1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/atomic.h> 12 #include <linux/crypto.h> 13 #include <linux/string.h> 14 15 struct crypto_ahash; 16 17 /** 18 * DOC: Message Digest Algorithm Definitions 19 * 20 * These data structures define modular message digest algorithm 21 * implementations, managed via crypto_register_ahash(), 22 * crypto_register_shash(), crypto_unregister_ahash() and 23 * crypto_unregister_shash(). 24 */ 25 26 /* 27 * struct crypto_istat_hash - statistics for has algorithm 28 * @hash_cnt: number of hash requests 29 * @hash_tlen: total data size hashed 30 * @err_cnt: number of error for hash requests 31 */ 32 struct crypto_istat_hash { 33 atomic64_t hash_cnt; 34 atomic64_t hash_tlen; 35 atomic64_t err_cnt; 36 }; 37 38 #ifdef CONFIG_CRYPTO_STATS 39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat; 40 #else 41 #define HASH_ALG_COMMON_STAT 42 #endif 43 44 /** 45 * struct hash_alg_common - define properties of message digest 46 * @stat: Statistics for hash algorithm. 47 * @digestsize: Size of the result of the transformation. A buffer of this size 48 * must be available to the @final and @finup calls, so they can 49 * store the resulting hash into it. For various predefined sizes, 50 * search include/crypto/ using 51 * git grep _DIGEST_SIZE include/crypto. 52 * @statesize: Size of the block for partial state of the transformation. A 53 * buffer of this size must be passed to the @export function as it 54 * will save the partial state of the transformation into it. On the 55 * other side, the @import function will load the state from a 56 * buffer of this size as well. 57 * @base: Start of data structure of cipher algorithm. The common data 58 * structure of crypto_alg contains information common to all ciphers. 59 * The hash_alg_common data structure now adds the hash-specific 60 * information. 61 */ 62 #define HASH_ALG_COMMON { \ 63 HASH_ALG_COMMON_STAT \ 64 \ 65 unsigned int digestsize; \ 66 unsigned int statesize; \ 67 \ 68 struct crypto_alg base; \ 69 } 70 struct hash_alg_common HASH_ALG_COMMON; 71 72 struct ahash_request { 73 struct crypto_async_request base; 74 75 unsigned int nbytes; 76 struct scatterlist *src; 77 u8 *result; 78 79 /* This field may only be used by the ahash API code. */ 80 void *priv; 81 82 void *__ctx[] CRYPTO_MINALIGN_ATTR; 83 }; 84 85 /** 86 * struct ahash_alg - asynchronous message digest definition 87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 88 * state of the HASH transformation at the beginning. This shall fill in 89 * the internal structures used during the entire duration of the whole 90 * transformation. No data processing happens at this point. Driver code 91 * implementation must not use req->result. 92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 93 * function actually pushes blocks of data from upper layers into the 94 * driver, which then passes those to the hardware as seen fit. This 95 * function must not finalize the HASH transformation by calculating the 96 * final message digest as this only adds more data into the 97 * transformation. This function shall not modify the transformation 98 * context, as this function may be called in parallel with the same 99 * transformation object. Data processing can happen synchronously 100 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 101 * req->result. 102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 103 * transformation and retrieves the resulting hash from the driver and 104 * pushes it back to upper layers. No data processing happens at this 105 * point unless hardware requires it to finish the transformation 106 * (then the data buffered by the device driver is processed). 107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 108 * combination of @update and @final calls issued in sequence. As some 109 * hardware cannot do @update and @final separately, this callback was 110 * added to allow such hardware to be used at least by IPsec. Data 111 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 112 * at this point. 113 * @digest: Combination of @init and @update and @final. This function 114 * effectively behaves as the entire chain of operations, @init, 115 * @update and @final issued in sequence. Just like @finup, this was 116 * added for hardware which cannot do even the @finup, but can only do 117 * the whole transformation in one run. Data processing can happen 118 * synchronously [SHASH] or asynchronously [AHASH] at this point. 