define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__)) 618 619 /** 620 * ahash_request_free() - zeroize and free the request data structure 621 * @req: request data structure cipher handle to be freed 622 */ 623 void ahash_request_free(struct ahash_request *req); 624 625 static inline void ahash_request_zero(struct ahash_request *req) 626 { 627 memzero_explicit(req, sizeof(*req) + 628 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 629 } 630 631 static inline struct ahash_request *ahash_request_cast( 632 struct crypto_async_request *req) 633 { 634 return container_of(req, struct ahash_request, base); 635 } 636 637 /** 638 * ahash_request_set_callback() - set asynchronous callback function 639 * @req: request handle 640 * @flags: specify zero or an ORing of the flags 641 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 642 * increase the wait queue beyond the initial maximum size; 643 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 644 * @compl: callback function pointer to be registered with the request handle 645 * @data: The data pointer refers to memory that is not used by the kernel 646 * crypto API, but provided to the callback function for it to use. Here, 647 * the caller can provide a reference to memory the callback function can 648 * operate on. As the callback function is invoked asynchronously to the 649 * related functionality, it may need to access data structures of the 650 * related functionality which can be referenced using this pointer. The 651 * callback function can access the memory via the "data" field in the 652 * &crypto_async_request data structure provided to the callback function. 653 * 654 * This function allows setting the callback function that is triggered once 655 * the cipher operation completes. 656 * 657 * The callback function is registered with the &ahash_request handle and 658 * must comply with the following template:: 659 * 660 * void callback_function(struct crypto_async_request *req, int error) 661 */ 662 static inline void ahash_request_set_callback(struct ahash_request *req, 663 u32 flags, 664 crypto_completion_t compl, 665 void *data) 666 { 667 flags &= ~CRYPTO_AHASH_REQ_PRIVATE; 668 flags |= req->base.flags & CRYPTO_AHASH_REQ_PRIVATE; 669 crypto_request_set_callback(&req->base, flags, compl, data); 670 } 671 672 /** 673 * ahash_request_set_crypt() - set data buffers 674 * @req: ahash_request handle to be updated 675 * @src: source scatter/gather list 676 * @result: buffer that is filled with the message digest -- the caller must 677 * ensure that the buffer has sufficient space by, for example, calling 678 * crypto_ahash_digestsize() 679 * @nbytes: number of bytes to process from the source scatter/gather list 680 * 681 * By using this call, the caller references the source scatter/gather list. 682 * The source scatter/gather list points to the data the message digest is to 683 * be calculated for. 684 */ 685 static inline void ahash_request_set_crypt(struct ahash_request *req, 686 struct scatterlist *src, u8 *result, 687 unsigned int nbytes) 688 { 689 req->src = src; 690 req->nbytes = nbytes; 691 req->result = result; 692 req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT; 693 } 694 695 /** 696 * ahash_request_set_virt() - set virtual address data buffers 697 * @req: ahash_request handle to be updated 698 * @src: source virtual address 699 * @result: buffer that is filled with the message digest -- the caller must 700 * ensure that the buffer has sufficient space by, for example, calling 701 * crypto_ahash_digestsize() 702 * @nbytes: number of bytes to process from the source virtual address 703 * 704 * By using this call, the caller references the source virtual address. 705 * The source virtual address points to the data the message digest is to 706 * be calculated for. 707 */ 708 static inline void ahash_request_set_virt(struct ahash_request *req, 709 const u8 *src, u8 *result, 710 unsigned int nbytes) 711 { 712 req->svirt = src; 713 req->nbytes = nbytes; 714 req->result = result; 715 req->base.flags |= CRYPTO_AHASH_REQ_VIRT; 716 } 717 718 /** 719 * DOC: Synchronous Message Digest API 720 * 721 * The synchronous message digest API is used with the ciphers of type 722 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 723 * 724 * The message digest API is able to maintain state information for the 725 * caller. 726 * 727 * The synchronous message digest API can store user-related context in its 728 * shash_desc request data structure. 729 */ 730 731 /** 732 * crypto_alloc_shash() - allocate message digest handle 733 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 734 * message digest cipher 735 * @type: specifies the type of the cipher 736 * @mask: specifies the mask for the cipher 737 * 738 * Allocate a cipher handle for a message digest. The returned &struct 739 * crypto_shash is the cipher handle that is required for any subsequent 740 * API invocation for that message digest. 