1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/crypto.h> 12 #include <linux/scatterlist.h> 13 #include <linux/slab.h> 14 #include <linux/string.h> 15 16 /* Set this bit for virtual address instead of SG list. */ 17 #define CRYPTO_AHASH_REQ_VIRT 0x00000001 18 19 #define CRYPTO_AHASH_REQ_PRIVATE \ 20 CRYPTO_AHASH_REQ_VIRT 21 22 struct crypto_ahash; 23 24 /** 25 * DOC: Message Digest Algorithm Definitions 26 * 27 * These data structures define modular message digest algorithm 28 * implementations, managed via crypto_register_ahash(), 29 * crypto_register_shash(), crypto_unregister_ahash() and 30 * crypto_unregister_shash(). 31 */ 32 33 /* 34 * struct hash_alg_common - define properties of message digest 35 * @digestsize: Size of the result of the transformation. A buffer of this size 36 * must be available to the @final and @finup calls, so they can 37 * store the resulting hash into it. For various predefined sizes, 38 * search include/crypto/ using 39 * git grep _DIGEST_SIZE include/crypto. 40 * @statesize: Size of the block for partial state of the transformation. A 41 * buffer of this size must be passed to the @export function as it 42 * will save the partial state of the transformation into it. On the 43 * other side, the @import function will load the state from a 44 * buffer of this size as well. 45 * @base: Start of data structure of cipher algorithm. The common data 46 * structure of crypto_alg contains information common to all ciphers. 47 * The hash_alg_common data structure now adds the hash-specific 48 * information. 49 */ 50 #define HASH_ALG_COMMON { \ 51 unsigned int digestsize; \ 52 unsigned int statesize; \ 53 \ 54 struct crypto_alg base; \ 55 } 56 struct hash_alg_common HASH_ALG_COMMON; 57 58 struct ahash_request { 59 struct crypto_async_request base; 60 61 unsigned int nbytes; 62 union { 63 struct scatterlist *src; 64 const u8 *svirt; 65 }; 66 u8 *result; 67 68 struct scatterlist sg_head[2]; 69 crypto_completion_t saved_complete; 70 void *saved_data; 71 72 void *__ctx[] CRYPTO_MINALIGN_ATTR; 73 }; 74 75 /** 76 * struct ahash_alg - asynchronous message digest definition 77 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 78 * state of the HASH transformation at the beginning. This shall fill in 79 * the internal structures used during the entire duration of the whole 80 * transformation. No data processing happens at this point. Driver code 81 * implementation must not use req->result. 82 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 83 * function actually pushes blocks of data from upper layers into the 84 * driver, which then passes those to the hardware as seen fit. This 85 * function must not finalize the HASH transformation by calculating the 86 * final message digest as this only adds more data into the 87 * transformation. This function shall not modify the transformation 88 * context, as this function may be called in parallel with the same 89 * transformation object. Data processing can happen synchronously 90 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 91 * req->result. 92 * For block-only algorithms, @update must return the number 93 * of bytes to store in the API partial block buffer. 94 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 95 * transformation and retrieves the resulting hash from the driver and 96 * pushes it back to upper layers. No data processing happens at this 97 * point unless hardware requires it to finish the transformation 98 * (then the data buffered by the device driver is processed). 99 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 100 * combination of @update and @final calls issued in sequence. As some 101 * hardware cannot do @update and @final separately, this callback was 102 * added to allow such hardware to be used at least by IPsec. Data 103 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 104 * at this point. 105 * @digest: Combination of @init and @update and @final. This function 106 * effectively behaves as the entire chain of operations, @init, 107 * @update and @final issued in sequence. Just like @finup, this was 108 * added for hardware which cannot do even the @finup, but can only do 109 * the whole transformation in one run. Data processing can happen 110 * synchronously [SHASH] or asynchronously [AHASH] at this point. 111 * @setkey: Set optional key used by the hashing algorithm. Intended to push 112 * optional key used by the hashing algorithm from upper layers into 113 * the driver. This function can store the key in the transformation 114 * context or can outright program it into the hardware. In the former 115 * case, one must be careful to program the key into the hardware at 116 * appropriate time and one must be careful that .setkey() can be 117 * called multiple times during the existence of the transformation 118 * object. Not all hashing algorithms do implement this function as it 119 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 120 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 121 * this function. This function must be called before any other of the 122 * @init, @update, @final, @finup, @digest is called. No data 123 * processing happens at this point. 