119 * @setkey: Set optional key used by the hashing algorithm. Intended to push 120 * optional key used by the hashing algorithm from upper layers into 121 * the driver. This function can store the key in the transformation 122 * context or can outright program it into the hardware. In the former 123 * case, one must be careful to program the key into the hardware at 124 * appropriate time and one must be careful that .setkey() can be 125 * called multiple times during the existence of the transformation 126 * object. Not all hashing algorithms do implement this function as it 127 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 128 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 129 * this function. This function must be called before any other of the 130 * @init, @update, @final, @finup, @digest is called. No data 131 * processing happens at this point. 132 * @export: Export partial state of the transformation. This function dumps the 133 * entire state of the ongoing transformation into a provided block of 134 * data so it can be @import 'ed back later on. This is useful in case 135 * you want to save partial result of the transformation after 136 * processing certain amount of data and reload this partial result 137 * multiple times later on for multiple re-use. No data processing 138 * happens at this point. Driver must not use req->result. 139 * @import: Import partial state of the transformation. This function loads the 140 * entire state of the ongoing transformation from a provided block of 141 * data so the transformation can continue from this point onward. No 142 * data processing happens at this point. Driver must not use 143 * req->result. 144 * @init_tfm: Initialize the cryptographic transformation object. 145 * This function is called only once at the instantiation 146 * time, right after the transformation context was 147 * allocated. In case the cryptographic hardware has 148 * some special requirements which need to be handled 149 * by software, this function shall check for the precise 150 * requirement of the transformation and put any software 151 * fallbacks in place. 152 * @exit_tfm: Deinitialize the cryptographic transformation object. 153 * This is a counterpart to @init_tfm, used to remove 154 * various changes set in @init_tfm. 155 * @halg: see struct hash_alg_common 156 */ 157 struct ahash_alg { 158 int (*init)(struct ahash_request *req); 159 int (*update)(struct ahash_request *req); 160 int (*final)(struct ahash_request *req); 161 int (*finup)(struct ahash_request *req); 162 int (*digest)(struct ahash_request *req); 163 int (*export)(struct ahash_request *req, void *out); 164 int (*import)(struct ahash_request *req, const void *in); 165 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 166 unsigned int keylen); 167 int (*init_tfm)(struct crypto_ahash *tfm); 168 void (*exit_tfm)(struct crypto_ahash *tfm); 169 170 struct hash_alg_common halg; 171 }; 172 173 struct shash_desc { 174 struct crypto_shash *tfm; 175 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 176 }; 177 178 #define HASH_MAX_DIGESTSIZE 64 179 180 /* 181 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' 182 * containing a 'struct sha3_state'. 183 */ 184 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 185 186 #define HASH_MAX_STATESIZE 512 187 188 #define SHASH_DESC_ON_STACK(shash, ctx) \ 189 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 190 __aligned(__alignof__(struct shash_desc)); \ 191 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 192 193 /** 194 * struct shash_alg - synchronous message digest definition 195 * @init: see struct ahash_alg 196 * @update: see struct ahash_alg 197 * @final: see struct ahash_alg 198 * @finup: see struct ahash_alg 199 * @digest: see struct ahash_alg 200 * @export: see struct ahash_alg 201 * @import: see struct ahash_alg 202 * @setkey: see struct ahash_alg 203 * @init_tfm: Initialize the cryptographic transformation object. 204 * This function is called only once at the instantiation 205 * time, right after the transformation context was 206 * allocated. In case the cryptographic hardware has 207 * some special requirements which need to be handled 208 * by software, this function shall check for the precise 209 * requirement of the transformation and put any software 210 * fallbacks in place. 211 * @exit_tfm: Deinitialize the cryptographic transformation object. 212 * This is a counterpart to @init_tfm, used to remove 213 * various changes set in @init_tfm. 214 * @digestsize: see struct ahash_alg 215 * @statesize: see struct ahash_alg 216 * @descsize: Size of the operational state for the message digest. This state 217 * size is the memory size that needs to be allocated for 218 * shash_desc.__ctx 219 * @stat: Statistics for hash algorithm. 