1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Hash: Hash algorithms under the crypto API 4 * 5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_HASH_H 9 #define _CRYPTO_HASH_H 10 11 #include <linux/atomic.h> 12 #include <linux/crypto.h> 13 #include <linux/string.h> 14 15 struct crypto_ahash; 16 17 /** 18 * DOC: Message Digest Algorithm Definitions 19 * 20 * These data structures define modular message digest algorithm 21 * implementations, managed via crypto_register_ahash(), 22 * crypto_register_shash(), crypto_unregister_ahash() and 23 * crypto_unregister_shash(). 24 */ 25 26 /* 27 * struct crypto_istat_hash - statistics for has algorithm 28 * @hash_cnt: number of hash requests 29 * @hash_tlen: total data size hashed 30 * @err_cnt: number of error for hash requests 31 */ 32 struct crypto_istat_hash { 33 atomic64_t hash_cnt; 34 atomic64_t hash_tlen; 35 atomic64_t err_cnt; 36 }; 37 38 #ifdef CONFIG_CRYPTO_STATS 39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat; 40 #else 41 #define HASH_ALG_COMMON_STAT 42 #endif 43 44 /* 45 * struct hash_alg_common - define properties of message digest 46 * @stat: Statistics for hash algorithm. 47 * @digestsize: Size of the result of the transformation. A buffer of this size 48 * must be available to the @final and @finup calls, so they can 49 * store the resulting hash into it. For various predefined sizes, 50 * search include/crypto/ using 51 * git grep _DIGEST_SIZE include/crypto. 52 * @statesize: Size of the block for partial state of the transformation. A 53 * buffer of this size must be passed to the @export function as it 54 * will save the partial state of the transformation into it. On the 55 * other side, the @import function will load the state from a 56 * buffer of this size as well. 57 * @base: Start of data structure of cipher algorithm. The common data 58 * structure of crypto_alg contains information common to all ciphers. 59 * The hash_alg_common data structure now adds the hash-specific 60 * information. 61 */ 62 #define HASH_ALG_COMMON { \ 63 HASH_ALG_COMMON_STAT \ 64 \ 65 unsigned int digestsize; \ 66 unsigned int statesize; \ 67 \ 68 struct crypto_alg base; \ 69 } 70 struct hash_alg_common HASH_ALG_COMMON; 71 72 struct ahash_request { 73 struct crypto_async_request base; 74 75 unsigned int nbytes; 76 struct scatterlist *src; 77 u8 *result; 78 79 /* This field may only be used by the ahash API code. */ 80 void *priv; 81 82 void *__ctx[] CRYPTO_MINALIGN_ATTR; 83 }; 84 85 /** 86 * struct ahash_alg - asynchronous message digest definition 87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the 88 * state of the HASH transformation at the beginning. This shall fill in 89 * the internal structures used during the entire duration of the whole 90 * transformation. No data processing happens at this point. Driver code 91 * implementation must not use req->result. 92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This 93 * function actually pushes blocks of data from upper layers into the 94 * driver, which then passes those to the hardware as seen fit. This 95 * function must not finalize the HASH transformation by calculating the 96 * final message digest as this only adds more data into the 97 * transformation. This function shall not modify the transformation 98 * context, as this function may be called in parallel with the same 99 * transformation object. Data processing can happen synchronously 100 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use 101 * req->result. 102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the 103 * transformation and retrieves the resulting hash from the driver and 104 * pushes it back to upper layers. No data processing happens at this 105 * point unless hardware requires it to finish the transformation 106 * (then the data buffered by the device driver is processed). 107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a 108 * combination of @update and @final calls issued in sequence. As some 109 * hardware cannot do @update and @final separately, this callback was 110 * added to allow such hardware to be used at least by IPsec. Data 111 * processing can happen synchronously [SHASH] or asynchronously [AHASH] 112 * at this point. 113 * @digest: Combination of @init and @update and @final. This function 114 * effectively behaves as the entire chain of operations, @init, 115 * @update and @final issued in sequence. Just like @finup, this was 116 * added for hardware which cannot do even the @finup, but can only do 117 * the whole transformation in one run. Data processing can happen 118 * synchronously [SHASH] or asynchronously [AHASH] at this point. 