1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * AEAD: Authenticated Encryption with Associated Data 4 * 5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 8 #ifndef _CRYPTO_AEAD_H 9 #define _CRYPTO_AEAD_H 10 11 #include <linux/atomic.h> 12 #include <linux/container_of.h> 13 #include <linux/crypto.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 17 /** 18 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API 19 * 20 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD 21 * (listed as type "aead" in /proc/crypto) 22 * 23 * The most prominent examples for this type of encryption is GCM and CCM. 24 * However, the kernel supports other types of AEAD ciphers which are defined 25 * with the following cipher string: 26 * 27 * authenc(keyed message digest, block cipher) 28 * 29 * For example: authenc(hmac(sha256), cbc(aes)) 30 * 31 * The example code provided for the symmetric key cipher operation applies 32 * here as well. Naturally all *skcipher* symbols must be exchanged the *aead* 33 * pendants discussed in the following. In addition, for the AEAD operation, 34 * the aead_request_set_ad function must be used to set the pointer to the 35 * associated data memory location before performing the encryption or 36 * decryption operation. Another deviation from the asynchronous block cipher 37 * operation is that the caller should explicitly check for -EBADMSG of the 38 * crypto_aead_decrypt. That error indicates an authentication error, i.e. 39 * a breach in the integrity of the message. In essence, that -EBADMSG error 40 * code is the key bonus an AEAD cipher has over "standard" block chaining 41 * modes. 42 * 43 * Memory Structure: 44 * 45 * The source scatterlist must contain the concatenation of 46 * associated data || plaintext or ciphertext. 47 * 48 * The destination scatterlist has the same layout, except that the plaintext 49 * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size 50 * during encryption (resp. decryption). The authentication tag is generated 51 * during the encryption operation and appended to the ciphertext. During 52 * decryption, the authentication tag is consumed along with the ciphertext and 53 * used to verify the integrity of the plaintext and the associated data. 54 * 55 * In-place encryption/decryption is enabled by using the same scatterlist 56 * pointer for both the source and destination. 57 * 58 * Even in the out-of-place case, space must be reserved in the destination for 59 * the associated data, even though it won't be written to. This makes the 60 * in-place and out-of-place cases more consistent. It is permissible for the 61 * "destination" associated data to alias the "source" associated data. 62 * 63 * As with the other scatterlist crypto APIs, zero-length scatterlist elements 64 * are not allowed in the used part of the scatterlist. Thus, if there is no 65 * associated data, the first element must point to the plaintext/ciphertext. 66 * 67 * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, 68 * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes 69 * of the associated data buffer must contain a second copy of the IV. This is 70 * in addition to the copy passed to aead_request_set_crypt(). These two IV 71 * copies must not differ; different implementations of the same algorithm may 72 * behave differently in that case. Note that the algorithm might not actually 73 * treat the IV as associated data; nevertheless the length passed to 74 * aead_request_set_ad() must include it. 75 */ 76 77 struct crypto_aead; 78 struct scatterlist; 79 80 /** 81 * struct aead_request - AEAD request 82 * @base: Common attributes for async crypto requests 83 * @assoclen: Length in bytes of associated data for authentication 84 * @cryptlen: Length of data to be encrypted or decrypted 85 * @iv: Initialisation vector 86 * @src: Source data 87 * @dst: Destination data 88 * @__ctx: Start of private context data 89 */ 90 struct aead_request { 91 struct crypto_async_request base; 92 93 unsigned int assoclen; 94 unsigned int cryptlen; 95 96 u8 *iv; 97 98 struct scatterlist *src; 99 struct scatterlist *dst; 100 101 void *__ctx[] CRYPTO_MINALIGN_ATTR; 102 }; 103 104 /** 105 * struct aead_alg - AEAD cipher definition 106 * @maxauthsize: Set the maximum authentication tag size supported by the 107 * transformation. A transformation may support smaller tag sizes. 108 * As the authentication tag is a message digest to ensure the 109 * integrity of the encrypted data, a consumer typically wants the 110 * largest authentication tag possible as defined by this 111 * variable. 