220 * @base: internally used 221 * @halg: see struct hash_alg_common 222 */ 223 struct shash_alg { 224 int (*init)(struct shash_desc *desc); 225 int (*update)(struct shash_desc *desc, const u8 *data, 226 unsigned int len); 227 int (*final)(struct shash_desc *desc, u8 *out); 228 int (*finup)(struct shash_desc *desc, const u8 *data, 229 unsigned int len, u8 *out); 230 int (*digest)(struct shash_desc *desc, const u8 *data, 231 unsigned int len, u8 *out); 232 int (*export)(struct shash_desc *desc, void *out); 233 int (*import)(struct shash_desc *desc, const void *in); 234 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 235 unsigned int keylen); 236 int (*init_tfm)(struct crypto_shash *tfm); 237 void (*exit_tfm)(struct crypto_shash *tfm); 238 239 unsigned int descsize; 240 241 union { 242 struct HASH_ALG_COMMON; 243 struct hash_alg_common halg; 244 }; 245 }; 246 #undef HASH_ALG_COMMON 247 #undef HASH_ALG_COMMON_STAT 248 249 struct crypto_ahash { 250 int (*init)(struct ahash_request *req); 251 int (*update)(struct ahash_request *req); 252 int (*final)(struct ahash_request *req); 253 int (*finup)(struct ahash_request *req); 254 int (*digest)(struct ahash_request *req); 255 int (*export)(struct ahash_request *req, void *out); 256 int (*import)(struct ahash_request *req, const void *in); 257 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 258 unsigned int keylen); 259 260 unsigned int reqsize; 261 struct crypto_tfm base; 262 }; 263 264 struct crypto_shash { 265 unsigned int descsize; 266 struct crypto_tfm base; 267 }; 268 269 /** 270 * DOC: Asynchronous Message Digest API 271 * 272 * The asynchronous message digest API is used with the ciphers of type 273 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 274 * 275 * The asynchronous cipher operation discussion provided for the 276 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 277 */ 278 279 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 280 { 281 return container_of(tfm, struct crypto_ahash, base); 282 } 283 284 /** 285 * crypto_alloc_ahash() - allocate ahash cipher handle 286 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 287 * ahash cipher 288 * @type: specifies the type of the cipher 289 * @mask: specifies the mask for the cipher 290 * 291 * Allocate a cipher handle for an ahash. The returned struct 292 * crypto_ahash is the cipher handle that is required for any subsequent 293 * API invocation for that ahash. 294 * 295 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 296 * of an error, PTR_ERR() returns the error code. 297 */ 298 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 299 u32 mask); 300 301 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 302 { 303 return &tfm->base; 304 } 305 306 /** 307 * crypto_free_ahash() - zeroize and free the ahash handle 308 * @tfm: cipher handle to be freed 309 * 310 * If @tfm is a NULL or error pointer, this function does nothing. 311 */ 312 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 313 { 314 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 315 } 316 317 /** 318 * crypto_has_ahash() - Search for the availability of an ahash. 319 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 320 * ahash 321 * @type: specifies the type of the ahash 322 * @mask: specifies the mask for the ahash 323 * 324 * Return: true when the ahash is known to the kernel crypto API; false 325 * otherwise 326 */ 327 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 328 329 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 330 { 331 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 332 } 333 334 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 335 { 336 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 337 } 338 339 static inline unsigned int crypto_ahash_alignmask( 340 struct crypto_ahash *tfm) 341 { 342 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 343 } 344 345 /** 346 * crypto_ahash_blocksize() - obtain block size for cipher 347 * @tfm: cipher handle 348 * 349 * The block size for the message digest cipher referenced with the cipher 350 * handle is returned. 351 * 352 * Return: block size of cipher 353 */ 354 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 355 { 356 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 357 } 358 359 static inline struct hash_alg_common *__crypto_hash_alg_common( 360 struct crypto_alg *alg) 361 { 362 return container_of(alg, struct hash_alg_common, base); 363 } 364 365 static inline struct hash_alg_common *crypto_hash_alg_common( 366 struct crypto_ahash *tfm) 367 { 368 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 369 } 370 371 /** 372 * crypto_ahash_digestsize() - obtain message digest size 373 * @tfm: cipher handle 374 * 375 * The size for the message digest created by the message digest cipher 376 * referenced with the cipher handle is returned. 