1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/atomic.h> 12 #include <linux/crypto.h> 13 #include <linux/string.h> 14 15 struct crypto_ahash; 16 17 /** 18 * DOC: Message Digest Algorithm Definitions 19 * 20 * These data structures define modular message digest algorithm 21 * implementations, managed via crypto_register_ahash(), 22 * crypto_register_shash(), crypto_unregister_ahash() and 23 * crypto_unregister_shash(). 24 */ 25 26 /* 27 * struct crypto_istat_hash - statistics for has algorithm 28 * @hash_cnt: number of hash requests 29 * @hash_tlen: total data size hashed 30 * @err_cnt: number of error for hash requests 31 */ 32 struct crypto_istat_hash { 33 atomic64_t hash_cnt; 34 atomic64_t hash_tlen; 35 atomic64_t err_cnt; 36 }; 37 38 #ifdef CONFIG_CRYPTO_STATS 39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat; 40 #else 41 #define HASH_ALG_COMMON_STAT 42 #endif 43 44 /* 45 * struct hash_alg_common - define properties of message digest 46 * @stat: Statistics for hash algorithm. 47 * @digestsize: Size of the result of the transformation. A buffer of this size 48 * must be available to the @final and @finup calls, so they can 49 * store the resulting hash into it. For various predefined sizes, 50 * search include/crypto/ using 51 * git grep _DIGEST_SIZE include/crypto. 52 * @statesize: Size of the block for partial state of the transformation. A 53 * buffer of this size must be passed to the @export function as it 54 * will save the partial state of the transformation into it. On the 55 * other side, the @import function will load the state from a 56 * buffer of this size as well. 57 * @base: Start of data structure of cipher algorithm. The common data 58 * structure of crypto_alg contains information common to all ciphers. 59 * The hash_alg_common data structure now adds the hash-specific 60 * information. 61 */ 62 #define HASH_ALG_COMMON { \ 63 HASH_ALG_COMMON_STAT \ 64 \ 65 unsigned int digestsize; \ 66 unsigned int statesize; \ 67 \ 68 struct crypto_alg base; \ 69 } 70 struct hash_alg_common HASH_ALG_COMMON; 71 72 struct ahash_request { 73 struct crypto_async_request base; 74 75 unsigned int nbytes; 76 struct scatterlist *src; 77 u8 *result; 78 79 /* This field may only be used by the ahash API code. */ 80 void *priv; 81 82 void *__ctx[] CRYPTO_MINALIGN_ATTR; 83 }; 84 85 /** 86 * struct ahash_alg - asynchronous message digest definition 87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 88 * state of the HASH transformation at the beginning. This shall fill in 89 * the internal structures used during the entire duration of the whole 90 * transformation. No data processing happens at this point. Driver code 91 * implementation must not use req->result. 92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 93 * function actually pushes blocks of data from upper layers into the 94 * driver, which then passes those to the hardware as seen fit. This 95 * function must not finalize the HASH transformation by calculating the 96 * final message digest as this only adds more data into the 97 * transformation. This function shall not modify the transformation 98 * context, as this function may be called in parallel with the same 99 * transformation object. Data processing can happen synchronously 100 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 101 * req->result. 102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 103 * transformation and retrieves the resulting hash from the driver and 104 * pushes it back to upper layers. No data processing happens at this 105 * point unless hardware requires it to finish the transformation 106 * (then the data buffered by the device driver is processed). 107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 108 * combination of @update and @final calls issued in sequence. As some 109 * hardware cannot do @update and @final separately, this callback was 110 * added to allow such hardware to be used at least by IPsec. Data 111 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 112 * at this point. 113 * @digest: Combination of @init and @update and @final. This function 114 * effectively behaves as the entire chain of operations, @init, 115 * @update and @final issued in sequence. Just like @finup, this was 116 * added for hardware which cannot do even the @finup, but can only do 117 * the whole transformation in one run. Data processing can happen 118 * synchronously [SHASH] or asynchronously [AHASH] at this point. 119 * @setkey: Set optional key used by the hashing algorithm. Intended to push 120 * optional key used by the hashing algorithm from upper layers into 121 * the driver. This function can store the key in the transformation 122 * context or can outright program it into the hardware. In the former 123 * case, one must be careful to program the key into the hardware at 124 * appropriate time and one must be careful that .setkey() can be 125 * called multiple times during the existence of the transformation 126 * object. Not all hashing algorithms do implement this function as it 127 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 128 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 129 * this function. This function must be called before any other of the 130 * @init, @update, @final, @finup, @digest is called. No data 131 * processing happens at this point. 