xref: /linux/include/crypto/aead.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * AEAD: Authenticated Encryption with Associated Data
4  *
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10 
11 #include <linux/atomic.h>
12 #include <linux/container_of.h>
13 #include <linux/crypto.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 
17 /**
18  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
19  *
20  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
21  * (listed as type "aead" in /proc/crypto)
22  *
23  * The most prominent examples for this type of encryption is GCM and CCM.
24  * However, the kernel supports other types of AEAD ciphers which are defined
25  * with the following cipher string:
26  *
27  *	authenc(keyed message digest, block cipher)
28  *
29  * For example: authenc(hmac(sha256), cbc(aes))
30  *
31  * The example code provided for the symmetric key cipher operation applies
32  * here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
33  * pendants discussed in the following. In addition, for the AEAD operation,
34  * the aead_request_set_ad function must be used to set the pointer to the
35  * associated data memory location before performing the encryption or
36  * decryption operation. Another deviation from the asynchronous block cipher
37  * operation is that the caller should explicitly check for -EBADMSG of the
38  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
39  * a breach in the integrity of the message. In essence, that -EBADMSG error
40  * code is the key bonus an AEAD cipher has over "standard" block chaining
41  * modes.
42  *
43  * Memory Structure:
44  *
45  * The source scatterlist must contain the concatenation of
46  * associated data || plaintext or ciphertext.
47  *
48  * The destination scatterlist has the same layout, except that the plaintext
49  * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
50  * during encryption (resp. decryption). The authentication tag is generated
51  * during the encryption operation and appended to the ciphertext. During
52  * decryption, the authentication tag is consumed along with the ciphertext and
53  * used to verify the integrity of the plaintext and the associated data.
54  *
55  * In-place encryption/decryption is enabled by using the same scatterlist
56  * pointer for both the source and destination.
57  *
58  * Even in the out-of-place case, space must be reserved in the destination for
59  * the associated data, even though it won't be written to.  This makes the
60  * in-place and out-of-place cases more consistent.  It is permissible for the
61  * "destination" associated data to alias the "source" associated data.
62  *
63  * As with the other scatterlist crypto APIs, zero-length scatterlist elements
64  * are not allowed in the used part of the scatterlist.  Thus, if there is no
65  * associated data, the first element must point to the plaintext/ciphertext.
66  *
67  * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
68  * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
69  * of the associated data buffer must contain a second copy of the IV.  This is
70  * in addition to the copy passed to aead_request_set_crypt().  These two IV
71  * copies must not differ; different implementations of the same algorithm may
72  * behave differently in that case.  Note that the algorithm might not actually
73  * treat the IV as associated data; nevertheless the length passed to
74  * aead_request_set_ad() must include it.
75  */
76 
77 struct crypto_aead;
78 struct scatterlist;
79 
80 /**
81  *	struct aead_request - AEAD request
82  *	@base: Common attributes for async crypto requests
83  *	@assoclen: Length in bytes of associated data for authentication
84  *	@cryptlen: Length of data to be encrypted or decrypted
85  *	@iv: Initialisation vector
86  *	@src: Source data
87  *	@dst: Destination data
88  *	@__ctx: Start of private context data
89  */
90 struct aead_request {
91 	struct crypto_async_request base;
92 
93 	unsigned int assoclen;
94 	unsigned int cryptlen;
95 
96 	u8 *iv;
97 
98 	struct scatterlist *src;
99 	struct scatterlist *dst;
100 
101 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
102 };
103 
104 /*
105  * struct crypto_istat_aead - statistics for AEAD algorithm
106  * @encrypt_cnt:	number of encrypt requests
107  * @encrypt_tlen:	total data size handled by encrypt requests
108  * @decrypt_cnt:	number of decrypt requests
109  * @decrypt_tlen:	total data size handled by decrypt requests
110  * @err_cnt:		number of error for AEAD requests
111  */
112 struct crypto_istat_aead {
113 	atomic64_t encrypt_cnt;
114 	atomic64_t encrypt_tlen;
115 	atomic64_t decrypt_cnt;
116 	atomic64_t decrypt_tlen;
117 	atomic64_t err_cnt;
118 };
119 
120 /**
121  * struct aead_alg - AEAD cipher definition
122  * @maxauthsize: Set the maximum authentication tag size supported by the
123  *		 transformation. A transformation may support smaller tag sizes.
124  *		 As the authentication tag is a message digest to ensure the
125  *		 integrity of the encrypted data, a consumer typically wants the
126  *		 largest authentication tag possible as defined by this
127  *		 variable.