124 * @export: Export partial state of the transformation. This function dumps the 125 * entire state of the ongoing transformation into a provided block of 126 * data so it can be @import 'ed back later on. This is useful in case 127 * you want to save partial result of the transformation after 128 * processing certain amount of data and reload this partial result 129 * multiple times later on for multiple re-use. No data processing 130 * happens at this point. Driver must not use req->result. 131 * @import: Import partial state of the transformation. This function loads the 132 * entire state of the ongoing transformation from a provided block of 133 * data so the transformation can continue from this point onward. No 134 * data processing happens at this point. Driver must not use 135 * req->result. 136 * @export_core: Export partial state without partial block. Only defined 137 * for algorithms that are not block-only. 138 * @import_core: Import partial state without partial block. Only defined 139 * for algorithms that are not block-only. 140 * @init_tfm: Initialize the cryptographic transformation object. 141 * This function is called only once at the instantiation 142 * time, right after the transformation context was 143 * allocated. In case the cryptographic hardware has 144 * some special requirements which need to be handled 145 * by software, this function shall check for the precise 146 * requirement of the transformation and put any software 147 * fallbacks in place. 148 * @exit_tfm: Deinitialize the cryptographic transformation object. 149 * This is a counterpart to @init_tfm, used to remove 150 * various changes set in @init_tfm. 151 * @clone_tfm: Copy transform into new object, may allocate memory. 152 * @halg: see struct hash_alg_common 153 */ 154 struct ahash_alg { 155 int (*init)(struct ahash_request *req); 156 int (*update)(struct ahash_request *req); 157 int (*final)(struct ahash_request *req); 158 int (*finup)(struct ahash_request *req); 159 int (*digest)(struct ahash_request *req); 160 int (*export)(struct ahash_request *req, void *out); 161 int (*import)(struct ahash_request *req, const void *in); 162 int (*export_core)(struct ahash_request *req, void *out); 163 int (*import_core)(struct ahash_request *req, const void *in); 164 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 165 unsigned int keylen); 166 int (*init_tfm)(struct crypto_ahash *tfm); 167 void (*exit_tfm)(struct crypto_ahash *tfm); 168 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src); 169 170 struct hash_alg_common halg; 171 }; 172 173 struct shash_desc { 174 struct crypto_shash *tfm; 175 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 176 }; 177 178 #define HASH_MAX_DIGESTSIZE 64 179 180 /* 181 * The size of a core hash state and a partial block. The final byte 182 * is the length of the partial block. 183 */ 184 #define HASH_STATE_AND_BLOCK(state, block) ((state) + (block) + 1) 185 186 187 /* Worst case is sha3-224. */ 188 #define HASH_MAX_STATESIZE HASH_STATE_AND_BLOCK(200, 144) 189 190 /* This needs to match arch/s390/crypto/sha.h. */ 191 #define S390_SHA_CTX_SIZE 216 192 193 /* 194 * Worst case is hmac(sha3-224-s390). Its context is a nested 'shash_desc' 195 * containing a 'struct s390_sha_ctx'. 196 */ 197 #define SHA3_224_S390_DESCSIZE HASH_STATE_AND_BLOCK(S390_SHA_CTX_SIZE, 144) 198 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + \ 199 SHA3_224_S390_DESCSIZE) 200 #define MAX_SYNC_HASH_REQSIZE (sizeof(struct ahash_request) + \ 201 HASH_MAX_DESCSIZE) 202 203 #define SHASH_DESC_ON_STACK(shash, ctx) \ 204 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 205 __aligned(__alignof__(struct shash_desc)); \ 206 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 207 208 #define HASH_REQUEST_ON_STACK(name, _tfm) \ 209 char __##name##_req[sizeof(struct ahash_request) + \ 210 MAX_SYNC_HASH_REQSIZE] CRYPTO_MINALIGN_ATTR; \ 211 struct ahash_request *name = \ 212 ahash_request_on_stack_init(__##name##_req, (_tfm)) 213 214 #define HASH_REQUEST_CLONE(name, gfp) \ 215 hash_request_clone(name, sizeof(__##name##_req), gfp) 216 217 #define CRYPTO_HASH_STATESIZE(coresize, blocksize) (coresize + blocksize + 1) 218 219 /** 220 * struct shash_alg - synchronous message digest definition 221 * @init: see struct ahash_alg 222 * @update: see struct ahash_alg 223 * @final: see struct ahash_alg 224 * @finup: see struct ahash_alg 225 * @digest: see struct ahash_alg 226 * @export: see struct ahash_alg 227 * @import: see struct ahash_alg 228 * @export_core: see struct ahash_alg 229 * @import_core: see struct ahash_alg 230 * @setkey: see struct ahash_alg 231 * @init_tfm: Initialize the cryptographic transformation object. 