119 * @setkey: Set optional key used by the hashing algorithm. Intended to push 120 * optional key used by the hashing algorithm from upper layers into 121 * the driver. This function can store the key in the transformation 122 * context or can outright program it into the hardware. In the former 123 * case, one must be careful to program the key into the hardware at 124 * appropriate time and one must be careful that .setkey() can be 125 * called multiple times during the existence of the transformation 126 * object. Not all hashing algorithms do implement this function as it 127 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT 128 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement 129 * this function. This function must be called before any other of the 130 * @init, @update, @final, @finup, @digest is called. No data 131 * processing happens at this point. 132 * @export: Export partial state of the transformation. This function dumps the 133 * entire state of the ongoing transformation into a provided block of 134 * data so it can be @import 'ed back later on. This is useful in case 135 * you want to save partial result of the transformation after 136 * processing certain amount of data and reload this partial result 137 * multiple times later on for multiple re-use. No data processing 138 * happens at this point. Driver must not use req->result. 139 * @import: Import partial state of the transformation. This function loads the 140 * entire state of the ongoing transformation from a provided block of 141 * data so the transformation can continue from this point onward. No 142 * data processing happens at this point. Driver must not use 143 * req->result. 144 * @init_tfm: Initialize the cryptographic transformation object. 145 * This function is called only once at the instantiation 146 * time, right after the transformation context was 147 * allocated. In case the cryptographic hardware has 148 * some special requirements which need to be handled 149 * by software, this function shall check for the precise 150 * requirement of the transformation and put any software 151 * fallbacks in place. 152 * @exit_tfm: Deinitialize the cryptographic transformation object. 153 * This is a counterpart to @init_tfm, used to remove 154 * various changes set in @init_tfm. 155 * @clone_tfm: Copy transform into new object, may allocate memory. 156 * @halg: see struct hash_alg_common 157 */ 158 struct ahash_alg { 159 int (*init)(struct ahash_request *req); 160 int (*update)(struct ahash_request *req); 161 int (*final)(struct ahash_request *req); 162 int (*finup)(struct ahash_request *req); 163 int (*digest)(struct ahash_request *req); 164 int (*export)(struct ahash_request *req, void *out); 165 int (*import)(struct ahash_request *req, const void *in); 166 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 167 unsigned int keylen); 168 int (*init_tfm)(struct crypto_ahash *tfm); 169 void (*exit_tfm)(struct crypto_ahash *tfm); 170 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src); 171 172 struct hash_alg_common halg; 173 }; 174 175 struct shash_desc { 176 struct crypto_shash *tfm; 177 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); 178 }; 179 180 #define HASH_MAX_DIGESTSIZE 64 181 182 /* 183 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' 184 * containing a 'struct sha3_state'. 185 */ 186 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) 187 188 #define SHASH_DESC_ON_STACK(shash, ctx) \ 189 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ 190 __aligned(__alignof__(struct shash_desc)); \ 191 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc 192 193 /** 194 * struct shash_alg - synchronous message digest definition 195 * @init: see struct ahash_alg 196 * @update: see struct ahash_alg 197 * @final: see struct ahash_alg 198 * @finup: see struct ahash_alg 199 * @digest: see struct ahash_alg 200 * @export: see struct ahash_alg 201 * @import: see struct ahash_alg 202 * @setkey: see struct ahash_alg 203 * @init_tfm: Initialize the cryptographic transformation object. 204 * This function is called only once at the instantiation 205 * time, right after the transformation context was 206 * allocated. In case the cryptographic hardware has 207 * some special requirements which need to be handled 208 * by software, this function shall check for the precise 209 * requirement of the transformation and put any software 210 * fallbacks in place. 211 * @exit_tfm: Deinitialize the cryptographic transformation object. 212 * This is a counterpart to @init_tfm, used to remove 213 * various changes set in @init_tfm. 214 * @clone_tfm: Copy transform into new object, may allocate memory. 215 * @digestsize: see struct ahash_alg 216 * @statesize: see struct ahash_alg 217 * @descsize: Size of the operational state for the message digest. This state 218 * size is the memory size that needs to be allocated for 219 * shash_desc.