1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * AEAD: Authenticated Encryption with Associated Data
4 *
5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10
11 #include <linux/atomic.h>
12 #include <linux/container_of.h>
13 #include <linux/crypto.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16
17 /**
18 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
19 *
20 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
21 * (listed as type "aead" in /proc/crypto)
22 *
23 * The most prominent examples for this type of encryption is GCM and CCM.
24 * However, the kernel supports other types of AEAD ciphers which are defined
25 * with the following cipher string:
26 *
27 * authenc(keyed message digest, block cipher)
28 *
29 * For example: authenc(hmac(sha256), cbc(aes))
30 *
31 * The example code provided for the symmetric key cipher operation applies
32 * here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
33 * pendants discussed in the following. In addition, for the AEAD operation,
34 * the aead_request_set_ad function must be used to set the pointer to the
35 * associated data memory location before performing the encryption or
36 * decryption operation. Another deviation from the asynchronous block cipher
37 * operation is that the caller should explicitly check for -EBADMSG of the
38 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
39 * a breach in the integrity of the message. In essence, that -EBADMSG error
40 * code is the key bonus an AEAD cipher has over "standard" block chaining
41 * modes.
42 *
43 * Memory Structure:
44 *
45 * The source scatterlist must contain the concatenation of
46 * associated data || plaintext or ciphertext.
47 *
48 * The destination scatterlist has the same layout, except that the plaintext
49 * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
50 * during encryption (resp. decryption). The authentication tag is generated
51 * during the encryption operation and appended to the ciphertext. During
52 * decryption, the authentication tag is consumed along with the ciphertext and
53 * used to verify the integrity of the plaintext and the associated data.
54 *
55 * In-place encryption/decryption is enabled by using the same scatterlist
56 * pointer for both the source and destination.
57 *
58 * Even in the out-of-place case, space must be reserved in the destination for
59 * the associated data, even though it won't be written to. This makes the
60 * in-place and out-of-place cases more consistent. It is permissible for the
61 * "destination" associated data to alias the "source" associated data.
62 *
63 * As with the other scatterlist crypto APIs, zero-length scatterlist elements
64 * are not allowed in the used part of the scatterlist. Thus, if there is no
65 * associated data, the first element must point to the plaintext/ciphertext.
66 *
67 * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
68 * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes
69 * of the associated data buffer must contain a second copy of the IV. This is
70 * in addition to the copy passed to aead_request_set_crypt(). These two IV
71 * copies must not differ; different implementations of the same algorithm may
72 * behave differently in that case. Note that the algorithm might not actually
73 * treat the IV as associated data; nevertheless the length passed to
74 * aead_request_set_ad() must include it.
75 */
76
77 struct crypto_aead;
78 struct scatterlist;
79
80 /**
81 * struct aead_request - AEAD request
82 * @base: Common attributes for async crypto requests
83 * @assoclen: Length in bytes of associated data for authentication
84 * @cryptlen: Length of data to be encrypted or decrypted
85 * @iv: Initialisation vector
86 * @src: Source data
87 * @dst: Destination data
88 * @__ctx: Start of private context data
89 */
90 struct aead_request {
91 struct crypto_async_request base;
92
93 unsigned int assoclen;
94 unsigned int cryptlen;
95
96 u8 *iv;
97
98 struct scatterlist *src;
99 struct scatterlist *dst;
100
101 void *__ctx[] CRYPTO_MINALIGN_ATTR;
102 };
103
104 /**
105 * struct aead_alg - AEAD cipher definition
106 * @maxauthsize: Set the maximum authentication tag size supported by the
107 * transformation. A transformation may support smaller tag sizes.
108 * As the authentication tag is a message digest to ensure the
109 * integrity of the encrypted data, a consumer typically wants the
110 * largest authentication tag possible as defined by this
111 * variable.