128  * @setauthsize: Set authentication size for the AEAD transformation. This
129  *		 function is used to specify the consumer requested size of the
130  * 		 authentication tag to be either generated by the transformation
131  *		 during encryption or the size of the authentication tag to be
132  *		 supplied during the decryption operation. This function is also
133  *		 responsible for checking the authentication tag size for
134  *		 validity.
135  * @setkey: see struct skcipher_alg
136  * @encrypt: see struct skcipher_alg
137  * @decrypt: see struct skcipher_alg
138  * @stat: statistics for AEAD algorithm
139  * @ivsize: see struct skcipher_alg
140  * @chunksize: see struct skcipher_alg
141  * @init: Initialize the cryptographic transformation object. This function
142  *	  is used to initialize the cryptographic transformation object.
143  *	  This function is called only once at the instantiation time, right
144  *	  after the transformation context was allocated. In case the
145  *	  cryptographic hardware has some special requirements which need to
146  *	  be handled by software, this function shall check for the precise
147  *	  requirement of the transformation and put any software fallbacks
148  *	  in place.
149  * @exit: Deinitialize the cryptographic transformation object. This is a
150  *	  counterpart to @init, used to remove various changes set in
151  *	  @init.
152  * @base: Definition of a generic crypto cipher algorithm.
153  *
154  * All fields except @ivsize is mandatory and must be filled.
155  */
156 struct aead_alg {
157 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
158 	              unsigned int keylen);
159 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
160 	int (*encrypt)(struct aead_request *req);
161 	int (*decrypt)(struct aead_request *req);
162 	int (*init)(struct crypto_aead *tfm);
163 	void (*exit)(struct crypto_aead *tfm);
164 
165 #ifdef CONFIG_CRYPTO_STATS
166 	struct crypto_istat_aead stat;
167 #endif
168 
169 	unsigned int ivsize;
170 	unsigned int maxauthsize;
171 	unsigned int chunksize;
172 
173 	struct crypto_alg base;
174 };
175 
176 struct crypto_aead {
177 	unsigned int authsize;
178 	unsigned int reqsize;
179 
180 	struct crypto_tfm base;
181 };
182 
183 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
184 {
185 	return container_of(tfm, struct crypto_aead, base);
186 }
187 
188 /**
189  * crypto_alloc_aead() - allocate AEAD cipher handle
190  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
191  *	     AEAD cipher
192  * @type: specifies the type of the cipher
193  * @mask: specifies the mask for the cipher
194  *
195  * Allocate a cipher handle for an AEAD. The returned struct
196  * crypto_aead is the cipher handle that is required for any subsequent
197  * API invocation for that AEAD.
198  *
199  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
200  *	   of an error, PTR_ERR() returns the error code.
201  */
202 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
203 
204 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
205 {
206 	return &tfm->base;
207 }
208 
209 /**
210  * crypto_free_aead() - zeroize and free aead handle
211  * @tfm: cipher handle to be freed
212  *
213  * If @tfm is a NULL or error pointer, this function does nothing.
214  */
215 static inline void crypto_free_aead(struct crypto_aead *tfm)
216 {
217 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
218 }
219 
220 /**
221  * crypto_has_aead() - Search for the availability of an aead.
222  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
223  *	      aead
224  * @type: specifies the type of the aead
225  * @mask: specifies the mask for the aead
226  *
227  * Return: true when the aead is known to the kernel crypto API; false
228  *	   otherwise
229  */
230 int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
231 
232 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
233 {
234 	return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
235 }
236 
237 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
238 {
239 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
240 			    struct aead_alg, base);
241 }
242 
243 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
244 {
245 	return alg->ivsize;
246 }
247 
248 /**
249  * crypto_aead_ivsize() - obtain IV size
250  * @tfm: cipher handle
251  *
252  * The size of the IV for the aead referenced by the cipher handle is
253  * returned. This IV size may be zero if the cipher does not need an IV.
254  *
255  * Return: IV size in bytes
256  */
257 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
258 {
259 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
260 }
261 
262 /**
263  * crypto_aead_authsize() - obtain maximum authentication data size
264  * @tfm: cipher handle
265  *
266  * The maximum size of the authentication data for the AEAD cipher referenced
267  * by the AEAD cipher handle is returned. The authentication data size may be
268  * zero if the cipher implements a hard-coded maximum.
269  *
270  * The authentication data may also be known as "tag value".