__ctx 220 * @stat: Statistics for hash algorithm. 221 * @base: internally used 222 * @halg: see struct hash_alg_common 223 * @HASH_ALG_COMMON: see struct hash_alg_common 224 */ 225 struct shash_alg { 226 int (*init)(struct shash_desc *desc); 227 int (*update)(struct shash_desc *desc, const u8 *data, 228 unsigned int len); 229 int (*final)(struct shash_desc *desc, u8 *out); 230 int (*finup)(struct shash_desc *desc, const u8 *data, 231 unsigned int len, u8 *out); 232 int (*digest)(struct shash_desc *desc, const u8 *data, 233 unsigned int len, u8 *out); 234 int (*export)(struct shash_desc *desc, void *out); 235 int (*import)(struct shash_desc *desc, const void *in); 236 int (*setkey)(struct crypto_shash *tfm, const u8 *key, 237 unsigned int keylen); 238 int (*init_tfm)(struct crypto_shash *tfm); 239 void (*exit_tfm)(struct crypto_shash *tfm); 240 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src); 241 242 unsigned int descsize; 243 244 union { 245 struct HASH_ALG_COMMON; 246 struct hash_alg_common halg; 247 }; 248 }; 249 #undef HASH_ALG_COMMON 250 #undef HASH_ALG_COMMON_STAT 251 252 struct crypto_ahash { 253 int (*init)(struct ahash_request *req); 254 int (*update)(struct ahash_request *req); 255 int (*final)(struct ahash_request *req); 256 int (*finup)(struct ahash_request *req); 257 int (*digest)(struct ahash_request *req); 258 int (*export)(struct ahash_request *req, void *out); 259 int (*import)(struct ahash_request *req, const void *in); 260 int (*setkey)(struct crypto_ahash *tfm, const u8 *key, 261 unsigned int keylen); 262 263 unsigned int reqsize; 264 struct crypto_tfm base; 265 }; 266 267 struct crypto_shash { 268 unsigned int descsize; 269 struct crypto_tfm base; 270 }; 271 272 /** 273 * DOC: Asynchronous Message Digest API 274 * 275 * The asynchronous message digest API is used with the ciphers of type 276 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) 277 * 278 * The asynchronous cipher operation discussion provided for the 279 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. 280 */ 281 282 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) 283 { 284 return container_of(tfm, struct crypto_ahash, base); 285 } 286 287 /** 288 * crypto_alloc_ahash() - allocate ahash cipher handle 289 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 290 * ahash cipher 291 * @type: specifies the type of the cipher 292 * @mask: specifies the mask for the cipher 293 * 294 * Allocate a cipher handle for an ahash. The returned struct 295 * crypto_ahash is the cipher handle that is required for any subsequent 296 * API invocation for that ahash. 297 * 298 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 299 * of an error, PTR_ERR() returns the error code. 300 */ 301 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, 302 u32 mask); 303 304 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm); 305 306 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) 307 { 308 return &tfm->base; 309 } 310 311 /** 312 * crypto_free_ahash() - zeroize and free the ahash handle 313 * @tfm: cipher handle to be freed 314 * 315 * If @tfm is a NULL or error pointer, this function does nothing. 316 */ 317 static inline void crypto_free_ahash(struct crypto_ahash *tfm) 318 { 319 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); 320 } 321 322 /** 323 * crypto_has_ahash() - Search for the availability of an ahash. 324 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 325 * ahash 326 * @type: specifies the type of the ahash 327 * @mask: specifies the mask for the ahash 328 * 329 * Return: true when the ahash is known to the kernel crypto API; false 330 * otherwise 331 */ 332 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); 333 334 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) 335 { 336 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 337 } 338 339 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) 340 { 341 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); 342 } 343 344 static inline unsigned int crypto_ahash_alignmask( 345 struct crypto_ahash *tfm) 346 { 347 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); 348 } 349 350 /** 351 * crypto_ahash_blocksize() - obtain block size for cipher 352 * @tfm: cipher handle 353 * 354 * The block size for the message digest cipher referenced with the cipher 355 * handle is returned. 