132 * @export: Export partial state of the transformation. This function dumps the 133 * entire state of the ongoing transformation into a provided block of 134 * data so it can be @import 'ed back later on. This is useful in case 135 * you want to save partial result of the transformation after 136 * processing certain amount of data and reload this partial result 137 * multiple times later on for multiple re-use. No data processing 138 * happens at this point. Driver must not use req->result. 139 * @import: Import partial state of the transformation. This function loads the 140 * entire state of the ongoing transformation from a provided block of 141 * data so the transformation can continue from this point onward. No 142 * data processing happens at this point. Driver must not use 143 * req->result. 144 * @init_tfm: Initialize the cryptographic transformation object. 145 * This function is called only once at the instantiation 146 * time, right after the transformation context was 147 * allocated. In case the cryptographic hardware has 148 * some special requirements which need to be handled 149 * by software, this function shall check for the precise 150 * requirement of the transformation and put any software 151 * fallbacks in place. 152 * @exit_tfm: Deinitialize the cryptographic transformation object. 153 * This is a counterpart to @init_tfm, used to remove 154 * various changes set in @init_tfm. 155 * @clone_tfm: Copy transform into new object, may allocate memory. 156 * @halg: see struct hash_alg_common 157 */ 158 struct ahash_alg { 159 int (*init)(struct ahash_request *req); 160 int (*update)(struct ahash_request *req); 161 int (*final)(struct ahash_request *req); 162 int (*finup)(struct ahash_request *req); 163 int (*digest)(struct ahash_request *req); 164 int (*export)(struct ahash_request *req, void *out); 165 int (*import)(struct ahash_request *req, const void *in); 166 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 167 unsigned int keylen); 168 int (*init_tfm)(struct crypto_ahash *tfm); 169 void (*exit_tfm)(struct crypto_ahash *tfm); 170 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src); 171 172 struct hash_alg_common halg; 173 }; 174 175 struct shash_desc { 176 struct crypto_shash *tfm; 177 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 178 }; 179 180 #define HASH_MAX_DIGESTSIZE 64 181 182 /* 183 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' 184 * containing a 'struct sha3_state'. 185 */ 186 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 187 188 #define SHASH_DESC_ON_STACK(shash, ctx) \ 189 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 190 __aligned(__alignof__(struct shash_desc)); \ 191 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 192 193 /** 194 * struct shash_alg - synchronous message digest definition 195 * @init: see struct ahash_alg 196 * @update: see struct ahash_alg 197 * @final: see struct ahash_alg 198 * @finup: see struct ahash_alg 199 * @digest: see struct ahash_alg 200 * @export: see struct ahash_alg 201 * @import: see struct ahash_alg 202 * @setkey: see struct ahash_alg 203 * @init_tfm: Initialize the cryptographic transformation object. 204 * This function is called only once at the instantiation 205 * time, right after the transformation context was 206 * allocated. In case the cryptographic hardware has 207 * some special requirements which need to be handled 208 * by software, this function shall check for the precise 209 * requirement of the transformation and put any software 210 * fallbacks in place. 211 * @exit_tfm: Deinitialize the cryptographic transformation object. 212 * This is a counterpart to @init_tfm, used to remove 213 * various changes set in @init_tfm. 214 * @clone_tfm: Copy transform into new object, may allocate memory. 215 * @digestsize: see struct ahash_alg 216 * @statesize: see struct ahash_alg 217 * @descsize: Size of the operational state for the message digest. This state 218 * size is the memory size that needs to be allocated for 219 * shash_desc.__ctx 220 * @stat: Statistics for hash algorithm. 