232 * This function is called only once at the instantiation 233 * time, right after the transformation context was 234 * allocated. In case the cryptographic hardware has 235 * some special requirements which need to be handled 236 * by software, this function shall check for the precise 237 * requirement of the transformation and put any software 238 * fallbacks in place. 239 * @exit_tfm: Deinitialize the cryptographic transformation object. 240 * This is a counterpart to @init_tfm, used to remove 241 * various changes set in @init_tfm. 242 * @clone_tfm: Copy transform into new object, may allocate memory. 243 * @descsize: Size of the operational state for the message digest. This state 244 * size is the memory size that needs to be allocated for 245 * shash_desc.__ctx 246 * @halg: see struct hash_alg_common 247 * @HASH_ALG_COMMON: see struct hash_alg_common 248 */ 249 struct shash_alg { 250 int (*init)(struct shash_desc *desc); 251 int (*update)(struct shash_desc *desc, const u8 *data, 252 unsigned int len); 253 int (*final)(struct shash_desc *desc, u8 *out); 254 int (*finup)(struct shash_desc *desc, const u8 *data, 255 unsigned int len, u8 *out); 256 int (*digest)(struct shash_desc *desc, const u8 *data, 257 unsigned int len, u8 *out); 258 int (*export)(struct shash_desc *desc, void *out); 259 int (*import)(struct shash_desc *desc, const void *in); 260 int (*export_core)(struct shash_desc *desc, void *out); 261 int (*import_core)(struct shash_desc *desc, const void *in); 262 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 263 unsigned int keylen); 264 int (*init_tfm)(struct crypto_shash *tfm); 265 void (*exit_tfm)(struct crypto_shash *tfm); 266 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src); 267 268 unsigned int descsize; 269 270 union { 271 struct HASH_ALG_COMMON; 272 struct hash_alg_common halg; 273 }; 274 }; 275 #undef HASH_ALG_COMMON 276 277 struct crypto_ahash { 278 bool using_shash; /* Underlying algorithm is shash, not ahash */ 279 unsigned int statesize; 280 unsigned int reqsize; 281 struct crypto_tfm base; 282 }; 283 284 struct crypto_shash { 285 struct crypto_tfm base; 286 }; 287 288 /** 289 * DOC: Asynchronous Message Digest API 290 * 291 * The asynchronous message digest API is used with the ciphers of type 292 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 293 * 294 * The asynchronous cipher operation discussion provided for the 295 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 296 */ 297 298 static inline bool ahash_req_on_stack(struct ahash_request *req) 299 { 300 return crypto_req_on_stack(&req->base); 301 } 302 303 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 304 { 305 return container_of(tfm, struct crypto_ahash, base); 306 } 307 308 /** 309 * crypto_alloc_ahash() - allocate ahash cipher handle 310 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 311 * ahash cipher 312 * @type: specifies the type of the cipher 313 * @mask: specifies the mask for the cipher 314 * 315 * Allocate a cipher handle for an ahash. The returned struct 316 * crypto_ahash is the cipher handle that is required for any subsequent 317 * API invocation for that ahash. 318 * 319 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 320 * of an error, PTR_ERR() returns the error code. 321 */ 322 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 323 u32 mask); 324 325 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm); 326 327 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 328 { 329 return &tfm->base; 330 } 331 332 /** 333 * crypto_free_ahash() - zeroize and free the ahash handle 334 * @tfm: cipher handle to be freed 335 * 336 * If @tfm is a NULL or error pointer, this function does nothing. 337 */ 338 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 339 { 340 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 341 } 342 343 /** 344 * crypto_has_ahash() - Search for the availability of an ahash. 345 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 346 * ahash 347 * @type: specifies the type of the ahash 348 * @mask: specifies the mask for the ahash 349 * 350 * Return: true when the ahash is known to the kernel crypto API; false 351 * otherwise 352 */ 353 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 354 355 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 356 { 357 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 358 } 359 360 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 361 { 362 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 363 } 364 365 /** 366 * crypto_ahash_blocksize() - obtain block size for cipher 367 * @tfm: cipher handle 368 * 369 * The block size for the message digest cipher referenced with the cipher 370 * handle is returned. 