741 * 742 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 743 * of an error, PTR_ERR() returns the error code. 744 */ 745 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 746 u32 mask); 747 748 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm); 749 750 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 751 752 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 753 { 754 return &tfm->base; 755 } 756 757 /** 758 * crypto_free_shash() - zeroize and free the message digest handle 759 * @tfm: cipher handle to be freed 760 * 761 * If @tfm is a NULL or error pointer, this function does nothing. 762 */ 763 static inline void crypto_free_shash(struct crypto_shash *tfm) 764 { 765 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 766 } 767 768 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 769 { 770 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 771 } 772 773 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 774 { 775 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 776 } 777 778 /** 779 * crypto_shash_blocksize() - obtain block size for cipher 780 * @tfm: cipher handle 781 * 782 * The block size for the message digest cipher referenced with the cipher 783 * handle is returned. 784 * 785 * Return: block size of cipher 786 */ 787 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 788 { 789 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 790 } 791 792 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 793 { 794 return container_of(alg, struct shash_alg, base); 795 } 796 797 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 798 { 799 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 800 } 801 802 /** 803 * crypto_shash_digestsize() - obtain message digest size 804 * @tfm: cipher handle 805 * 806 * The size for the message digest created by the message digest cipher 807 * referenced with the cipher handle is returned. 808 * 809 * Return: digest size of cipher 810 */ 811 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 812 { 813 return crypto_shash_alg(tfm)->digestsize; 814 } 815 816 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 817 { 818 return crypto_shash_alg(tfm)->statesize; 819 } 820 821 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 822 { 823 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 824 } 825 826 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 827 { 828 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 829 } 830 831 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 832 { 833 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 834 } 835 836 /** 837 * crypto_shash_descsize() - obtain the operational state size 838 * @tfm: cipher handle 839 * 840 * The size of the operational state the cipher needs during operation is 841 * returned for the hash referenced with the cipher handle. This size is 842 * required to calculate the memory requirements to allow the caller allocating 843 * sufficient memory for operational state. 844 * 845 * The operational state is defined with struct shash_desc where the size of 846 * that data structure is to be calculated as 847 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 848 * 849 * Return: size of the operational state 850 */ 851 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 852 { 853 return crypto_shash_alg(tfm)->descsize; 854 } 855 856 static inline void *shash_desc_ctx(struct shash_desc *desc) 857 { 858 return desc->__ctx; 859 } 860 861 /** 862 * crypto_shash_setkey() - set key for message digest 863 * @tfm: cipher handle 864 * @key: buffer holding the key 865 * @keylen: length of the key in bytes 866 * 867 * The caller provided key is set for the keyed message digest cipher. The 868 * cipher handle must point to a keyed message digest cipher in order for this 869 * function to succeed. 870 * 871 * Context: Softirq or process context. 872 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 873 */ 874 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 875 unsigned int keylen); 876 877 /** 878 * crypto_shash_digest() - calculate message digest for buffer 879 * @desc: see crypto_shash_final() 880 * @data: see crypto_shash_update() 881 * @len: see crypto_shash_update() 882 * @out: see crypto_shash_final() 883 * 884 * This function is a "short-hand" for the function calls of crypto_shash_init, 885 * crypto_shash_update and crypto_shash_final. The parameters have the same 886 * meaning as discussed for those separate three functions. 887 * 888 * Context: Softirq or process context. 889 * Return: 0 if the message digest creation was successful; < 0 if an error 890 * occurred 891 */ 892 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 893 unsigned int len, u8 *out); 894 895 /** 896 * crypto_shash_tfm_digest() - calculate message digest for buffer 897 * @tfm: hash transformation object 898 * @data: see crypto_shash_update() 899 * @len: see crypto_shash_update() 900 * @out: see crypto_shash_final() 901 * 902 * This is a simplified version of crypto_shash_digest() for users who don't 903 * want to allocate their own hash descriptor (shash_desc). Instead, 904 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 905 * directly, and it allocates a hash descriptor on the stack internally. 