377 * 378 * 379 * Return: message digest size of cipher 380 */ 381 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 382 { 383 return crypto_hash_alg_common(tfm)->digestsize; 384 } 385 386 /** 387 * crypto_ahash_statesize() - obtain size of the ahash state 388 * @tfm: cipher handle 389 * 390 * Return the size of the ahash state. With the crypto_ahash_export() 391 * function, the caller can export the state into a buffer whose size is 392 * defined with this function. 393 * 394 * Return: size of the ahash state 395 */ 396 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 397 { 398 return crypto_hash_alg_common(tfm)->statesize; 399 } 400 401 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 402 { 403 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 404 } 405 406 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 407 { 408 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 409 } 410 411 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 412 { 413 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 414 } 415 416 /** 417 * crypto_ahash_reqtfm() - obtain cipher handle from request 418 * @req: asynchronous request handle that contains the reference to the ahash 419 * cipher handle 420 * 421 * Return the ahash cipher handle that is registered with the asynchronous 422 * request handle ahash_request. 423 * 424 * Return: ahash cipher handle 425 */ 426 static inline struct crypto_ahash *crypto_ahash_reqtfm( 427 struct ahash_request *req) 428 { 429 return __crypto_ahash_cast(req->base.tfm); 430 } 431 432 /** 433 * crypto_ahash_reqsize() - obtain size of the request data structure 434 * @tfm: cipher handle 435 * 436 * Return: size of the request data 437 */ 438 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 439 { 440 return tfm->reqsize; 441 } 442 443 static inline void *ahash_request_ctx(struct ahash_request *req) 444 { 445 return req->__ctx; 446 } 447 448 /** 449 * crypto_ahash_setkey - set key for cipher handle 450 * @tfm: cipher handle 451 * @key: buffer holding the key 452 * @keylen: length of the key in bytes 453 * 454 * The caller provided key is set for the ahash cipher. The cipher 455 * handle must point to a keyed hash in order for this function to succeed. 456 * 457 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 458 */ 459 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 460 unsigned int keylen); 461 462 /** 463 * crypto_ahash_finup() - update and finalize message digest 464 * @req: reference to the ahash_request handle that holds all information 465 * needed to perform the cipher operation 466 * 467 * This function is a "short-hand" for the function calls of 468 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 469 * meaning as discussed for those separate functions. 470 * 471 * Return: see crypto_ahash_final() 472 */ 473 int crypto_ahash_finup(struct ahash_request *req); 474 475 /** 476 * crypto_ahash_final() - calculate message digest 477 * @req: reference to the ahash_request handle that holds all information 478 * needed to perform the cipher operation 479 * 480 * Finalize the message digest operation and create the message digest 481 * based on all data added to the cipher handle. The message digest is placed 482 * into the output buffer registered with the ahash_request handle. 483 * 484 * Return: 485 * 0 if the message digest was successfully calculated; 486 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 487 * -EBUSY if queue is full and request should be resubmitted later; 488 * other < 0 if an error occurred 489 */ 490 int crypto_ahash_final(struct ahash_request *req); 491 492 /** 493 * crypto_ahash_digest() - calculate message digest for a buffer 494 * @req: reference to the ahash_request handle that holds all information 495 * needed to perform the cipher operation 496 * 497 * This function is a "short-hand" for the function calls of crypto_ahash_init, 498 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 499 * meaning as discussed for those separate three functions. 500 * 501 * Return: see crypto_ahash_final() 502 */ 503 int crypto_ahash_digest(struct ahash_request *req); 504 505 /** 506 * crypto_ahash_export() - extract current message digest state 507 * @req: reference to the ahash_request handle whose state is exported 508 * @out: output buffer of sufficient size that can hold the hash state 509 * 510 * This function exports the hash state of the ahash_request handle into the 511 * caller-allocated output buffer out which must have sufficient size (e.g. by 512 * calling crypto_ahash_statesize()). 