356 * 357 * Return: block size of cipher 358 */ 359 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) 360 { 361 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 362 } 363 364 static inline struct hash_alg_common *__crypto_hash_alg_common( 365 struct crypto_alg *alg) 366 { 367 return container_of(alg, struct hash_alg_common, base); 368 } 369 370 static inline struct hash_alg_common *crypto_hash_alg_common( 371 struct crypto_ahash *tfm) 372 { 373 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); 374 } 375 376 /** 377 * crypto_ahash_digestsize() - obtain message digest size 378 * @tfm: cipher handle 379 * 380 * The size for the message digest created by the message digest cipher 381 * referenced with the cipher handle is returned. 382 * 383 * 384 * Return: message digest size of cipher 385 */ 386 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) 387 { 388 return crypto_hash_alg_common(tfm)->digestsize; 389 } 390 391 /** 392 * crypto_ahash_statesize() - obtain size of the ahash state 393 * @tfm: cipher handle 394 * 395 * Return the size of the ahash state. With the crypto_ahash_export() 396 * function, the caller can export the state into a buffer whose size is 397 * defined with this function. 398 * 399 * Return: size of the ahash state 400 */ 401 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) 402 { 403 return crypto_hash_alg_common(tfm)->statesize; 404 } 405 406 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) 407 { 408 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); 409 } 410 411 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) 412 { 413 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); 414 } 415 416 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) 417 { 418 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); 419 } 420 421 /** 422 * crypto_ahash_reqtfm() - obtain cipher handle from request 423 * @req: asynchronous request handle that contains the reference to the ahash 424 * cipher handle 425 * 426 * Return the ahash cipher handle that is registered with the asynchronous 427 * request handle ahash_request. 428 * 429 * Return: ahash cipher handle 430 */ 431 static inline struct crypto_ahash *crypto_ahash_reqtfm( 432 struct ahash_request *req) 433 { 434 return __crypto_ahash_cast(req->base.tfm); 435 } 436 437 /** 438 * crypto_ahash_reqsize() - obtain size of the request data structure 439 * @tfm: cipher handle 440 * 441 * Return: size of the request data 442 */ 443 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) 444 { 445 return tfm->reqsize; 446 } 447 448 static inline void *ahash_request_ctx(struct ahash_request *req) 449 { 450 return req->__ctx; 451 } 452 453 /** 454 * crypto_ahash_setkey - set key for cipher handle 455 * @tfm: cipher handle 456 * @key: buffer holding the key 457 * @keylen: length of the key in bytes 458 * 459 * The caller provided key is set for the ahash cipher. The cipher 460 * handle must point to a keyed hash in order for this function to succeed. 461 * 462 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 463 */ 464 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, 465 unsigned int keylen); 466 467 /** 468 * crypto_ahash_finup() - update and finalize message digest 469 * @req: reference to the ahash_request handle that holds all information 470 * needed to perform the cipher operation 471 * 472 * This function is a "short-hand" for the function calls of 473 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 474 * meaning as discussed for those separate functions. 475 * 476 * Return: see crypto_ahash_final() 477 */ 478 int crypto_ahash_finup(struct ahash_request *req); 479 480 /** 481 * crypto_ahash_final() - calculate message digest 482 * @req: reference to the ahash_request handle that holds all information 483 * needed to perform the cipher operation 484 * 485 * Finalize the message digest operation and create the message digest 486 * based on all data added to the cipher handle. The message digest is placed 487 * into the output buffer registered with the ahash_request handle. 488 * 489 * Return: 490 * 0 if the message digest was successfully calculated; 491 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later; 492 * -EBUSY if queue is full and request should be resubmitted later; 493 * other < 0 if an error occurred 494 */ 495 int crypto_ahash_final(struct ahash_request *req); 496 497 /** 498 * crypto_ahash_digest() - calculate message digest for a buffer 499 * @req: reference to the ahash_request handle that holds all information 500 * needed to perform the cipher operation 501 * 502 * This function is a "short-hand" for the function calls of crypto_ahash_init, 503 * crypto_ahash_update and crypto_ahash_final. The parameters have the same 504 * meaning as discussed for those separate three functions. 