221 * @base: internally used 222 * @halg: see struct hash_alg_common 223 * @HASH_ALG_COMMON: see struct hash_alg_common 224 */ 225 struct shash_alg { 226 int (*init)(struct shash_desc *desc); 227 int (*update)(struct shash_desc *desc, const u8 *data, 228 unsigned int len); 229 int (*final)(struct shash_desc *desc, u8 *out); 230 int (*finup)(struct shash_desc *desc, const u8 *data, 231 unsigned int len, u8 *out); 232 int (*digest)(struct shash_desc *desc, const u8 *data, 233 unsigned int len, u8 *out); 234 int (*export)(struct shash_desc *desc, void *out); 235 int (*import)(struct shash_desc *desc, const void *in); 236 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 237 unsigned int keylen); 238 int (*init_tfm)(struct crypto_shash *tfm); 239 void (*exit_tfm)(struct crypto_shash *tfm); 240 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src); 241 242 unsigned int descsize; 243 244 union { 245 struct HASH_ALG_COMMON; 246 struct hash_alg_common halg; 247 }; 248 }; 249 #undef HASH_ALG_COMMON 250 #undef HASH_ALG_COMMON_STAT 251 252 struct crypto_ahash { 253 bool using_shash; /* Underlying algorithm is shash, not ahash */ 254 unsigned int statesize; 255 unsigned int reqsize; 256 struct crypto_tfm base; 257 }; 258 259 struct crypto_shash { 260 unsigned int descsize; 261 struct crypto_tfm base; 262 }; 263 264 /** 265 * DOC: Asynchronous Message Digest API 266 * 267 * The asynchronous message digest API is used with the ciphers of type 268 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 269 * 270 * The asynchronous cipher operation discussion provided for the 271 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 272 */ 273 274 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 275 { 276 return container_of(tfm, struct crypto_ahash, base); 277 } 278 279 /** 280 * crypto_alloc_ahash() - allocate ahash cipher handle 281 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 282 * ahash cipher 283 * @type: specifies the type of the cipher 284 * @mask: specifies the mask for the cipher 285 * 286 * Allocate a cipher handle for an ahash. The returned struct 287 * crypto_ahash is the cipher handle that is required for any subsequent 288 * API invocation for that ahash. 289 * 290 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 291 * of an error, PTR_ERR() returns the error code. 292 */ 293 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 294 u32 mask); 295 296 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm); 297 298 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 299 { 300 return &tfm->base; 301 } 302 303 /** 304 * crypto_free_ahash() - zeroize and free the ahash handle 305 * @tfm: cipher handle to be freed 306 * 307 * If @tfm is a NULL or error pointer, this function does nothing. 308 */ 309 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 310 { 311 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 312 } 313 314 /** 315 * crypto_has_ahash() - Search for the availability of an ahash. 316 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 317 * ahash 318 * @type: specifies the type of the ahash 319 * @mask: specifies the mask for the ahash 320 * 321 * Return: true when the ahash is known to the kernel crypto API; false 322 * otherwise 323 */ 324 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 325 326 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 327 { 328 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 329 } 330 331 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 332 { 333 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 334 } 335 336 /** 337 * crypto_ahash_blocksize() - obtain block size for cipher 338 * @tfm: cipher handle 339 * 340 * The block size for the message digest cipher referenced with the cipher 341 * handle is returned. 342 * 343 * Return: block size of cipher 344 */ 345 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 346 { 347 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 348 } 349 350 static inline struct hash_alg_common *__crypto_hash_alg_common( 351 struct crypto_alg *alg) 352 { 353 return container_of(alg, struct hash_alg_common, base); 354 } 355 356 static inline struct hash_alg_common *crypto_hash_alg_common( 357 struct crypto_ahash *tfm) 358 { 359 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 360 } 361 362 /** 363 * crypto_ahash_digestsize() - obtain message digest size 364 * @tfm: cipher handle 365 * 366 * The size for the message digest created by the message digest cipher 367 * referenced with the cipher handle is returned. 368 * 369 * 370 * Return: message digest size of cipher 371 */ 372 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 373 { 374 return crypto_hash_alg_common(tfm)->digestsize; 375 } 376 377 /** 378 * crypto_ahash_statesize() - obtain size of the ahash state 379 * @tfm: cipher handle 380 * 381 * Return the size of the ahash state. With the crypto_ahash_export() 382 * function, the caller can export the state into a buffer whose size is 383 * defined with this function. 384 * 385 * Return: size of the ahash state 386 */ 387 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 388 { 389 return tfm->statesize; 390 } 391 392 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 393 { 394 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 395 } 396 397 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 398 { 399 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 400 } 401 402 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 403 { 404 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 405 } 406 407 /** 408 * crypto_ahash_reqtfm() - obtain cipher handle from request 409 * @req: asynchronous request handle that contains the reference to the ahash 410 * cipher handle 411 * 412 * Return the ahash cipher handle that is registered with the asynchronous 413 * request handle ahash_request. 