513 * 514 * Return: 0 if the export was successful; < 0 if an error occurred 515 */ 516 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 517 { 518 return crypto_ahash_reqtfm(req)->export(req, out); 519 } 520 521 /** 522 * crypto_ahash_import() - import message digest state 523 * @req: reference to ahash_request handle the state is imported into 524 * @in: buffer holding the state 525 * 526 * This function imports the hash state into the ahash_request handle from the 527 * input buffer. That buffer should have been generated with the 528 * crypto_ahash_export function. 529 * 530 * Return: 0 if the import was successful; < 0 if an error occurred 531 */ 532 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 533 { 534 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 535 536 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 537 return -ENOKEY; 538 539 return tfm->import(req, in); 540 } 541 542 /** 543 * crypto_ahash_init() - (re)initialize message digest handle 544 * @req: ahash_request handle that already is initialized with all necessary 545 * data using the ahash_request_* API functions 546 * 547 * The call (re-)initializes the message digest referenced by the ahash_request 548 * handle. Any potentially existing state created by previous operations is 549 * discarded. 550 * 551 * Return: see crypto_ahash_final() 552 */ 553 static inline int crypto_ahash_init(struct ahash_request *req) 554 { 555 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 556 557 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 558 return -ENOKEY; 559 560 return tfm->init(req); 561 } 562 563 static inline struct crypto_istat_hash *hash_get_stat( 564 struct hash_alg_common *alg) 565 { 566 #ifdef CONFIG_CRYPTO_STATS 567 return &alg->stat; 568 #else 569 return NULL; 570 #endif 571 } 572 573 static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err) 574 { 575 if (!IS_ENABLED(CONFIG_CRYPTO_STATS)) 576 return err; 577 578 if (err && err != -EINPROGRESS && err != -EBUSY) 579 atomic64_inc(&hash_get_stat(alg)->err_cnt); 580 581 return err; 582 } 583 584 /** 585 * crypto_ahash_update() - add data to message digest for processing 586 * @req: ahash_request handle that was previously initialized with the 587 * crypto_ahash_init call. 588 * 589 * Updates the message digest state of the &ahash_request handle. The input data 590 * is pointed to by the scatter/gather list registered in the &ahash_request 591 * handle 592 * 593 * Return: see crypto_ahash_final() 594 */ 595 static inline int crypto_ahash_update(struct ahash_request *req) 596 { 597 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 598 struct hash_alg_common *alg = crypto_hash_alg_common(tfm); 599 600 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) 601 atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen); 602 603 return crypto_hash_errstat(alg, tfm->update(req)); 604 } 605 606 /** 607 * DOC: Asynchronous Hash Request Handle 608 * 609 * The &ahash_request data structure contains all pointers to data 610 * required for the asynchronous cipher operation. This includes the cipher 611 * handle (which can be used by multiple &ahash_request instances), pointer 612 * to plaintext and the message digest output buffer, asynchronous callback 613 * function, etc. It acts as a handle to the ahash_request_* API calls in a 614 * similar way as ahash handle to the crypto_ahash_* API calls. 615 */ 616 617 /** 618 * ahash_request_set_tfm() - update cipher handle reference in request 619 * @req: request handle to be modified 620 * @tfm: cipher handle that shall be added to the request handle 621 * 622 * Allow the caller to replace the existing ahash handle in the request 623 * data structure with a different one. 624 */ 625 static inline void ahash_request_set_tfm(struct ahash_request *req, 626 struct crypto_ahash *tfm) 627 { 628 req->base.tfm = crypto_ahash_tfm(tfm); 629 } 630 631 /** 632 * ahash_request_alloc() - allocate request data structure 633 * @tfm: cipher handle to be registered with the request 634 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 635 * 636 * Allocate the request data structure that must be used with the ahash 637 * message digest API calls. During 638 * the allocation, the provided ahash handle 639 * is registered in the request data structure. 