505 * 506 * Return: see crypto_ahash_final() 507 */ 508 int crypto_ahash_digest(struct ahash_request *req); 509 510 /** 511 * crypto_ahash_export() - extract current message digest state 512 * @req: reference to the ahash_request handle whose state is exported 513 * @out: output buffer of sufficient size that can hold the hash state 514 * 515 * This function exports the hash state of the ahash_request handle into the 516 * caller-allocated output buffer out which must have sufficient size (e.g. by 517 * calling crypto_ahash_statesize()). 518 * 519 * Return: 0 if the export was successful; < 0 if an error occurred 520 */ 521 static inline int crypto_ahash_export(struct ahash_request *req, void *out) 522 { 523 return crypto_ahash_reqtfm(req)->export(req, out); 524 } 525 526 /** 527 * crypto_ahash_import() - import message digest state 528 * @req: reference to ahash_request handle the state is imported into 529 * @in: buffer holding the state 530 * 531 * This function imports the hash state into the ahash_request handle from the 532 * input buffer. That buffer should have been generated with the 533 * crypto_ahash_export function. 534 * 535 * Return: 0 if the import was successful; < 0 if an error occurred 536 */ 537 static inline int crypto_ahash_import(struct ahash_request *req, const void *in) 538 { 539 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 540 541 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 542 return -ENOKEY; 543 544 return tfm->import(req, in); 545 } 546 547 /** 548 * crypto_ahash_init() - (re)initialize message digest handle 549 * @req: ahash_request handle that already is initialized with all necessary 550 * data using the ahash_request_* API functions 551 * 552 * The call (re-)initializes the message digest referenced by the ahash_request 553 * handle. Any potentially existing state created by previous operations is 554 * discarded. 555 * 556 * Return: see crypto_ahash_final() 557 */ 558 static inline int crypto_ahash_init(struct ahash_request *req) 559 { 560 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 561 562 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 563 return -ENOKEY; 564 565 return tfm->init(req); 566 } 567 568 static inline struct crypto_istat_hash *hash_get_stat( 569 struct hash_alg_common *alg) 570 { 571 #ifdef CONFIG_CRYPTO_STATS 572 return &alg->stat; 573 #else 574 return NULL; 575 #endif 576 } 577 578 static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err) 579 { 580 if (!IS_ENABLED(CONFIG_CRYPTO_STATS)) 581 return err; 582 583 if (err && err != -EINPROGRESS && err != -EBUSY) 584 atomic64_inc(&hash_get_stat(alg)->err_cnt); 585 586 return err; 587 } 588 589 /** 590 * crypto_ahash_update() - add data to message digest for processing 591 * @req: ahash_request handle that was previously initialized with the 592 * crypto_ahash_init call. 593 * 594 * Updates the message digest state of the &ahash_request handle. The input data 595 * is pointed to by the scatter/gather list registered in the &ahash_request 596 * handle 597 * 598 * Return: see crypto_ahash_final() 599 */ 600 static inline int crypto_ahash_update(struct ahash_request *req) 601 { 602 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 603 struct hash_alg_common *alg = crypto_hash_alg_common(tfm); 604 605 if (IS_ENABLED(CONFIG_CRYPTO_STATS)) 606 atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen); 607 608 return crypto_hash_errstat(alg, tfm->update(req)); 609 } 610 611 /** 612 * DOC: Asynchronous Hash Request Handle 613 * 614 * The &ahash_request data structure contains all pointers to data 615 * required for the asynchronous cipher operation. This includes the cipher 616 * handle (which can be used by multiple &ahash_request instances), pointer 617 * to plaintext and the message digest output buffer, asynchronous callback 618 * function, etc. It acts as a handle to the ahash_request_* API calls in a 619 * similar way as ahash handle to the crypto_ahash_* API calls. 620 */ 621 622 /** 623 * ahash_request_set_tfm() - update cipher handle reference in request 624 * @req: request handle to be modified 625 * @tfm: cipher handle that shall be added to the request handle 626 * 627 * Allow the caller to replace the existing ahash handle in the request 628 * data structure with a different one. 629 */ 630 static inline void ahash_request_set_tfm(struct ahash_request *req, 631 struct crypto_ahash *tfm) 632 { 633 req->base.tfm = crypto_ahash_tfm(tfm); 634 } 635 636 /** 637 * ahash_request_alloc() - allocate request data structure 638 * @tfm: cipher handle to be registered with the request 639 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 640 * 641 * Allocate the request data structure that must be used with the ahash 642 * message digest API calls. During 643 * the allocation, the provided ahash handle 644 * is registered in the request data structure. 