112 * @setauthsize: Set authentication size for the AEAD transformation. This 113 * function is used to specify the consumer requested size of the 114 * authentication tag to be either generated by the transformation 115 * during encryption or the size of the authentication tag to be 116 * supplied during the decryption operation. This function is also 117 * responsible for checking the authentication tag size for 118 * validity. 119 * @setkey: see struct skcipher_alg 120 * @encrypt: see struct skcipher_alg 121 * @decrypt: see struct skcipher_alg 122 * @ivsize: see struct skcipher_alg 123 * @chunksize: see struct skcipher_alg 124 * @init: Initialize the cryptographic transformation object. This function 125 * is used to initialize the cryptographic transformation object. 126 * This function is called only once at the instantiation time, right 127 * after the transformation context was allocated. In case the 128 * cryptographic hardware has some special requirements which need to 129 * be handled by software, this function shall check for the precise 130 * requirement of the transformation and put any software fallbacks 131 * in place. 132 * @exit: Deinitialize the cryptographic transformation object. This is a 133 * counterpart to @init, used to remove various changes set in 134 * @init. 135 * @base: Definition of a generic crypto cipher algorithm. 136 * 137 * All fields except @ivsize is mandatory and must be filled. 138 */ 139 struct aead_alg { 140 int (*setkey)(struct crypto_aead *tfm, const u8 *key, 141 unsigned int keylen); 142 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); 143 int (*encrypt)(struct aead_request *req); 144 int (*decrypt)(struct aead_request *req); 145 int (*init)(struct crypto_aead *tfm); 146 void (*exit)(struct crypto_aead *tfm); 147 148 unsigned int ivsize; 149 unsigned int maxauthsize; 150 unsigned int chunksize; 151 152 struct crypto_alg base; 153 }; 154 155 struct crypto_aead { 156 unsigned int authsize; 157 unsigned int reqsize; 158 159 struct crypto_tfm base; 160 }; 161 162 struct crypto_sync_aead { 163 struct crypto_aead base; 164 }; 165 166 #define MAX_SYNC_AEAD_REQSIZE 384 167 168 #define SYNC_AEAD_REQUEST_ON_STACK(name, _tfm) \ 169 char __##name##_desc[sizeof(struct aead_request) + \ 170 MAX_SYNC_AEAD_REQSIZE \ 171 ] CRYPTO_MINALIGN_ATTR; \ 172 struct aead_request *name = \ 173 (((struct aead_request *)__##name##_desc)->base.tfm = \ 174 crypto_sync_aead_tfm((_tfm)), \ 175 (void *)__##name##_desc) 176 177 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) 178 { 179 return container_of(tfm, struct crypto_aead, base); 180 } 181 182 /** 183 * crypto_alloc_aead() - allocate AEAD cipher handle 184 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 185 * AEAD cipher 186 * @type: specifies the type of the cipher 187 * @mask: specifies the mask for the cipher 188 * 189 * Allocate a cipher handle for an AEAD. The returned struct 190 * crypto_aead is the cipher handle that is required for any subsequent 191 * API invocation for that AEAD. 192 * 193 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 194 * of an error, PTR_ERR() returns the error code. 195 */ 196 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); 197 198 struct crypto_sync_aead *crypto_alloc_sync_aead(const char *alg_name, u32 type, u32 mask); 199 200 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) 201 { 202 return &tfm->base; 203 } 204 205 static inline struct crypto_tfm *crypto_sync_aead_tfm(struct crypto_sync_aead *tfm) 206 { 207 return crypto_aead_tfm(&tfm->base); 208 } 209 210 /** 211 * crypto_free_aead() - zeroize and free aead handle 212 * @tfm: cipher handle to be freed 213 * 214 * If @tfm is a NULL or error pointer, this function does nothing. 215 */ 216 static inline void crypto_free_aead(struct crypto_aead *tfm) 217 { 218 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); 219 } 220 221 static inline void crypto_free_sync_aead(struct crypto_sync_aead *tfm) 222 { 223 crypto_free_aead(&tfm->base); 224 } 225 226 /** 227 * crypto_has_aead() - Search for the availability of an aead. 228 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 229 * aead 230 * @type: specifies the type of the aead 231 * @mask: specifies the mask for the aead 232 * 233 * Return: true when the aead is known to the kernel crypto API; false 234 * otherwise 235 */ 236 int crypto_has_aead(const char *alg_name, u32 type, u32 mask); 237 238 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm) 