414 * 415 * Return: ahash cipher handle 416 */ 417 static inline struct crypto_ahash *crypto_ahash_reqtfm( 418 struct ahash_request *req) 419 { 420 return __crypto_ahash_cast(req->base.tfm); 421 } 422 423 /** 424 * crypto_ahash_reqsize() - obtain size of the request data structure 425 * @tfm: cipher handle 426 * 427 * Return: size of the request data 428 */ 429 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 430 { 431 return tfm->reqsize; 432 } 433 434 static inline void *ahash_request_ctx(struct ahash_request *req) 435 { 436 return req->__ctx; 437 } 438 439 /** 440 * crypto_ahash_setkey - set key for cipher handle 441 * @tfm: cipher handle 442 * @key: buffer holding the key 443 * @keylen: length of the key in bytes 444 * 445 * The caller provided key is set for the ahash cipher. The cipher 446 * handle must point to a keyed hash in order for this function to succeed. 447 * 448 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 449 */ 450 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 451 unsigned int keylen); 452 453 /** 454 * crypto_ahash_finup() - update and finalize message digest 455 * @req: reference to the ahash_request handle that holds all information 456 * needed to perform the cipher operation 457 * 458 * This function is a "short-hand" for the function calls of 459 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 460 * meaning as discussed for those separate functions. 461 * 462 * Return: see crypto_ahash_final() 463 */ 464 int crypto_ahash_finup(struct ahash_request *req); 465 466 /** 467 * crypto_ahash_final() - calculate message digest 468 * @req: reference to the ahash_request handle that holds all information 469 * needed to perform the cipher operation 470 * 471 * Finalize the message digest operation and create the message digest 472 * based on all data added to the cipher handle. The message digest is placed 473 * into the output buffer registered with the ahash_request handle. 474 * 475 * Return: 476 * 0 if the message digest was successfully calculated; 477 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 478 * -EBUSY if queue is full and request should be resubmitted later; 479 * other < 0 if an error occurred 480 */ 481 int crypto_ahash_final(struct ahash_request *req); 482 483 /** 484 * crypto_ahash_digest() - calculate message digest for a buffer 485 * @req: reference to the ahash_request handle that holds all information 486 * needed to perform the cipher operation 487 * 488 * This function is a "short-hand" for the function calls of crypto_ahash_init, 489 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 490 * meaning as discussed for those separate three functions. 491 * 492 * Return: see crypto_ahash_final() 493 */ 494 int crypto_ahash_digest(struct ahash_request *req); 495 496 /** 497 * crypto_ahash_export() - extract current message digest state 498 * @req: reference to the ahash_request handle whose state is exported 499 * @out: output buffer of sufficient size that can hold the hash state 500 * 501 * This function exports the hash state of the ahash_request handle into the 502 * caller-allocated output buffer out which must have sufficient size (e.g. by 503 * calling crypto_ahash_statesize()). 504 * 505 * Return: 0 if the export was successful; < 0 if an error occurred 506 */ 507 int crypto_ahash_export(struct ahash_request *req, void *out); 508 509 /** 510 * crypto_ahash_import() - import message digest state 511 * @req: reference to ahash_request handle the state is imported into 512 * @in: buffer holding the state 513 * 514 * This function imports the hash state into the ahash_request handle from the 515 * input buffer. That buffer should have been generated with the 516 * crypto_ahash_export function. 517 * 518 * Return: 0 if the import was successful; < 0 if an error occurred 519 */ 520 int crypto_ahash_import(struct ahash_request *req, const void *in); 521 522 /** 523 * crypto_ahash_init() - (re)initialize message digest handle 524 * @req: ahash_request handle that already is initialized with all necessary 525 * data using the ahash_request_* API functions 526 * 527 * The call (re-)initializes the message digest referenced by the ahash_request 528 * handle. Any potentially existing state created by previous operations is 529 * discarded. 530 * 531 * Return: see crypto_ahash_final() 532 */ 533 int crypto_ahash_init(struct ahash_request *req); 534 535 /** 536 * crypto_ahash_update() - add data to message digest for processing 537 * @req: ahash_request handle that was previously initialized with the 538 * crypto_ahash_init call. 539 * 540 * Updates the message digest state of the &ahash_request handle. The input data 541 * is pointed to by the scatter/gather list registered in the &ahash_request 542 * handle 543 * 544 * Return: see crypto_ahash_final() 545 */ 546 int crypto_ahash_update(struct ahash_request *req); 547 548 /** 549 * DOC: Asynchronous Hash Request Handle 550 * 551 * The &ahash_request data structure contains all pointers to data 552 * required for the asynchronous cipher operation. This includes the cipher 553 * handle (which can be used by multiple &ahash_request instances), pointer 554 * to plaintext and the message digest output buffer, asynchronous callback 555 * function, etc. It acts as a handle to the ahash_request_* API calls in a 556 * similar way as ahash handle to the crypto_ahash_* API calls. 