645 * 646 * Return: allocated request handle in case of success, or NULL if out of memory 647 */ 648 static inline struct ahash_request *ahash_request_alloc( 649 struct crypto_ahash *tfm, gfp_t gfp) 650 { 651 struct ahash_request *req; 652 653 req = kmalloc(sizeof(struct ahash_request) + 654 crypto_ahash_reqsize(tfm), gfp); 655 656 if (likely(req)) 657 ahash_request_set_tfm(req, tfm); 658 659 return req; 660 } 661 662 /** 663 * ahash_request_free() - zeroize and free the request data structure 664 * @req: request data structure cipher handle to be freed 665 */ 666 static inline void ahash_request_free(struct ahash_request *req) 667 { 668 kfree_sensitive(req); 669 } 670 671 static inline void ahash_request_zero(struct ahash_request *req) 672 { 673 memzero_explicit(req, sizeof(*req) + 674 crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); 675 } 676 677 static inline struct ahash_request *ahash_request_cast( 678 struct crypto_async_request *req) 679 { 680 return container_of(req, struct ahash_request, base); 681 } 682 683 /** 684 * ahash_request_set_callback() - set asynchronous callback function 685 * @req: request handle 686 * @flags: specify zero or an ORing of the flags 687 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 688 * increase the wait queue beyond the initial maximum size; 689 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 690 * @compl: callback function pointer to be registered with the request handle 691 * @data: The data pointer refers to memory that is not used by the kernel 692 * crypto API, but provided to the callback function for it to use. Here, 693 * the caller can provide a reference to memory the callback function can 694 * operate on. As the callback function is invoked asynchronously to the 695 * related functionality, it may need to access data structures of the 696 * related functionality which can be referenced using this pointer. The 697 * callback function can access the memory via the "data" field in the 698 * &crypto_async_request data structure provided to the callback function. 699 * 700 * This function allows setting the callback function that is triggered once 701 * the cipher operation completes. 702 * 703 * The callback function is registered with the &ahash_request handle and 704 * must comply with the following template:: 705 * 706 * void callback_function(struct crypto_async_request *req, int error) 707 */ 708 static inline void ahash_request_set_callback(struct ahash_request *req, 709 u32 flags, 710 crypto_completion_t compl, 711 void *data) 712 { 713 req->base.complete = compl; 714 req->base.data = data; 715 req->base.flags = flags; 716 } 717 718 /** 719 * ahash_request_set_crypt() - set data buffers 720 * @req: ahash_request handle to be updated 721 * @src: source scatter/gather list 722 * @result: buffer that is filled with the message digest -- the caller must 723 * ensure that the buffer has sufficient space by, for example, calling 724 * crypto_ahash_digestsize() 725 * @nbytes: number of bytes to process from the source scatter/gather list 726 * 727 * By using this call, the caller references the source scatter/gather list. 728 * The source scatter/gather list points to the data the message digest is to 729 * be calculated for. 730 */ 731 static inline void ahash_request_set_crypt(struct ahash_request *req, 732 struct scatterlist *src, u8 *result, 733 unsigned int nbytes) 734 { 735 req->src = src; 736 req->nbytes = nbytes; 737 req->result = result; 738 } 739 740 /** 741 * DOC: Synchronous Message Digest API 742 * 743 * The synchronous message digest API is used with the ciphers of type 744 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) 745 * 746 * The message digest API is able to maintain state information for the 747 * caller. 748 * 749 * The synchronous message digest API can store user-related context in its 750 * shash_desc request data structure. 751 */ 752 753 /** 754 * crypto_alloc_shash() - allocate message digest handle 755 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 756 * message digest cipher 757 * @type: specifies the type of the cipher 758 * @mask: specifies the mask for the cipher 759 * 760 * Allocate a cipher handle for a message digest. The returned &struct 761 * crypto_shash is the cipher handle that is required for any subsequent 762 * API invocation for that message digest. 763 * 764 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 765 * of an error, PTR_ERR() returns the error code. 766 */ 767 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, 768 u32 mask); 769 770 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm); 771 772 int crypto_has_shash(const char *alg_name, u32 type, u32 mask); 773 774 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) 775 { 776 return &tfm->base; 777 } 778 779 /** 780 * crypto_free_shash() - zeroize and free the message digest handle 781 * @tfm: cipher handle to be freed 782 * 783 * If @tfm is a NULL or error pointer, this function does nothing. 