371 * 372 * Return: block size of cipher 373 */ 374 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 375 { 376 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 377 } 378 379 static inline struct hash_alg_common *__crypto_hash_alg_common( 380 struct crypto_alg *alg) 381 { 382 return container_of(alg, struct hash_alg_common, base); 383 } 384 385 static inline struct hash_alg_common *crypto_hash_alg_common( 386 struct crypto_ahash *tfm) 387 { 388 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 389 } 390 391 /** 392 * crypto_ahash_digestsize() - obtain message digest size 393 * @tfm: cipher handle 394 * 395 * The size for the message digest created by the message digest cipher 396 * referenced with the cipher handle is returned. 397 * 398 * 399 * Return: message digest size of cipher 400 */ 401 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 402 { 403 return crypto_hash_alg_common(tfm)->digestsize; 404 } 405 406 /** 407 * crypto_ahash_statesize() - obtain size of the ahash state 408 * @tfm: cipher handle 409 * 410 * Return the size of the ahash state. With the crypto_ahash_export() 411 * function, the caller can export the state into a buffer whose size is 412 * defined with this function. 413 * 414 * Return: size of the ahash state 415 */ 416 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 417 { 418 return tfm->statesize; 419 } 420 421 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 422 { 423 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 424 } 425 426 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 427 { 428 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 429 } 430 431 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 432 { 433 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 434 } 435 436 /** 437 * crypto_ahash_reqtfm() - obtain cipher handle from request 438 * @req: asynchronous request handle that contains the reference to the ahash 439 * cipher handle 440 * 441 * Return the ahash cipher handle that is registered with the asynchronous 442 * request handle ahash_request. 443 * 444 * Return: ahash cipher handle 445 */ 446 static inline struct crypto_ahash *crypto_ahash_reqtfm( 447 struct ahash_request *req) 448 { 449 return __crypto_ahash_cast(req->base.tfm); 450 } 451 452 /** 453 * crypto_ahash_reqsize() - obtain size of the request data structure 454 * @tfm: cipher handle 455 * 456 * Return: size of the request data 457 */ 458 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 459 { 460 return tfm->reqsize; 461 } 462 463 static inline void *ahash_request_ctx(struct ahash_request *req) 464 { 465 return req->__ctx; 466 } 467 468 /** 469 * crypto_ahash_setkey - set key for cipher handle 470 * @tfm: cipher handle 471 * @key: buffer holding the key 472 * @keylen: length of the key in bytes 473 * 474 * The caller provided key is set for the ahash cipher. The cipher 475 * handle must point to a keyed hash in order for this function to succeed. 476 * 477 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 478 */ 479 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 480 unsigned int keylen); 481 482 /** 483 * crypto_ahash_finup() - update and finalize message digest 484 * @req: reference to the ahash_request handle that holds all information 485 * needed to perform the cipher operation 486 * 487 * This function is a "short-hand" for the function calls of 488 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 489 * meaning as discussed for those separate functions. 490 * 491 * Return: see crypto_ahash_final() 492 */ 493 int crypto_ahash_finup(struct ahash_request *req); 494 495 /** 496 * crypto_ahash_final() - calculate message digest 497 * @req: reference to the ahash_request handle that holds all information 498 * needed to perform the cipher operation 499 * 500 * Finalize the message digest operation and create the message digest 501 * based on all data added to the cipher handle. The message digest is placed 502 * into the output buffer registered with the ahash_request handle. 503 * 504 * Return: 505 * 0 if the message digest was successfully calculated; 506 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 507 * -EBUSY if queue is full and request should be resubmitted later; 508 * other < 0 if an error occurred 509 */ 510 static inline int crypto_ahash_final(struct ahash_request *req) 511 { 512 req->nbytes = 0; 513 return crypto_ahash_finup(req); 514 } 515 516 /** 517 * crypto_ahash_digest() - calculate message digest for a buffer 518 * @req: reference to the ahash_request handle that holds all information 519 * needed to perform the cipher operation 520 * 521 * This function is a "short-hand" for the function calls of crypto_ahash_init, 522 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 523 * meaning as discussed for those separate three functions. 