557 */ 558 559 /** 560 * ahash_request_set_tfm() - update cipher handle reference in request 561 * @req: request handle to be modified 562 * @tfm: cipher handle that shall be added to the request handle 563 * 564 * Allow the caller to replace the existing ahash handle in the request 565 * data structure with a different one. 566 */ 567 static inline void ahash_request_set_tfm(struct ahash_request *req, 568 struct crypto_ahash *tfm) 569 { 570 req->base.tfm = crypto_ahash_tfm(tfm); 571 } 572 573 /** 574 * ahash_request_alloc() - allocate request data structure 575 * @tfm: cipher handle to be registered with the request 576 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 577 * 578 * Allocate the request data structure that must be used with the ahash 579 * message digest API calls. During 580 * the allocation, the provided ahash handle 581 * is registered in the request data structure. 582 * 583 * Return: allocated request handle in case of success, or NULL if out of memory 584 */ 585 static inline struct ahash_request *ahash_request_alloc( 586 struct crypto_ahash *tfm, gfp_t gfp) 587 { 588 struct ahash_request *req; 589 590 req = kmalloc(sizeof(struct ahash_request) + 591 crypto_ahash_reqsize(tfm), gfp); 592 593 if (likely(req)) 594 ahash_request_set_tfm(req, tfm); 595 596 return req; 597 } 598 599 /** 600 * ahash_request_free() - zeroize and free the request data structure 601 * @req: request data structure cipher handle to be freed 602 */ 603 static inline void ahash_request_free(struct ahash_request *req) 604 { 605 kfree_sensitive(req); 606 } 607 608 static inline void ahash_request_zero(struct ahash_request *req) 609 { 610 memzero_explicit(req, sizeof(*req) + 611 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 612 } 613 614 static inline struct ahash_request *ahash_request_cast( 615 struct crypto_async_request *req) 616 { 617 return container_of(req, struct ahash_request, base); 618 } 619 620 /** 621 * ahash_request_set_callback() - set asynchronous callback function 622 * @req: request handle 623 * @flags: specify zero or an ORing of the flags 624 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 625 * increase the wait queue beyond the initial maximum size; 626 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 627 * @compl: callback function pointer to be registered with the request handle 628 * @data: The data pointer refers to memory that is not used by the kernel 629 * crypto API, but provided to the callback function for it to use. Here, 630 * the caller can provide a reference to memory the callback function can 631 * operate on. As the callback function is invoked asynchronously to the 632 * related functionality, it may need to access data structures of the 633 * related functionality which can be referenced using this pointer. The 634 * callback function can access the memory via the "data" field in the 635 * &crypto_async_request data structure provided to the callback function. 636 * 637 * This function allows setting the callback function that is triggered once 638 * the cipher operation completes. 639 * 640 * The callback function is registered with the &ahash_request handle and 641 * must comply with the following template:: 642 * 643 * void callback_function(struct crypto_async_request *req, int error) 644 */ 645 static inline void ahash_request_set_callback(struct ahash_request *req, 646 u32 flags, 647 crypto_completion_t compl, 648 void *data) 649 { 650 req->base.complete = compl; 651 req->base.data = data; 652 req->base.flags = flags; 653 } 654 655 /** 656 * ahash_request_set_crypt() - set data buffers 657 * @req: ahash_request handle to be updated 658 * @src: source scatter/gather list 659 * @result: buffer that is filled with the message digest -- the caller must 660 * ensure that the buffer has sufficient space by, for example, calling 661 * crypto_ahash_digestsize() 662 * @nbytes: number of bytes to process from the source scatter/gather list 663 * 664 * By using this call, the caller references the source scatter/gather list. 665 * The source scatter/gather list points to the data the message digest is to 666 * be calculated for. 667 */ 668 static inline void ahash_request_set_crypt(struct ahash_request *req, 669 struct scatterlist *src, u8 *result, 670 unsigned int nbytes) 671 { 672 req->src = src; 673 req->nbytes = nbytes; 674 req->result = result; 675 } 676 677 /** 678 * DOC: Synchronous Message Digest API 679 * 680 * The synchronous message digest API is used with the ciphers of type 681 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 682 * 683 * The message digest API is able to maintain state information for the 684 * caller. 