271  *
272  * Return: authentication data size / tag size in bytes
273  */
274 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
275 {
276 	return tfm->authsize;
277 }
278 
279 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
280 {
281 	return alg->maxauthsize;
282 }
283 
284 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
285 {
286 	return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
287 }
288 
289 /**
290  * crypto_aead_blocksize() - obtain block size of cipher
291  * @tfm: cipher handle
292  *
293  * The block size for the AEAD referenced with the cipher handle is returned.
294  * The caller may use that information to allocate appropriate memory for the
295  * data returned by the encryption or decryption operation
296  *
297  * Return: block size of cipher
298  */
299 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
300 {
301 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
302 }
303 
304 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
305 {
306 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
307 }
308 
309 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
310 {
311 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
312 }
313 
314 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
315 {
316 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
317 }
318 
319 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
320 {
321 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
322 }
323 
324 /**
325  * crypto_aead_setkey() - set key for cipher
326  * @tfm: cipher handle
327  * @key: buffer holding the key
328  * @keylen: length of the key in bytes
329  *
330  * The caller provided key is set for the AEAD referenced by the cipher
331  * handle.
332  *
333  * Note, the key length determines the cipher type. Many block ciphers implement
334  * different cipher modes depending on the key size, such as AES-128 vs AES-192
335  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
336  * is performed.
337  *
338  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
339  */
340 int crypto_aead_setkey(struct crypto_aead *tfm,
341 		       const u8 *key, unsigned int keylen);
342 
343 /**
344  * crypto_aead_setauthsize() - set authentication data size
345  * @tfm: cipher handle
346  * @authsize: size of the authentication data / tag in bytes
347  *
348  * Set the authentication data size / tag size. AEAD requires an authentication
349  * tag (or MAC) in addition to the associated data.
350  *
351  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
352  */
353 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
354 
355 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
356 {
357 	return __crypto_aead_cast(req->base.tfm);
358 }
359 
360 /**
361  * crypto_aead_encrypt() - encrypt plaintext
362  * @req: reference to the aead_request handle that holds all information
363  *	 needed to perform the cipher operation
364  *
365  * Encrypt plaintext data using the aead_request handle. That data structure
366  * and how it is filled with data is discussed with the aead_request_*
367  * functions.
368  *
369  * IMPORTANT NOTE The encryption operation creates the authentication data /
370  *		  tag. That data is concatenated with the created ciphertext.
371  *		  The ciphertext memory size is therefore the given number of
372  *		  block cipher blocks + the size defined by the
373  *		  crypto_aead_setauthsize invocation. The caller must ensure
374  *		  that sufficient memory is available for the ciphertext and
375  *		  the authentication tag.
376  *
377  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
378  */
379 int crypto_aead_encrypt(struct aead_request *req);
380 
381 /**
382  * crypto_aead_decrypt() - decrypt ciphertext
383  * @req: reference to the aead_request handle that holds all information
384  *	 needed to perform the cipher operation
385  *
386  * Decrypt ciphertext data using the aead_request handle. That data structure
387  * and how it is filled with data is discussed with the aead_request_*
388  * functions.
389  *
390  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
391  *		  authentication data / tag. That authentication data / tag
392  *		  must have the size defined by the crypto_aead_setauthsize
393  *		  invocation.
394  *
395  *
396  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
397  *	   cipher operation performs the authentication of the data during the
398  *	   decryption operation. Therefore, the function returns this error if
399  *	   the authentication of the ciphertext was unsuccessful (i.e. the
400  *	   integrity of the ciphertext or the associated data was violated);
401  *	   < 0 if an error occurred.
402  */
403 int crypto_aead_decrypt(struct aead_request *req);
404 
405 /**
406  * DOC: Asynchronous AEAD Request Handle
407  *
408  * The aead_request data structure contains all pointers to data required for
409  * the AEAD cipher operation. This includes the cipher handle (which can be
410  * used by multiple aead_request instances), pointer to plaintext and
411  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
412  * aead_request_* API calls in a similar way as AEAD handle to the
413  * crypto_aead_* API calls.
414  */
415 
416 /**
417  * crypto_aead_reqsize() - obtain size of the request data structure
418  * @tfm: cipher handle
419  *
420  * Return: number of bytes
421  */
422 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
423 {
424 	return tfm->reqsize;
425 }
426 
427 /**
428  * aead_request_set_tfm() - update cipher handle reference in request
429  * @req: request handle to be modified
430  * @tfm: cipher handle that shall be added to the request handle
431  *
432  * Allow the caller to replace the existing aead handle in the request
433  * data structure with a different one.