239 { 240 return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm)); 241 } 242 243 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) 244 { 245 return container_of(crypto_aead_tfm(tfm)->__crt_alg, 246 struct aead_alg, base); 247 } 248 249 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) 250 { 251 return alg->ivsize; 252 } 253 254 /** 255 * crypto_aead_ivsize() - obtain IV size 256 * @tfm: cipher handle 257 * 258 * The size of the IV for the aead referenced by the cipher handle is 259 * returned. This IV size may be zero if the cipher does not need an IV. 260 * 261 * Return: IV size in bytes 262 */ 263 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) 264 { 265 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); 266 } 267 268 static inline unsigned int crypto_sync_aead_ivsize(struct crypto_sync_aead *tfm) 269 { 270 return crypto_aead_ivsize(&tfm->base); 271 } 272 273 /** 274 * crypto_aead_authsize() - obtain maximum authentication data size 275 * @tfm: cipher handle 276 * 277 * The maximum size of the authentication data for the AEAD cipher referenced 278 * by the AEAD cipher handle is returned. The authentication data size may be 279 * zero if the cipher implements a hard-coded maximum. 280 * 281 * The authentication data may also be known as "tag value". 282 * 283 * Return: authentication data size / tag size in bytes 284 */ 285 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) 286 { 287 return tfm->authsize; 288 } 289 290 static inline unsigned int crypto_sync_aead_authsize(struct crypto_sync_aead *tfm) 291 { 292 return crypto_aead_authsize(&tfm->base); 293 } 294 295 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg) 296 { 297 return alg->maxauthsize; 298 } 299 300 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead) 301 { 302 return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead)); 303 } 304 305 static inline unsigned int crypto_sync_aead_maxauthsize(struct crypto_sync_aead *tfm) 306 { 307 return crypto_aead_maxauthsize(&tfm->base); 308 } 309 310 /** 311 * crypto_aead_blocksize() - obtain block size of cipher 312 * @tfm: cipher handle 313 * 314 * The block size for the AEAD referenced with the cipher handle is returned. 315 * The caller may use that information to allocate appropriate memory for the 316 * data returned by the encryption or decryption operation 317 * 318 * Return: block size of cipher 319 */ 320 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) 321 { 322 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); 323 } 324 325 static inline unsigned int crypto_sync_aead_blocksize(struct crypto_sync_aead *tfm) 326 { 327 return crypto_aead_blocksize(&tfm->base); 328 } 329 330 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) 331 { 332 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); 333 } 334 335 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) 336 { 337 return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); 338 } 339 340 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) 341 { 342 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); 343 } 344 345 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) 346 { 347 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); 348 } 349 350 static inline u32 crypto_sync_aead_get_flags(struct crypto_sync_aead *tfm) 351 { 352 return crypto_aead_get_flags(&tfm->base); 353 } 354 355 static inline void crypto_sync_aead_set_flags(struct crypto_sync_aead *tfm, u32 flags) 356 { 357 crypto_aead_set_flags(&tfm->base, flags); 358 } 359 360 static inline void crypto_sync_aead_clear_flags(struct crypto_sync_aead *tfm, u32 flags) 361 { 362 crypto_aead_clear_flags(&tfm->base, flags); 363 } 364 365 /** 366 * crypto_aead_setkey() - set key for cipher 367 * @tfm: cipher handle 368 * @key: buffer holding the key 369 * @keylen: length of the key in bytes 370 * 371 * The caller provided key is set for the AEAD referenced by the cipher 372 * handle. 373 * 374 * Note, the key length determines the cipher type. Many block ciphers implement 375 * different cipher modes depending on the key size, such as AES-128 vs AES-192 376 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 377 * is performed. 