524 * 525 * Return: see crypto_ahash_final() 526 */ 527 int crypto_ahash_digest(struct ahash_request *req); 528 529 /** 530 * crypto_ahash_export() - extract current message digest state 531 * @req: reference to the ahash_request handle whose state is exported 532 * @out: output buffer of sufficient size that can hold the hash state 533 * 534 * This function exports the hash state of the ahash_request handle into the 535 * caller-allocated output buffer out which must have sufficient size (e.g. by 536 * calling crypto_ahash_statesize()). 537 * 538 * Return: 0 if the export was successful; < 0 if an error occurred 539 */ 540 int crypto_ahash_export(struct ahash_request *req, void *out); 541 542 /** 543 * crypto_ahash_import() - import message digest state 544 * @req: reference to ahash_request handle the state is imported into 545 * @in: buffer holding the state 546 * 547 * This function imports the hash state into the ahash_request handle from the 548 * input buffer. That buffer should have been generated with the 549 * crypto_ahash_export function. 550 * 551 * Return: 0 if the import was successful; < 0 if an error occurred 552 */ 553 int crypto_ahash_import(struct ahash_request *req, const void *in); 554 555 /** 556 * crypto_ahash_init() - (re)initialize message digest handle 557 * @req: ahash_request handle that already is initialized with all necessary 558 * data using the ahash_request_* API functions 559 * 560 * The call (re-)initializes the message digest referenced by the ahash_request 561 * handle. Any potentially existing state created by previous operations is 562 * discarded. 563 * 564 * Return: see crypto_ahash_final() 565 */ 566 int crypto_ahash_init(struct ahash_request *req); 567 568 /** 569 * crypto_ahash_update() - add data to message digest for processing 570 * @req: ahash_request handle that was previously initialized with the 571 * crypto_ahash_init call. 572 * 573 * Updates the message digest state of the &ahash_request handle. The input data 574 * is pointed to by the scatter/gather list registered in the &ahash_request 575 * handle 576 * 577 * Return: see crypto_ahash_final() 578 */ 579 int crypto_ahash_update(struct ahash_request *req); 580 581 /** 582 * DOC: Asynchronous Hash Request Handle 583 * 584 * The &ahash_request data structure contains all pointers to data 585 * required for the asynchronous cipher operation. This includes the cipher 586 * handle (which can be used by multiple &ahash_request instances), pointer 587 * to plaintext and the message digest output buffer, asynchronous callback 588 * function, etc. It acts as a handle to the ahash_request_* API calls in a 589 * similar way as ahash handle to the crypto_ahash_* API calls. 590 */ 591 592 /** 593 * ahash_request_set_tfm() - update cipher handle reference in request 594 * @req: request handle to be modified 595 * @tfm: cipher handle that shall be added to the request handle 596 * 597 * Allow the caller to replace the existing ahash handle in the request 598 * data structure with a different one. 599 */ 600 static inline void ahash_request_set_tfm(struct ahash_request *req, 601 struct crypto_ahash *tfm) 602 { 603 crypto_request_set_tfm(&req->base, crypto_ahash_tfm(tfm)); 604 } 605 606 /** 607 * ahash_request_alloc() - allocate request data structure 608 * @tfm: cipher handle to be registered with the request 609 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 610 * 611 * Allocate the request data structure that must be used with the ahash 612 * message digest API calls. During 613 * the allocation, the provided ahash handle 614 * is registered in the request data structure. 615 * 616 * Return: allocated request handle in case of success, or NULL if out of memory 617 */ 618 static inline struct ahash_request *ahash_request_alloc_noprof( 619 struct crypto_ahash *tfm, gfp_t gfp) 620 { 621 struct ahash_request *req; 622 623 req = kmalloc_noprof(sizeof(struct ahash_request) + 624 crypto_ahash_reqsize(tfm), gfp); 625 626 if (likely(req)) 627 ahash_request_set_tfm(req, tfm); 628 629 return req; 630 } 631 #define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__)) 632 633 /** 634 * ahash_request_free() - zeroize and free the request data structure 635 * @req: request data structure cipher handle to be freed 636 */ 637 void ahash_request_free(struct ahash_request *req); 638 639 static inline void ahash_request_zero(struct ahash_request *req) 640 { 641 memzero_explicit(req, sizeof(*req) + 642 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 643 } 644 645 static inline struct ahash_request *ahash_request_cast( 646 struct crypto_async_request *req) 647 { 648 return container_of(req, struct ahash_request, base); 649 } 650 651 /** 652 * ahash_request_set_callback() - set asynchronous callback function 653 * @req: request handle 