434  */
435 static inline void aead_request_set_tfm(struct aead_request *req,
436 					struct crypto_aead *tfm)
437 {
438 	req->base.tfm = crypto_aead_tfm(tfm);
439 }
440 
441 /**
442  * aead_request_alloc() - allocate request data structure
443  * @tfm: cipher handle to be registered with the request
444  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
445  *
446  * Allocate the request data structure that must be used with the AEAD
447  * encrypt and decrypt API calls. During the allocation, the provided aead
448  * handle is registered in the request data structure.
449  *
450  * Return: allocated request handle in case of success, or NULL if out of memory
451  */
452 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
453 						      gfp_t gfp)
454 {
455 	struct aead_request *req;
456 
457 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
458 
459 	if (likely(req))
460 		aead_request_set_tfm(req, tfm);
461 
462 	return req;
463 }
464 
465 /**
466  * aead_request_free() - zeroize and free request data structure
467  * @req: request data structure cipher handle to be freed
468  */
469 static inline void aead_request_free(struct aead_request *req)
470 {
471 	kfree_sensitive(req);
472 }
473 
474 /**
475  * aead_request_set_callback() - set asynchronous callback function
476  * @req: request handle
477  * @flags: specify zero or an ORing of the flags
478  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
479  *	   increase the wait queue beyond the initial maximum size;
480  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
481  * @compl: callback function pointer to be registered with the request handle
482  * @data: The data pointer refers to memory that is not used by the kernel
483  *	  crypto API, but provided to the callback function for it to use. Here,
484  *	  the caller can provide a reference to memory the callback function can
485  *	  operate on. As the callback function is invoked asynchronously to the
486  *	  related functionality, it may need to access data structures of the
487  *	  related functionality which can be referenced using this pointer. The
488  *	  callback function can access the memory via the "data" field in the
489  *	  crypto_async_request data structure provided to the callback function.
490  *
491  * Setting the callback function that is triggered once the cipher operation
492  * completes
493  *
494  * The callback function is registered with the aead_request handle and
495  * must comply with the following template::
496  *
497  *	void callback_function(struct crypto_async_request *req, int error)
498  */
499 static inline void aead_request_set_callback(struct aead_request *req,
500 					     u32 flags,
501 					     crypto_completion_t compl,
502 					     void *data)
503 {
504 	req->base.complete = compl;
505 	req->base.data = data;
506 	req->base.flags = flags;
507 }
508 
509 /**
510  * aead_request_set_crypt - set data buffers
511  * @req: request handle
512  * @src: source scatter / gather list
513  * @dst: destination scatter / gather list
514  * @cryptlen: number of bytes to process from @src
515  * @iv: IV for the cipher operation which must comply with the IV size defined
516  *      by crypto_aead_ivsize()
517  *
518  * Setting the source data and destination data scatter / gather lists which
519  * hold the associated data concatenated with the plaintext or ciphertext. See
520  * below for the authentication tag.
521  *
522  * For encryption, the source is treated as the plaintext and the
523  * destination is the ciphertext. For a decryption operation, the use is
524  * reversed - the source is the ciphertext and the destination is the plaintext.
525  *
526  * The memory structure for cipher operation has the following structure:
527  *
528  * - AEAD encryption input:  assoc data || plaintext
529  * - AEAD encryption output: assoc data || ciphertext || auth tag
530  * - AEAD decryption input:  assoc data || ciphertext || auth tag
531  * - AEAD decryption output: assoc data || plaintext
532  *
533  * Albeit the kernel requires the presence of the AAD buffer, however,
534  * the kernel does not fill the AAD buffer in the output case. If the
535  * caller wants to have that data buffer filled, the caller must either
536  * use an in-place cipher operation (i.e. same memory location for
537  * input/output memory location).
538  */
539 static inline void aead_request_set_crypt(struct aead_request *req,
540 					  struct scatterlist *src,
541 					  struct scatterlist *dst,
542 					  unsigned int cryptlen, u8 *iv)
543 {
544 	req->src = src;
545 	req->dst = dst;
546 	req->cryptlen = cryptlen;
547 	req->iv = iv;
548 }
549 
550 /**
551  * aead_request_set_ad - set associated data information
552  * @req: request handle
553  * @assoclen: number of bytes in associated data
554  *
555  * Setting the AD information.  This function sets the length of
556  * the associated data.
557  */
558 static inline void aead_request_set_ad(struct aead_request *req,
559 				       unsigned int assoclen)
560 {
561 	req->assoclen = assoclen;
562 }
563 
564 #endif	/* _CRYPTO_AEAD_H */
565