784 */ 785 static inline void crypto_free_shash(struct crypto_shash *tfm) 786 { 787 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); 788 } 789 790 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) 791 { 792 return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); 793 } 794 795 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) 796 { 797 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); 798 } 799 800 static inline unsigned int crypto_shash_alignmask( 801 struct crypto_shash *tfm) 802 { 803 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); 804 } 805 806 /** 807 * crypto_shash_blocksize() - obtain block size for cipher 808 * @tfm: cipher handle 809 * 810 * The block size for the message digest cipher referenced with the cipher 811 * handle is returned. 812 * 813 * Return: block size of cipher 814 */ 815 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) 816 { 817 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); 818 } 819 820 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) 821 { 822 return container_of(alg, struct shash_alg, base); 823 } 824 825 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) 826 { 827 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); 828 } 829 830 /** 831 * crypto_shash_digestsize() - obtain message digest size 832 * @tfm: cipher handle 833 * 834 * The size for the message digest created by the message digest cipher 835 * referenced with the cipher handle is returned. 836 * 837 * Return: digest size of cipher 838 */ 839 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) 840 { 841 return crypto_shash_alg(tfm)->digestsize; 842 } 843 844 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) 845 { 846 return crypto_shash_alg(tfm)->statesize; 847 } 848 849 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) 850 { 851 return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); 852 } 853 854 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) 855 { 856 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); 857 } 858 859 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) 860 { 861 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); 862 } 863 864 /** 865 * crypto_shash_descsize() - obtain the operational state size 866 * @tfm: cipher handle 867 * 868 * The size of the operational state the cipher needs during operation is 869 * returned for the hash referenced with the cipher handle. This size is 870 * required to calculate the memory requirements to allow the caller allocating 871 * sufficient memory for operational state. 872 * 873 * The operational state is defined with struct shash_desc where the size of 874 * that data structure is to be calculated as 875 * sizeof(struct shash_desc) + crypto_shash_descsize(alg) 876 * 877 * Return: size of the operational state 878 */ 879 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) 880 { 881 return tfm->descsize; 882 } 883 884 static inline void *shash_desc_ctx(struct shash_desc *desc) 885 { 886 return desc->__ctx; 887 } 888 889 /** 890 * crypto_shash_setkey() - set key for message digest 891 * @tfm: cipher handle 892 * @key: buffer holding the key 893 * @keylen: length of the key in bytes 894 * 895 * The caller provided key is set for the keyed message digest cipher. The 896 * cipher handle must point to a keyed message digest cipher in order for this 897 * function to succeed. 898 * 899 * Context: Any context. 900 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 901 */ 902 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 903 unsigned int keylen); 904 905 /** 906 * crypto_shash_digest() - calculate message digest for buffer 907 * @desc: see crypto_shash_final() 908 * @data: see crypto_shash_update() 909 * @len: see crypto_shash_update() 910 * @out: see crypto_shash_final() 911 * 912 * This function is a "short-hand" for the function calls of crypto_shash_init, 913 * crypto_shash_update and crypto_shash_final. The parameters have the same 914 * meaning as discussed for those separate three functions. 915 * 916 * Context: Any context. 917 * Return: 0 if the message digest creation was successful; < 0 if an error 918 * occurred 919 */ 920 int crypto_shash_digest(struct shash_desc *desc, const u8 *data, 921 unsigned int len, u8 *out); 922 923 /** 924 * crypto_shash_tfm_digest() - calculate message digest for buffer 925 * @tfm: hash transformation object 926 * @data: see crypto_shash_update() 927 * @len: see crypto_shash_update() 928 * @out: see crypto_shash_final() 929 * 930 * This is a simplified version of crypto_shash_digest() for users who don't 931 * want to allocate their own hash descriptor (shash_desc). Instead, 932 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) 933 * directly, and it allocates a hash descriptor on the stack internally. 