654 * @flags: specify zero or an ORing of the flags 655 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 656 * increase the wait queue beyond the initial maximum size; 657 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 658 * @compl: callback function pointer to be registered with the request handle 659 * @data: The data pointer refers to memory that is not used by the kernel 660 * crypto API, but provided to the callback function for it to use. Here, 661 * the caller can provide a reference to memory the callback function can 662 * operate on. As the callback function is invoked asynchronously to the 663 * related functionality, it may need to access data structures of the 664 * related functionality which can be referenced using this pointer. The 665 * callback function can access the memory via the "data" field in the 666 * &crypto_async_request data structure provided to the callback function. 667 * 668 * This function allows setting the callback function that is triggered once 669 * the cipher operation completes. 670 * 671 * The callback function is registered with the &ahash_request handle and 672 * must comply with the following template:: 673 * 674 * void callback_function(struct crypto_async_request *req, int error) 675 */ 676 static inline void ahash_request_set_callback(struct ahash_request *req, 677 u32 flags, 678 crypto_completion_t compl, 679 void *data) 680 { 681 flags &= ~CRYPTO_AHASH_REQ_PRIVATE; 682 flags |= req->base.flags & CRYPTO_AHASH_REQ_PRIVATE; 683 crypto_request_set_callback(&req->base, flags, compl, data); 684 } 685 686 /** 687 * ahash_request_set_crypt() - set data buffers 688 * @req: ahash_request handle to be updated 689 * @src: source scatter/gather list 690 * @result: buffer that is filled with the message digest -- the caller must 691 * ensure that the buffer has sufficient space by, for example, calling 692 * crypto_ahash_digestsize() 693 * @nbytes: number of bytes to process from the source scatter/gather list 694 * 695 * By using this call, the caller references the source scatter/gather list. 696 * The source scatter/gather list points to the data the message digest is to 697 * be calculated for. 698 */ 699 static inline void ahash_request_set_crypt(struct ahash_request *req, 700 struct scatterlist *src, u8 *result, 701 unsigned int nbytes) 702 { 703 req->src = src; 704 req->nbytes = nbytes; 705 req->result = result; 706 req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT; 707 } 708 709 /** 710 * ahash_request_set_virt() - set virtual address data buffers 711 * @req: ahash_request handle to be updated 712 * @src: source virtual address 713 * @result: buffer that is filled with the message digest -- the caller must 714 * ensure that the buffer has sufficient space by, for example, calling 715 * crypto_ahash_digestsize() 716 * @nbytes: number of bytes to process from the source virtual address 717 * 718 * By using this call, the caller references the source virtual address. 719 * The source virtual address points to the data the message digest is to 720 * be calculated for. 721 */ 722 static inline void ahash_request_set_virt(struct ahash_request *req, 723 const u8 *src, u8 *result, 724 unsigned int nbytes) 725 { 726 req->svirt = src; 727 req->nbytes = nbytes; 728 req->result = result; 729 req->base.flags |= CRYPTO_AHASH_REQ_VIRT; 730 } 731 732 /** 733 * DOC: Synchronous Message Digest API 734 * 735 * The synchronous message digest API is used with the ciphers of type 736 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 737 * 738 * The message digest API is able to maintain state information for the 739 * caller. 740 * 741 * The synchronous message digest API can store user-related context in its 742 * shash_desc request data structure. 743 */ 744 745 /** 746 * crypto_alloc_shash() - allocate message digest handle 747 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 748 * message digest cipher 749 * @type: specifies the type of the cipher 750 * @mask: specifies the mask for the cipher 751 * 752 * Allocate a cipher handle for a message digest. The returned &struct 753 * crypto_shash is the cipher handle that is required for any subsequent 754 * API invocation for that message digest. 755 * 756 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 757 * of an error, PTR_ERR() returns the error code. 758 */ 759 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 760 u32 mask); 761 762 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm); 763 764 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 765 766 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 767 { 768 return &tfm->base; 769 } 770 771 /** 772 * crypto_free_shash() - zeroize and free the message digest handle 773 * @tfm: cipher handle to be freed 774 * 775 * If @tfm is a NULL or error pointer, this function does nothing. 