112 * @setauthsize: Set authentication size for the AEAD transformation. This
113 * function is used to specify the consumer requested size of the
114 * authentication tag to be either generated by the transformation
115 * during encryption or the size of the authentication tag to be
116 * supplied during the decryption operation. This function is also
117 * responsible for checking the authentication tag size for
118 * validity.
119 * @setkey: see struct skcipher_alg
120 * @encrypt: see struct skcipher_alg
121 * @decrypt: see struct skcipher_alg
122 * @ivsize: see struct skcipher_alg
123 * @chunksize: see struct skcipher_alg
124 * @init: Initialize the cryptographic transformation object. This function
125 * is used to initialize the cryptographic transformation object.
126 * This function is called only once at the instantiation time, right
127 * after the transformation context was allocated. In case the
128 * cryptographic hardware has some special requirements which need to
129 * be handled by software, this function shall check for the precise
130 * requirement of the transformation and put any software fallbacks
131 * in place.
132 * @exit: Deinitialize the cryptographic transformation object. This is a
133 * counterpart to @init, used to remove various changes set in
134 * @init.
135 * @base: Definition of a generic crypto cipher algorithm.
136 *
137 * All fields except @ivsize is mandatory and must be filled.
138 */
139 struct aead_alg {
140 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
141 unsigned int keylen);
142 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
143 int (*encrypt)(struct aead_request *req);
144 int (*decrypt)(struct aead_request *req);
145 int (*init)(struct crypto_aead *tfm);
146 void (*exit)(struct crypto_aead *tfm);
147
148 unsigned int ivsize;
149 unsigned int maxauthsize;
150 unsigned int chunksize;
151
152 struct crypto_alg base;
153 };
154
155 struct crypto_aead {
156 unsigned int authsize;
157 unsigned int reqsize;
158
159 struct crypto_tfm base;
160 };
161
162 struct crypto_sync_aead {
163 struct crypto_aead base;
164 };
165
166 #define MAX_SYNC_AEAD_REQSIZE 384
167
168 #define SYNC_AEAD_REQUEST_ON_STACK(name, _tfm) \
169 char __##name##_desc[sizeof(struct aead_request) + \
170 MAX_SYNC_AEAD_REQSIZE \
171 ] CRYPTO_MINALIGN_ATTR; \
172 struct aead_request *name = \
173 (((struct aead_request *)__##name##_desc)->base.tfm = \
174 crypto_sync_aead_tfm((_tfm)), \
175 (void *)__##name##_desc)
176
__crypto_aead_cast(struct crypto_tfm * tfm)177 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
178 {
179 return container_of(tfm, struct crypto_aead, base);
180 }
181
182 /**
183 * crypto_alloc_aead() - allocate AEAD cipher handle
184 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
185 * AEAD cipher
186 * @type: specifies the type of the cipher
187 * @mask: specifies the mask for the cipher
188 *
189 * Allocate a cipher handle for an AEAD. The returned struct
190 * crypto_aead is the cipher handle that is required for any subsequent
191 * API invocation for that AEAD.
192 *
193 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
194 * of an error, PTR_ERR() returns the error code.
195 */
196 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
197
198 struct crypto_sync_aead *crypto_alloc_sync_aead(const char *alg_name, u32 type, u32 mask);
199
crypto_aead_tfm(struct crypto_aead * tfm)200 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
201 {
202 return &tfm->base;
203 }
204
crypto_sync_aead_tfm(struct crypto_sync_aead * tfm)205 static inline struct crypto_tfm *crypto_sync_aead_tfm(struct crypto_sync_aead *tfm)
206 {
207 return crypto_aead_tfm(&tfm->base);
208 }
209
210 /**
211 * crypto_free_aead() - zeroize and free aead handle
212 * @tfm: cipher handle to be freed
213 *
214 * If @tfm is a NULL or error pointer, this function does nothing.