640 * 641 * Return: allocated request handle in case of success, or NULL if out of memory 642 */ 643 static inline struct ahash_request *ahash_request_alloc( 644 struct crypto_ahash *tfm, gfp_t gfp) 645 { 646 struct ahash_request *req; 647 648 req = kmalloc(sizeof(struct ahash_request) + 649 crypto_ahash_reqsize(tfm), gfp); 650 651 if (likely(req)) 652 ahash_request_set_tfm(req, tfm); 653 654 return req; 655 } 656 657 /** 658 * ahash_request_free() - zeroize and free the request data structure 659 * @req: request data structure cipher handle to be freed 660 */ 661 static inline void ahash_request_free(struct ahash_request *req) 662 { 663 kfree_sensitive(req); 664 } 665 666 static inline void ahash_request_zero(struct ahash_request *req) 667 { 668 memzero_explicit(req, sizeof(*req) + 669 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 670 } 671 672 static inline struct ahash_request *ahash_request_cast( 673 struct crypto_async_request *req) 674 { 675 return container_of(req, struct ahash_request, base); 676 } 677 678 /** 679 * ahash_request_set_callback() - set asynchronous callback function 680 * @req: request handle 681 * @flags: specify zero or an ORing of the flags 682 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 683 * increase the wait queue beyond the initial maximum size; 684 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 685 * @compl: callback function pointer to be registered with the request handle 686 * @data: The data pointer refers to memory that is not used by the kernel 687 * crypto API, but provided to the callback function for it to use. Here, 688 * the caller can provide a reference to memory the callback function can 689 * operate on. As the callback function is invoked asynchronously to the 690 * related functionality, it may need to access data structures of the 691 * related functionality which can be referenced using this pointer. The 692 * callback function can access the memory via the "data" field in the 693 * &crypto_async_request data structure provided to the callback function. 694 * 695 * This function allows setting the callback function that is triggered once 696 * the cipher operation completes. 697 * 698 * The callback function is registered with the &ahash_request handle and 699 * must comply with the following template:: 700 * 701 * void callback_function(struct crypto_async_request *req, int error) 702 */ 703 static inline void ahash_request_set_callback(struct ahash_request *req, 704 u32 flags, 705 crypto_completion_t compl, 706 void *data) 707 { 708 req->base.complete = compl; 709 req->base.data = data; 710 req->base.flags = flags; 711 } 712 713 /** 714 * ahash_request_set_crypt() - set data buffers 715 * @req: ahash_request handle to be updated 716 * @src: source scatter/gather list 717 * @result: buffer that is filled with the message digest -- the caller must 718 * ensure that the buffer has sufficient space by, for example, calling 719 * crypto_ahash_digestsize() 720 * @nbytes: number of bytes to process from the source scatter/gather list 721 * 722 * By using this call, the caller references the source scatter/gather list. 723 * The source scatter/gather list points to the data the message digest is to 724 * be calculated for. 725 */ 726 static inline void ahash_request_set_crypt(struct ahash_request *req, 727 struct scatterlist *src, u8 *result, 728 unsigned int nbytes) 729 { 730 req->src = src; 731 req->nbytes = nbytes; 732 req->result = result; 733 } 734 735 /** 736 * DOC: Synchronous Message Digest API 737 * 738 * The synchronous message digest API is used with the ciphers of type 739 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 740 * 741 * The message digest API is able to maintain state information for the 742 * caller. 743 * 744 * The synchronous message digest API can store user-related context in its 745 * shash_desc request data structure. 746 */ 747 748 /** 749 * crypto_alloc_shash() - allocate message digest handle 750 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 751 * message digest cipher 752 * @type: specifies the type of the cipher 753 * @mask: specifies the mask for the cipher 754 * 755 * Allocate a cipher handle for a message digest. The returned &struct 756 * crypto_shash is the cipher handle that is required for any subsequent 757 * API invocation for that message digest. 758 * 759 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 760 * of an error, PTR_ERR() returns the error code. 761 */ 762 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 763 u32 mask); 764 765 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 766 767 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 768 { 769 return &tfm->base; 770 } 771 772 /** 773 * crypto_free_shash() - zeroize and free the message digest handle 774 * @tfm: cipher handle to be freed 775 * 776 * If @tfm is a NULL or error pointer, this function does nothing. 