776 */ 777 static inline void crypto_free_shash(struct crypto_shash *tfm) 778 { 779 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 780 } 781 782 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 783 { 784 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 785 } 786 787 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 788 { 789 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 790 } 791 792 /** 793 * crypto_shash_blocksize() - obtain block size for cipher 794 * @tfm: cipher handle 795 * 796 * The block size for the message digest cipher referenced with the cipher 797 * handle is returned. 798 * 799 * Return: block size of cipher 800 */ 801 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 802 { 803 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 804 } 805 806 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 807 { 808 return container_of(alg, struct shash_alg, base); 809 } 810 811 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 812 { 813 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 814 } 815 816 /** 817 * crypto_shash_digestsize() - obtain message digest size 818 * @tfm: cipher handle 819 * 820 * The size for the message digest created by the message digest cipher 821 * referenced with the cipher handle is returned. 822 * 823 * Return: digest size of cipher 824 */ 825 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 826 { 827 return crypto_shash_alg(tfm)->digestsize; 828 } 829 830 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 831 { 832 return crypto_shash_alg(tfm)->statesize; 833 } 834 835 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 836 { 837 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 838 } 839 840 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 841 { 842 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 843 } 844 845 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 846 { 847 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 848 } 849 850 /** 851 * crypto_shash_descsize() - obtain the operational state size 852 * @tfm: cipher handle 853 * 854 * The size of the operational state the cipher needs during operation is 855 * returned for the hash referenced with the cipher handle. This size is 856 * required to calculate the memory requirements to allow the caller allocating 857 * sufficient memory for operational state. 858 * 859 * The operational state is defined with struct shash_desc where the size of 860 * that data structure is to be calculated as 861 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 862 * 863 * Return: size of the operational state 864 */ 865 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 866 { 867 return crypto_shash_alg(tfm)->descsize; 868 } 869 870 static inline void *shash_desc_ctx(struct shash_desc *desc) 871 { 872 return desc->__ctx; 873 } 874 875 /** 876 * crypto_shash_setkey() - set key for message digest 877 * @tfm: cipher handle 878 * @key: buffer holding the key 879 * @keylen: length of the key in bytes 880 * 881 * The caller provided key is set for the keyed message digest cipher. The 882 * cipher handle must point to a keyed message digest cipher in order for this 883 * function to succeed. 884 * 885 * Context: Softirq or process context. 886 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 887 */ 888 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 889 unsigned int keylen); 890 891 /** 892 * crypto_shash_digest() - calculate message digest for buffer 893 * @desc: see crypto_shash_final() 894 * @data: see crypto_shash_update() 895 * @len: see crypto_shash_update() 896 * @out: see crypto_shash_final() 897 * 898 * This function is a "short-hand" for the function calls of crypto_shash_init, 899 * crypto_shash_update and crypto_shash_final. The parameters have the same 900 * meaning as discussed for those separate three functions. 901 * 902 * Context: Softirq or process context. 903 * Return: 0 if the message digest creation was successful; < 0 if an error 904 * occurred 905 */ 906 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 907 unsigned int len, u8 *out); 908 909 /** 910 * crypto_shash_tfm_digest() - calculate message digest for buffer 911 * @tfm: hash transformation object 912 * @data: see crypto_shash_update() 913 * @len: see crypto_shash_update() 914 * @out: see crypto_shash_final() 915 * 916 * This is a simplified version of crypto_shash_digest() for users who don't 917 * want to allocate their own hash descriptor (shash_desc). Instead, 918 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 919 * directly, and it allocates a hash descriptor on the stack internally. 920 * Note that this stack allocation may be fairly large. 921 * 922 * Context: Softirq or process context. 923 * Return: 0 on success; < 0 if an error occurred. 