685 * 686 * The synchronous message digest API can store user-related context in its 687 * shash_desc request data structure. 688 */ 689 690 /** 691 * crypto_alloc_shash() - allocate message digest handle 692 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 693 * message digest cipher 694 * @type: specifies the type of the cipher 695 * @mask: specifies the mask for the cipher 696 * 697 * Allocate a cipher handle for a message digest. The returned &struct 698 * crypto_shash is the cipher handle that is required for any subsequent 699 * API invocation for that message digest. 700 * 701 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 702 * of an error, PTR_ERR() returns the error code. 703 */ 704 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 705 u32 mask); 706 707 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm); 708 709 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 710 711 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 712 { 713 return &tfm->base; 714 } 715 716 /** 717 * crypto_free_shash() - zeroize and free the message digest handle 718 * @tfm: cipher handle to be freed 719 * 720 * If @tfm is a NULL or error pointer, this function does nothing. 721 */ 722 static inline void crypto_free_shash(struct crypto_shash *tfm) 723 { 724 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 725 } 726 727 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 728 { 729 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 730 } 731 732 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 733 { 734 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 735 } 736 737 /** 738 * crypto_shash_blocksize() - obtain block size for cipher 739 * @tfm: cipher handle 740 * 741 * The block size for the message digest cipher referenced with the cipher 742 * handle is returned. 743 * 744 * Return: block size of cipher 745 */ 746 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 747 { 748 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 749 } 750 751 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 752 { 753 return container_of(alg, struct shash_alg, base); 754 } 755 756 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 757 { 758 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 759 } 760 761 /** 762 * crypto_shash_digestsize() - obtain message digest size 763 * @tfm: cipher handle 764 * 765 * The size for the message digest created by the message digest cipher 766 * referenced with the cipher handle is returned. 767 * 768 * Return: digest size of cipher 769 */ 770 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 771 { 772 return crypto_shash_alg(tfm)->digestsize; 773 } 774 775 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 776 { 777 return crypto_shash_alg(tfm)->statesize; 778 } 779 780 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 781 { 782 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 783 } 784 785 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 786 { 787 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 788 } 789 790 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 791 { 792 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 793 } 794 795 /** 796 * crypto_shash_descsize() - obtain the operational state size 797 * @tfm: cipher handle 798 * 799 * The size of the operational state the cipher needs during operation is 800 * returned for the hash referenced with the cipher handle. This size is 801 * required to calculate the memory requirements to allow the caller allocating 802 * sufficient memory for operational state. 803 * 804 * The operational state is defined with struct shash_desc where the size of 805 * that data structure is to be calculated as 806 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 807 * 808 * Return: size of the operational state 809 */ 810 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 811 { 812 return tfm->descsize; 813 } 814 815 static inline void *shash_desc_ctx(struct shash_desc *desc) 816 { 817 return desc->__ctx; 818 } 819 820 /** 821 * crypto_shash_setkey() - set key for message digest 822 * @tfm: cipher handle 823 * @key: buffer holding the key 824 * @keylen: length of the key in bytes 825 * 826 * The caller provided key is set for the keyed message digest cipher. The 827 * cipher handle must point to a keyed message digest cipher in order for this 828 * function to succeed. 829 * 830 * Context: Any context. 831 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 832 */ 833 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 834 unsigned int keylen); 835 836 /** 837 * crypto_shash_digest() - calculate message digest for buffer 838 * @desc: see crypto_shash_final() 839 * @data: see crypto_shash_update() 840 * @len: see crypto_shash_update() 841 * @out: see crypto_shash_final() 842 * 843 * This function is a "short-hand" for the function calls of crypto_shash_init, 844 * crypto_shash_update and crypto_shash_final. The parameters have the same 845 * meaning as discussed for those separate three functions. 