906 * Note that this stack allocation may be fairly large. 907 * 908 * Context: Softirq or process context. 909 * Return: 0 on success; < 0 if an error occurred. 910 */ 911 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 912 unsigned int len, u8 *out); 913 914 int crypto_hash_digest(struct crypto_ahash *tfm, const u8 *data, 915 unsigned int len, u8 *out); 916 917 /** 918 * crypto_shash_export() - extract operational state for message digest 919 * @desc: reference to the operational state handle whose state is exported 920 * @out: output buffer of sufficient size that can hold the hash state 921 * 922 * This function exports the hash state of the operational state handle into the 923 * caller-allocated output buffer out which must have sufficient size (e.g. by 924 * calling crypto_shash_descsize). 925 * 926 * Context: Softirq or process context. 927 * Return: 0 if the export creation was successful; < 0 if an error occurred 928 */ 929 int crypto_shash_export(struct shash_desc *desc, void *out); 930 931 /** 932 * crypto_shash_import() - import operational state 933 * @desc: reference to the operational state handle the state imported into 934 * @in: buffer holding the state 935 * 936 * This function imports the hash state into the operational state handle from 937 * the input buffer. That buffer should have been generated with the 938 * crypto_ahash_export function. 939 * 940 * Context: Softirq or process context. 941 * Return: 0 if the import was successful; < 0 if an error occurred 942 */ 943 int crypto_shash_import(struct shash_desc *desc, const void *in); 944 945 /** 946 * crypto_shash_init() - (re)initialize message digest 947 * @desc: operational state handle that is already filled 948 * 949 * The call (re-)initializes the message digest referenced by the 950 * operational state handle. Any potentially existing state created by 951 * previous operations is discarded. 952 * 953 * Context: Softirq or process context. 954 * Return: 0 if the message digest initialization was successful; < 0 if an 955 * error occurred 956 */ 957 int crypto_shash_init(struct shash_desc *desc); 958 959 /** 960 * crypto_shash_finup() - calculate message digest of buffer 961 * @desc: see crypto_shash_final() 962 * @data: see crypto_shash_update() 963 * @len: see crypto_shash_update() 964 * @out: see crypto_shash_final() 965 * 966 * This function is a "short-hand" for the function calls of 967 * crypto_shash_update and crypto_shash_final. The parameters have the same 968 * meaning as discussed for those separate functions. 969 * 970 * Context: Softirq or process context. 971 * Return: 0 if the message digest creation was successful; < 0 if an error 972 * occurred 973 */ 974 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 975 unsigned int len, u8 *out); 976 977 /** 978 * crypto_shash_update() - add data to message digest for processing 979 * @desc: operational state handle that is already initialized 980 * @data: input data to be added to the message digest 981 * @len: length of the input data 982 * 983 * Updates the message digest state of the operational state handle. 984 * 985 * Context: Softirq or process context. 986 * Return: 0 if the message digest update was successful; < 0 if an error 987 * occurred 988 */ 989 static inline int crypto_shash_update(struct shash_desc *desc, const u8 *data, 990 unsigned int len) 991 { 992 return crypto_shash_finup(desc, data, len, NULL); 993 } 994 995 /** 996 * crypto_shash_final() - calculate message digest 997 * @desc: operational state handle that is already filled with data 998 * @out: output buffer filled with the message digest 999 * 1000 * Finalize the message digest operation and create the message digest 1001 * based on all data added to the cipher handle. The message digest is placed 1002 * into the output buffer. The caller must ensure that the output buffer is 1003 * large enough by using crypto_shash_digestsize. 1004 * 1005 * Context: Softirq or process context. 1006 * Return: 0 if the message digest creation was successful; < 0 if an error 1007 * occurred 1008 */ 1009 static inline int crypto_shash_final(struct shash_desc *desc, u8 *out) 1010 { 1011 return crypto_shash_finup(desc, NULL, 0, out); 1012 } 1013 1014 static inline void shash_desc_zero(struct shash_desc *desc) 1015 { 1016 memzero_explicit(desc, 1017 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 1018 } 1019 1020 static inline bool ahash_is_async(struct crypto_ahash *tfm) 1021 { 1022 return crypto_tfm_is_async(&tfm->base); 1023 } 1024 1025 static inline struct ahash_request *ahash_request_on_stack_init( 1026 char *buf, struct crypto_ahash *tfm) 1027 { 1028 struct ahash_request *req = (void *)buf; 1029 1030 crypto_stack_request_init(&req->base, crypto_ahash_tfm(tfm)); 1031 return req; 1032 } 1033 1034 static inline struct ahash_request *ahash_request_clone( 1035 struct ahash_request *req, size_t total, gfp_t gfp) 1036 { 1037 return container_of(crypto_request_clone(&req->base, total, gfp), 1038 struct ahash_request, base); 1039 } 1040 1041 #endif /* _CRYPTO_HASH_H */ 1042