215 */
crypto_free_aead(struct crypto_aead * tfm)216 static inline void crypto_free_aead(struct crypto_aead *tfm)
217 {
218 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
219 }
220
crypto_free_sync_aead(struct crypto_sync_aead * tfm)221 static inline void crypto_free_sync_aead(struct crypto_sync_aead *tfm)
222 {
223 crypto_free_aead(&tfm->base);
224 }
225
226 /**
227 * crypto_has_aead() - Search for the availability of an aead.
228 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
229 * aead
230 * @type: specifies the type of the aead
231 * @mask: specifies the mask for the aead
232 *
233 * Return: true when the aead is known to the kernel crypto API; false
234 * otherwise
235 */
236 int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
237
crypto_aead_driver_name(struct crypto_aead * tfm)238 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
239 {
240 return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
241 }
242
crypto_aead_alg(struct crypto_aead * tfm)243 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
244 {
245 return container_of(crypto_aead_tfm(tfm)->__crt_alg,
246 struct aead_alg, base);
247 }
248
crypto_aead_alg_ivsize(struct aead_alg * alg)249 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
250 {
251 return alg->ivsize;
252 }
253
254 /**
255 * crypto_aead_ivsize() - obtain IV size
256 * @tfm: cipher handle
257 *
258 * The size of the IV for the aead referenced by the cipher handle is
259 * returned. This IV size may be zero if the cipher does not need an IV.
260 *
261 * Return: IV size in bytes
262 */
crypto_aead_ivsize(struct crypto_aead * tfm)263 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
264 {
265 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
266 }
267
crypto_sync_aead_ivsize(struct crypto_sync_aead * tfm)268 static inline unsigned int crypto_sync_aead_ivsize(struct crypto_sync_aead *tfm)
269 {
270 return crypto_aead_ivsize(&tfm->base);
271 }
272
273 /**
274 * crypto_aead_authsize() - obtain maximum authentication data size
275 * @tfm: cipher handle
276 *
277 * The maximum size of the authentication data for the AEAD cipher referenced
278 * by the AEAD cipher handle is returned. The authentication data size may be
279 * zero if the cipher implements a hard-coded maximum.
280 *
281 * The authentication data may also be known as "tag value".
282 *
283 * Return: authentication data size / tag size in bytes
284 */
crypto_aead_authsize(struct crypto_aead * tfm)285 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
286 {
287 return tfm->authsize;
288 }
289
crypto_sync_aead_authsize(struct crypto_sync_aead * tfm)290 static inline unsigned int crypto_sync_aead_authsize(struct crypto_sync_aead *tfm)
291 {
292 return crypto_aead_authsize(&tfm->base);
293 }
294
crypto_aead_alg_maxauthsize(struct aead_alg * alg)295 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
296 {
297 return alg->maxauthsize;
298 }
299
crypto_aead_maxauthsize(struct crypto_aead * aead)300 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
301 {
302 return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
303 }
304
crypto_sync_aead_maxauthsize(struct crypto_sync_aead * tfm)305 static inline unsigned int crypto_sync_aead_maxauthsize(struct crypto_sync_aead *tfm)
306 {
307 return crypto_aead_maxauthsize(&tfm->base);
308 }
309
310 /**
311 * crypto_aead_blocksize() - obtain block size of cipher
312 * @tfm: cipher handle
313 *
314 * The block size for the AEAD referenced with the cipher handle is returned.