924 */ 925 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 926 unsigned int len, u8 *out); 927 928 int crypto_hash_digest(struct crypto_ahash *tfm, const u8 *data, 929 unsigned int len, u8 *out); 930 931 /** 932 * crypto_shash_export() - extract operational state for message digest 933 * @desc: reference to the operational state handle whose state is exported 934 * @out: output buffer of sufficient size that can hold the hash state 935 * 936 * This function exports the hash state of the operational state handle into the 937 * caller-allocated output buffer out which must have sufficient size (e.g. by 938 * calling crypto_shash_descsize). 939 * 940 * Context: Softirq or process context. 941 * Return: 0 if the export creation was successful; < 0 if an error occurred 942 */ 943 int crypto_shash_export(struct shash_desc *desc, void *out); 944 945 /** 946 * crypto_shash_import() - import operational state 947 * @desc: reference to the operational state handle the state imported into 948 * @in: buffer holding the state 949 * 950 * This function imports the hash state into the operational state handle from 951 * the input buffer. That buffer should have been generated with the 952 * crypto_ahash_export function. 953 * 954 * Context: Softirq or process context. 955 * Return: 0 if the import was successful; < 0 if an error occurred 956 */ 957 int crypto_shash_import(struct shash_desc *desc, const void *in); 958 959 /** 960 * crypto_shash_init() - (re)initialize message digest 961 * @desc: operational state handle that is already filled 962 * 963 * The call (re-)initializes the message digest referenced by the 964 * operational state handle. Any potentially existing state created by 965 * previous operations is discarded. 966 * 967 * Context: Softirq or process context. 968 * Return: 0 if the message digest initialization was successful; < 0 if an 969 * error occurred 970 */ 971 int crypto_shash_init(struct shash_desc *desc); 972 973 /** 974 * crypto_shash_finup() - calculate message digest of buffer 975 * @desc: see crypto_shash_final() 976 * @data: see crypto_shash_update() 977 * @len: see crypto_shash_update() 978 * @out: see crypto_shash_final() 979 * 980 * This function is a "short-hand" for the function calls of 981 * crypto_shash_update and crypto_shash_final. The parameters have the same 982 * meaning as discussed for those separate functions. 983 * 984 * Context: Softirq or process context. 985 * Return: 0 if the message digest creation was successful; < 0 if an error 986 * occurred 987 */ 988 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 989 unsigned int len, u8 *out); 990 991 /** 992 * crypto_shash_update() - add data to message digest for processing 993 * @desc: operational state handle that is already initialized 994 * @data: input data to be added to the message digest 995 * @len: length of the input data 996 * 997 * Updates the message digest state of the operational state handle. 998 * 999 * Context: Softirq or process context. 1000 * Return: 0 if the message digest update was successful; < 0 if an error 1001 * occurred 1002 */ 1003 static inline int crypto_shash_update(struct shash_desc *desc, const u8 *data, 1004 unsigned int len) 1005 { 1006 return crypto_shash_finup(desc, data, len, NULL); 1007 } 1008 1009 /** 1010 * crypto_shash_final() - calculate message digest 1011 * @desc: operational state handle that is already filled with data 1012 * @out: output buffer filled with the message digest 1013 * 1014 * Finalize the message digest operation and create the message digest 1015 * based on all data added to the cipher handle. The message digest is placed 1016 * into the output buffer. The caller must ensure that the output buffer is 1017 * large enough by using crypto_shash_digestsize. 1018 * 1019 * Context: Softirq or process context. 1020 * Return: 0 if the message digest creation was successful; < 0 if an error 1021 * occurred 1022 */ 1023 static inline int crypto_shash_final(struct shash_desc *desc, u8 *out) 1024 { 1025 return crypto_shash_finup(desc, NULL, 0, out); 1026 } 1027 1028 static inline void shash_desc_zero(struct shash_desc *desc) 1029 { 1030 memzero_explicit(desc, 1031 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 1032 } 1033 1034 static inline bool ahash_is_async(struct crypto_ahash *tfm) 1035 { 1036 return crypto_tfm_is_async(&tfm->base); 1037 } 1038 1039 static inline struct ahash_request *ahash_request_on_stack_init( 1040 char *buf, struct crypto_ahash *tfm) 1041 { 1042 struct ahash_request *req = (void *)buf; 1043 1044 crypto_stack_request_init(&req->base, crypto_ahash_tfm(tfm)); 1045 return req; 1046 } 1047 1048 static inline struct ahash_request *ahash_request_clone( 1049 struct ahash_request *req, size_t total, gfp_t gfp) 1050 { 1051 return container_of(crypto_request_clone(&req->base, total, gfp), 1052 struct ahash_request, base); 1053 } 1054 1055 #endif /* _CRYPTO_HASH_H */ 1056