777 */ 778 static inline void crypto_free_shash(struct crypto_shash *tfm) 779 { 780 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 781 } 782 783 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 784 { 785 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 786 } 787 788 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 789 { 790 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 791 } 792 793 static inline unsigned int crypto_shash_alignmask( 794 struct crypto_shash *tfm) 795 { 796 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 797 } 798 799 /** 800 * crypto_shash_blocksize() - obtain block size for cipher 801 * @tfm: cipher handle 802 * 803 * The block size for the message digest cipher referenced with the cipher 804 * handle is returned. 805 * 806 * Return: block size of cipher 807 */ 808 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 809 { 810 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 811 } 812 813 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 814 { 815 return container_of(alg, struct shash_alg, base); 816 } 817 818 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 819 { 820 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 821 } 822 823 /** 824 * crypto_shash_digestsize() - obtain message digest size 825 * @tfm: cipher handle 826 * 827 * The size for the message digest created by the message digest cipher 828 * referenced with the cipher handle is returned. 829 * 830 * Return: digest size of cipher 831 */ 832 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 833 { 834 return crypto_shash_alg(tfm)->digestsize; 835 } 836 837 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 838 { 839 return crypto_shash_alg(tfm)->statesize; 840 } 841 842 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 843 { 844 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 845 } 846 847 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 848 { 849 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 850 } 851 852 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 853 { 854 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 855 } 856 857 /** 858 * crypto_shash_descsize() - obtain the operational state size 859 * @tfm: cipher handle 860 * 861 * The size of the operational state the cipher needs during operation is 862 * returned for the hash referenced with the cipher handle. This size is 863 * required to calculate the memory requirements to allow the caller allocating 864 * sufficient memory for operational state. 865 * 866 * The operational state is defined with struct shash_desc where the size of 867 * that data structure is to be calculated as 868 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 869 * 870 * Return: size of the operational state 871 */ 872 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 873 { 874 return tfm->descsize; 875 } 876 877 static inline void *shash_desc_ctx(struct shash_desc *desc) 878 { 879 return desc->__ctx; 880 } 881 882 /** 883 * crypto_shash_setkey() - set key for message digest 884 * @tfm: cipher handle 885 * @key: buffer holding the key 886 * @keylen: length of the key in bytes 887 * 888 * The caller provided key is set for the keyed message digest cipher. The 889 * cipher handle must point to a keyed message digest cipher in order for this 890 * function to succeed. 891 * 892 * Context: Any context. 893 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 894 */ 895 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 896 unsigned int keylen); 897 898 /** 899 * crypto_shash_digest() - calculate message digest for buffer 900 * @desc: see crypto_shash_final() 901 * @data: see crypto_shash_update() 902 * @len: see crypto_shash_update() 903 * @out: see crypto_shash_final() 904 * 905 * This function is a "short-hand" for the function calls of crypto_shash_init, 906 * crypto_shash_update and crypto_shash_final. The parameters have the same 907 * meaning as discussed for those separate three functions. 908 * 909 * Context: Any context. 910 * Return: 0 if the message digest creation was successful; < 0 if an error 911 * occurred 912 */ 913 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 914 unsigned int len, u8 *out); 915 916 /** 917 * crypto_shash_tfm_digest() - calculate message digest for buffer 918 * @tfm: hash transformation object 919 * @data: see crypto_shash_update() 920 * @len: see crypto_shash_update() 921 * @out: see crypto_shash_final() 922 * 923 * This is a simplified version of crypto_shash_digest() for users who don't 924 * want to allocate their own hash descriptor (shash_desc). Instead, 925 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 926 * directly, and it allocates a hash descriptor on the stack internally. 