934 * Note that this stack allocation may be fairly large. 935 * 936 * Context: Any context. 937 * Return: 0 on success; < 0 if an error occurred. 938 */ 939 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, 940 unsigned int len, u8 *out); 941 942 /** 943 * crypto_shash_export() - extract operational state for message digest 944 * @desc: reference to the operational state handle whose state is exported 945 * @out: output buffer of sufficient size that can hold the hash state 946 * 947 * This function exports the hash state of the operational state handle into the 948 * caller-allocated output buffer out which must have sufficient size (e.g. by 949 * calling crypto_shash_descsize). 950 * 951 * Context: Any context. 952 * Return: 0 if the export creation was successful; < 0 if an error occurred 953 */ 954 static inline int crypto_shash_export(struct shash_desc *desc, void *out) 955 { 956 return crypto_shash_alg(desc->tfm)->export(desc, out); 957 } 958 959 /** 960 * crypto_shash_import() - import operational state 961 * @desc: reference to the operational state handle the state imported into 962 * @in: buffer holding the state 963 * 964 * This function imports the hash state into the operational state handle from 965 * the input buffer. That buffer should have been generated with the 966 * crypto_ahash_export function. 967 * 968 * Context: Any context. 969 * Return: 0 if the import was successful; < 0 if an error occurred 970 */ 971 static inline int crypto_shash_import(struct shash_desc *desc, const void *in) 972 { 973 struct crypto_shash *tfm = desc->tfm; 974 975 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 976 return -ENOKEY; 977 978 return crypto_shash_alg(tfm)->import(desc, in); 979 } 980 981 /** 982 * crypto_shash_init() - (re)initialize message digest 983 * @desc: operational state handle that is already filled 984 * 985 * The call (re-)initializes the message digest referenced by the 986 * operational state handle. Any potentially existing state created by 987 * previous operations is discarded. 988 * 989 * Context: Any context. 990 * Return: 0 if the message digest initialization was successful; < 0 if an 991 * error occurred 992 */ 993 static inline int crypto_shash_init(struct shash_desc *desc) 994 { 995 struct crypto_shash *tfm = desc->tfm; 996 997 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 998 return -ENOKEY; 999 1000 return crypto_shash_alg(tfm)->init(desc); 1001 } 1002 1003 /** 1004 * crypto_shash_update() - add data to message digest for processing 1005 * @desc: operational state handle that is already initialized 1006 * @data: input data to be added to the message digest 1007 * @len: length of the input data 1008 * 1009 * Updates the message digest state of the operational state handle. 1010 * 1011 * Context: Any context. 1012 * Return: 0 if the message digest update was successful; < 0 if an error 1013 * occurred 1014 */ 1015 int crypto_shash_update(struct shash_desc *desc, const u8 *data, 1016 unsigned int len); 1017 1018 /** 1019 * crypto_shash_final() - calculate message digest 1020 * @desc: operational state handle that is already filled with data 1021 * @out: output buffer filled with the message digest 1022 * 1023 * Finalize the message digest operation and create the message digest 1024 * based on all data added to the cipher handle. The message digest is placed 1025 * into the output buffer. The caller must ensure that the output buffer is 1026 * large enough by using crypto_shash_digestsize. 1027 * 1028 * Context: Any context. 1029 * Return: 0 if the message digest creation was successful; < 0 if an error 1030 * occurred 1031 */ 1032 int crypto_shash_final(struct shash_desc *desc, u8 *out); 1033 1034 /** 1035 * crypto_shash_finup() - calculate message digest of buffer 1036 * @desc: see crypto_shash_final() 1037 * @data: see crypto_shash_update() 1038 * @len: see crypto_shash_update() 1039 * @out: see crypto_shash_final() 1040 * 1041 * This function is a "short-hand" for the function calls of 1042 * crypto_shash_update and crypto_shash_final. The parameters have the same 1043 * meaning as discussed for those separate functions. 1044 * 1045 * Context: Any context. 1046 * Return: 0 if the message digest creation was successful; < 0 if an error 1047 * occurred 1048 */ 1049 int crypto_shash_finup(struct shash_desc *desc, const u8 *data, 1050 unsigned int len, u8 *out); 1051 1052 static inline void shash_desc_zero(struct shash_desc *desc) 1053 { 1054 memzero_explicit(desc, 1055 sizeof(*desc) + crypto_shash_descsize(desc->tfm)); 1056 } 1057 1058 #endif /* _CRYPTO_HASH_H */ 1059