846 * 847 * Context: Any context. 848 * Return: 0 if the message digest creation was successful; < 0 if an error 849 * occurred 850 */ 851 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 852 unsigned int len, u8 *out); 853 854 /** 855 * crypto_shash_tfm_digest() - calculate message digest for buffer 856 * @tfm: hash transformation object 857 * @data: see crypto_shash_update() 858 * @len: see crypto_shash_update() 859 * @out: see crypto_shash_final() 860 * 861 * This is a simplified version of crypto_shash_digest() for users who don't 862 * want to allocate their own hash descriptor (shash_desc). Instead, 863 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 864 * directly, and it allocates a hash descriptor on the stack internally. 865 * Note that this stack allocation may be fairly large. 866 * 867 * Context: Any context. 868 * Return: 0 on success; < 0 if an error occurred. 869 */ 870 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 871 unsigned int len, u8 *out); 872 873 /** 874 * crypto_shash_export() - extract operational state for message digest 875 * @desc: reference to the operational state handle whose state is exported 876 * @out: output buffer of sufficient size that can hold the hash state 877 * 878 * This function exports the hash state of the operational state handle into the 879 * caller-allocated output buffer out which must have sufficient size (e.g. by 880 * calling crypto_shash_descsize). 881 * 882 * Context: Any context. 883 * Return: 0 if the export creation was successful; < 0 if an error occurred 884 */ 885 int crypto_shash_export(struct shash_desc *desc, void *out); 886 887 /** 888 * crypto_shash_import() - import operational state 889 * @desc: reference to the operational state handle the state imported into 890 * @in: buffer holding the state 891 * 892 * This function imports the hash state into the operational state handle from 893 * the input buffer. That buffer should have been generated with the 894 * crypto_ahash_export function. 895 * 896 * Context: Any context. 897 * Return: 0 if the import was successful; < 0 if an error occurred 898 */ 899 int crypto_shash_import(struct shash_desc *desc, const void *in); 900 901 /** 902 * crypto_shash_init() - (re)initialize message digest 903 * @desc: operational state handle that is already filled 904 * 905 * The call (re-)initializes the message digest referenced by the 906 * operational state handle. Any potentially existing state created by 907 * previous operations is discarded. 908 * 909 * Context: Any context. 910 * Return: 0 if the message digest initialization was successful; < 0 if an 911 * error occurred 912 */ 913 static inline int crypto_shash_init(struct shash_desc *desc) 914 { 915 struct crypto_shash *tfm = desc->tfm; 916 917 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 918 return -ENOKEY; 919 920 return crypto_shash_alg(tfm)->init(desc); 921 } 922 923 /** 924 * crypto_shash_update() - add data to message digest for processing 925 * @desc: operational state handle that is already initialized 926 * @data: input data to be added to the message digest 927 * @len: length of the input data 928 * 929 * Updates the message digest state of the operational state handle. 930 * 931 * Context: Any context. 932 * Return: 0 if the message digest update was successful; < 0 if an error 933 * occurred 934 */ 935 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 936 unsigned int len); 937 938 /** 939 * crypto_shash_final() - calculate message digest 940 * @desc: operational state handle that is already filled with data 941 * @out: output buffer filled with the message digest 942 * 943 * Finalize the message digest operation and create the message digest 944 * based on all data added to the cipher handle. The message digest is placed 945 * into the output buffer. The caller must ensure that the output buffer is 946 * large enough by using crypto_shash_digestsize. 947 * 948 * Context: Any context. 949 * Return: 0 if the message digest creation was successful; < 0 if an error 950 * occurred 951 */ 952 int crypto_shash_final(struct shash_desc *desc, u8 *out); 953 954 /** 955 * crypto_shash_finup() - calculate message digest of buffer 956 * @desc: see crypto_shash_final() 957 * @data: see crypto_shash_update() 958 * @len: see crypto_shash_update() 959 * @out: see crypto_shash_final() 960 * 961 * This function is a "short-hand" for the function calls of 962 * crypto_shash_update and crypto_shash_final. The parameters have the same 963 * meaning as discussed for those separate functions. 964 * 965 * Context: Any context. 966 * Return: 0 if the message digest creation was successful; < 0 if an error 967 * occurred 968 */ 969 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 970 unsigned int len, u8 *out); 971 972 static inline void shash_desc_zero(struct shash_desc *desc) 973 { 974 memzero_explicit(desc, 975 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 976 } 977 978 #endif /* _CRYPTO_HASH_H */ 979