927 * Note that this stack allocation may be fairly large. 928 * 929 * Context: Any context. 930 * Return: 0 on success; < 0 if an error occurred. 931 */ 932 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 933 unsigned int len, u8 *out); 934 935 /** 936 * crypto_shash_export() - extract operational state for message digest 937 * @desc: reference to the operational state handle whose state is exported 938 * @out: output buffer of sufficient size that can hold the hash state 939 * 940 * This function exports the hash state of the operational state handle into the 941 * caller-allocated output buffer out which must have sufficient size (e.g. by 942 * calling crypto_shash_descsize). 943 * 944 * Context: Any context. 945 * Return: 0 if the export creation was successful; < 0 if an error occurred 946 */ 947 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 948 { 949 return crypto_shash_alg(desc->tfm)->export(desc, out); 950 } 951 952 /** 953 * crypto_shash_import() - import operational state 954 * @desc: reference to the operational state handle the state imported into 955 * @in: buffer holding the state 956 * 957 * This function imports the hash state into the operational state handle from 958 * the input buffer. That buffer should have been generated with the 959 * crypto_ahash_export function. 960 * 961 * Context: Any context. 962 * Return: 0 if the import was successful; < 0 if an error occurred 963 */ 964 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 965 { 966 struct crypto_shash *tfm = desc->tfm; 967 968 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 969 return -ENOKEY; 970 971 return crypto_shash_alg(tfm)->import(desc, in); 972 } 973 974 /** 975 * crypto_shash_init() - (re)initialize message digest 976 * @desc: operational state handle that is already filled 977 * 978 * The call (re-)initializes the message digest referenced by the 979 * operational state handle. Any potentially existing state created by 980 * previous operations is discarded. 981 * 982 * Context: Any context. 983 * Return: 0 if the message digest initialization was successful; < 0 if an 984 * error occurred 985 */ 986 static inline int crypto_shash_init(struct shash_desc *desc) 987 { 988 struct crypto_shash *tfm = desc->tfm; 989 990 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 991 return -ENOKEY; 992 993 return crypto_shash_alg(tfm)->init(desc); 994 } 995 996 /** 997 * crypto_shash_update() - add data to message digest for processing 998 * @desc: operational state handle that is already initialized 999 * @data: input data to be added to the message digest 1000 * @len: length of the input data 1001 * 1002 * Updates the message digest state of the operational state handle. 1003 * 1004 * Context: Any context. 1005 * Return: 0 if the message digest update was successful; < 0 if an error 1006 * occurred 1007 */ 1008 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 1009 unsigned int len); 1010 1011 /** 1012 * crypto_shash_final() - calculate message digest 1013 * @desc: operational state handle that is already filled with data 1014 * @out: output buffer filled with the message digest 1015 * 1016 * Finalize the message digest operation and create the message digest 1017 * based on all data added to the cipher handle. The message digest is placed 1018 * into the output buffer. The caller must ensure that the output buffer is 1019 * large enough by using crypto_shash_digestsize. 1020 * 1021 * Context: Any context. 1022 * Return: 0 if the message digest creation was successful; < 0 if an error 1023 * occurred 1024 */ 1025 int crypto_shash_final(struct shash_desc *desc, u8 *out); 1026 1027 /** 1028 * crypto_shash_finup() - calculate message digest of buffer 1029 * @desc: see crypto_shash_final() 1030 * @data: see crypto_shash_update() 1031 * @len: see crypto_shash_update() 1032 * @out: see crypto_shash_final() 1033 * 1034 * This function is a "short-hand" for the function calls of 1035 * crypto_shash_update and crypto_shash_final. The parameters have the same 1036 * meaning as discussed for those separate functions. 1037 * 1038 * Context: Any context. 1039 * Return: 0 if the message digest creation was successful; < 0 if an error 1040 * occurred 1041 */ 1042 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 1043 unsigned int len, u8 *out); 1044 1045 static inline void shash_desc_zero(struct shash_desc *desc) 1046 { 1047 memzero_explicit(desc, 1048 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 1049 } 1050 1051 #endif /* _CRYPTO_HASH_H */ 1052