378 * 379 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 380 */ 381 int crypto_aead_setkey(struct crypto_aead *tfm, 382 const u8 *key, unsigned int keylen); 383 384 static inline int crypto_sync_aead_setkey(struct crypto_sync_aead *tfm, 385 const u8 *key, unsigned int keylen) 386 { 387 return crypto_aead_setkey(&tfm->base, key, keylen); 388 } 389 390 /** 391 * crypto_aead_setauthsize() - set authentication data size 392 * @tfm: cipher handle 393 * @authsize: size of the authentication data / tag in bytes 394 * 395 * Set the authentication data size / tag size. AEAD requires an authentication 396 * tag (or MAC) in addition to the associated data. 397 * 398 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 399 */ 400 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); 401 402 static inline int crypto_sync_aead_setauthsize(struct crypto_sync_aead *tfm, 403 unsigned int authsize) 404 { 405 return crypto_aead_setauthsize(&tfm->base, authsize); 406 } 407 408 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) 409 { 410 return __crypto_aead_cast(req->base.tfm); 411 } 412 413 static inline struct crypto_sync_aead *crypto_sync_aead_reqtfm(struct aead_request *req) 414 { 415 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 416 417 return container_of(tfm, struct crypto_sync_aead, base); 418 } 419 420 /** 421 * crypto_aead_encrypt() - encrypt plaintext 422 * @req: reference to the aead_request handle that holds all information 423 * needed to perform the cipher operation 424 * 425 * Encrypt plaintext data using the aead_request handle. That data structure 426 * and how it is filled with data is discussed with the aead_request_* 427 * functions. 428 * 429 * IMPORTANT NOTE The encryption operation creates the authentication data / 430 * tag. That data is concatenated with the created ciphertext. 431 * The ciphertext memory size is therefore the given number of 432 * block cipher blocks + the size defined by the 433 * crypto_aead_setauthsize invocation. The caller must ensure 434 * that sufficient memory is available for the ciphertext and 435 * the authentication tag. 436 * 437 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 438 */ 439 int crypto_aead_encrypt(struct aead_request *req); 440 441 /** 442 * crypto_aead_decrypt() - decrypt ciphertext 443 * @req: reference to the aead_request handle that holds all information 444 * needed to perform the cipher operation 445 * 446 * Decrypt ciphertext data using the aead_request handle. That data structure 447 * and how it is filled with data is discussed with the aead_request_* 448 * functions. 449 * 450 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the 451 * authentication data / tag. That authentication data / tag 452 * must have the size defined by the crypto_aead_setauthsize 453 * invocation. 454 * 455 * 456 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD 457 * cipher operation performs the authentication of the data during the 458 * decryption operation. Therefore, the function returns this error if 459 * the authentication of the ciphertext was unsuccessful (i.e. the 460 * integrity of the ciphertext or the associated data was violated); 461 * < 0 if an error occurred. 462 */ 463 int crypto_aead_decrypt(struct aead_request *req); 464 465 /** 466 * DOC: Asynchronous AEAD Request Handle 467 * 468 * The aead_request data structure contains all pointers to data required for 469 * the AEAD cipher operation. This includes the cipher handle (which can be 470 * used by multiple aead_request instances), pointer to plaintext and 471 * ciphertext, asynchronous callback function, etc. It acts as a handle to the 472 * aead_request_* API calls in a similar way as AEAD handle to the 473 * crypto_aead_* API calls. 474 */ 475 476 /** 477 * crypto_aead_reqsize() - obtain size of the request data structure 478 * @tfm: cipher handle 479 * 480 * Return: number of bytes 481 */ 482 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) 483 { 484 return tfm->reqsize; 485 } 486 487 /** 488 * aead_request_set_tfm() - update cipher handle reference in request 489 * @req: request handle to be modified 490 * @tfm: cipher handle that shall be added to the request handle 491 * 492 * Allow the caller to replace the existing aead handle in the request 493 * data structure with a different one. 494 */ 495 static inline void aead_request_set_tfm(struct aead_request *req, 496 struct crypto_aead *tfm) 497 { 498 req->base.tfm = crypto_aead_tfm(tfm); 499 } 500 501 static inline void aead_request_set_sync_tfm(struct aead_request *req, 502 struct crypto_sync_aead *tfm) 503 { 504 aead_request_set_tfm(req, &tfm->base); 505 } 506 507 /** 508 * aead_request_alloc() - allocate request data structure 509 * @tfm: cipher handle to be registered with the request 510 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 511 * 512 * Allocate the request data structure that must be used with the AEAD 513 * encrypt and decrypt API calls. During the allocation, the provided aead 514 * handle is registered in the request data structure. 515 * 516 * Return: allocated request handle in case of success, or NULL if out of memory 517 */ 518 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, 519 gfp_t gfp) 520 { 521 struct aead_request *req; 522 523 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); 524 525 if (likely(req)) 526 aead_request_set_tfm(req, tfm); 527 528 return req; 529 } 530 531 /** 532 * aead_request_free() - zeroize and free request data structure 533 * @req: request data structure cipher handle to be freed 534 */ 535 static inline void aead_request_free(struct aead_request *req) 536 { 537 kfree_sensitive(req); 538 } 539 540 /** 541 * aead_request_set_callback() - set asynchronous callback function 542 * @req: request handle 543 * @flags: specify zero or an ORing of the flags 544 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 545 * increase the wait queue beyond the initial maximum size; 546 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 547 * @compl: callback function pointer to be registered with the request handle 548 * @data: The data pointer refers to memory that is not used by the kernel 549 * crypto API, but provided to the callback function for it to use. Here, 550 * the caller can provide a reference to memory the callback function can 551 * operate on. As the callback function is invoked asynchronously to the 552 * related functionality, it may need to access data structures of the 553 * related functionality which can be referenced using this pointer. The 554 * callback function can access the memory via the "data" field in the 555 * crypto_async_request data structure provided to the callback function. 556 * 557 * Setting the callback function that is triggered once the cipher operation 558 * completes 559 * 560 * The callback function is registered with the aead_request handle and 561 * must comply with the following template:: 562 * 563 * void callback_function(struct crypto_async_request *req, int error) 564 */ 565 static inline void aead_request_set_callback(struct aead_request *req, 566 u32 flags, 567 crypto_completion_t compl, 568 void *data) 569 { 570 req->base.complete = compl; 571 req->base.data = data; 572 req->base.flags = flags; 573 } 574 575 /** 576 * aead_request_set_crypt - set data buffers 577 * @req: request handle 578 * @src: source scatter / gather list 579 * @dst: destination scatter / gather list 580 * @cryptlen: number of bytes to process from @src 581 * @iv: IV for the cipher operation which must comply with the IV size defined 582 * by crypto_aead_ivsize() 583 * 584 * Setting the source data and destination data scatter / gather lists which 585 * hold the associated data concatenated with the plaintext or ciphertext. See 586 * below for the authentication tag. 587 * 588 * For encryption, the source is treated as the plaintext and the 589 * destination is the ciphertext. For a decryption operation, the use is 590 * reversed - the source is the ciphertext and the destination is the plaintext. 591 * 592 * The memory structure for cipher operation has the following structure: 593 * 594 * - AEAD encryption input: assoc data || plaintext 595 * - AEAD encryption output: assoc data || ciphertext || auth tag 596 * - AEAD decryption input: assoc data || ciphertext || auth tag 597 * - AEAD decryption output: assoc data || plaintext 598 * 599 * Albeit the kernel requires the presence of the AAD buffer, however, 600 * the kernel does not fill the AAD buffer in the output case. If the 601 * caller wants to have that data buffer filled, the caller must either 602 * use an in-place cipher operation (i.e. same memory location for 603 * input/output memory location). 604 */ 605 static inline void aead_request_set_crypt(struct aead_request *req, 606 struct scatterlist *src, 607 struct scatterlist *dst, 608 unsigned int cryptlen, u8 *iv) 609 { 610 req->src = src; 611 req->dst = dst; 612 req->cryptlen = cryptlen; 613 req->iv = iv; 614 } 615 616 /** 617 * aead_request_set_ad - set associated data information 618 * @req: request handle 619 * @assoclen: number of bytes in associated data 620 * 621 * Setting the AD information. This function sets the length of 622 * the associated data. 623 */ 624 static inline void aead_request_set_ad(struct aead_request *req, 625 unsigned int assoclen) 626 { 627 req->assoclen = assoclen; 628 } 629 630 #endif /* _CRYPTO_AEAD_H */ 631