315 * The caller may use that information to allocate appropriate memory for the
316 * data returned by the encryption or decryption operation
317 *
318 * Return: block size of cipher
319 */
crypto_aead_blocksize(struct crypto_aead * tfm)320 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
321 {
322 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
323 }
324
crypto_sync_aead_blocksize(struct crypto_sync_aead * tfm)325 static inline unsigned int crypto_sync_aead_blocksize(struct crypto_sync_aead *tfm)
326 {
327 return crypto_aead_blocksize(&tfm->base);
328 }
329
crypto_aead_alignmask(struct crypto_aead * tfm)330 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
331 {
332 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
333 }
334
crypto_aead_get_flags(struct crypto_aead * tfm)335 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
336 {
337 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
338 }
339
crypto_aead_set_flags(struct crypto_aead * tfm,u32 flags)340 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
341 {
342 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
343 }
344
crypto_aead_clear_flags(struct crypto_aead * tfm,u32 flags)345 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
346 {
347 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
348 }
349
crypto_sync_aead_get_flags(struct crypto_sync_aead * tfm)350 static inline u32 crypto_sync_aead_get_flags(struct crypto_sync_aead *tfm)
351 {
352 return crypto_aead_get_flags(&tfm->base);
353 }
354
crypto_sync_aead_set_flags(struct crypto_sync_aead * tfm,u32 flags)355 static inline void crypto_sync_aead_set_flags(struct crypto_sync_aead *tfm, u32 flags)
356 {
357 crypto_aead_set_flags(&tfm->base, flags);
358 }
359
crypto_sync_aead_clear_flags(struct crypto_sync_aead * tfm,u32 flags)360 static inline void crypto_sync_aead_clear_flags(struct crypto_sync_aead *tfm, u32 flags)
361 {
362 crypto_aead_clear_flags(&tfm->base, flags);
363 }
364
365 /**
366 * crypto_aead_setkey() - set key for cipher
367 * @tfm: cipher handle
368 * @key: buffer holding the key
369 * @keylen: length of the key in bytes
370 *
371 * The caller provided key is set for the AEAD referenced by the cipher
372 * handle.
373 *
374 * Note, the key length determines the cipher type. Many block ciphers implement
375 * different cipher modes depending on the key size, such as AES-128 vs AES-192
376 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
377 * is performed.
378 *
379 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
380 */
381 int crypto_aead_setkey(struct crypto_aead *tfm,
382 const u8 *key, unsigned int keylen);
383
crypto_sync_aead_setkey(struct crypto_sync_aead * tfm,const u8 * key,unsigned int keylen)384 static inline int crypto_sync_aead_setkey(struct crypto_sync_aead *tfm,
385 const u8 *key, unsigned int keylen)
386 {
387 return crypto_aead_setkey(&tfm->base, key, keylen);
388 }
389
390 /**
391 * crypto_aead_setauthsize() - set authentication data size
392 * @tfm: cipher handle
393 * @authsize: size of the authentication data / tag in bytes
394 *
395 * Set the authentication data size / tag size. AEAD requires an authentication
396 * tag (or MAC) in addition to the associated data.
397 *
398 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
399 */
400 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
401
crypto_sync_aead_setauthsize(struct crypto_sync_aead * tfm,unsigned int authsize)402 static inline int crypto_sync_aead_setauthsize(struct crypto_sync_aead *tfm,
403 unsigned int authsize)
404 {
405 return crypto_aead_setauthsize(&tfm->base, authsize);
406 }
407
crypto_aead_reqtfm(struct aead_request * req)408 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
409 {
410 return __crypto_aead_cast(req->base.tfm);
411 }
412
crypto_sync_aead_reqtfm(struct aead_request * req)413 static inline struct crypto_sync_aead *crypto_sync_aead_reqtfm(struct aead_request *req)
414 {
415 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
416
417 return container_of(tfm, struct crypto_sync_aead, base);
418 }
419
420 /**
421 * crypto_aead_encrypt() - encrypt plaintext
422 * @req: reference to the aead_request handle that holds all information
423 * needed to perform the cipher operation
424 *
425 * Encrypt plaintext data using the aead_request handle. That data structure
426 * and how it is filled with data is discussed with the aead_request_*
427 * functions.
428 *
429 * IMPORTANT NOTE The encryption operation creates the authentication data /
430 * tag. That data is concatenated with the created ciphertext.
431 * The ciphertext memory size is therefore the given number of
432 * block cipher blocks + the size defined by the
433 * crypto_aead_setauthsize invocation. The caller must ensure
434 * that sufficient memory is available for the ciphertext and
435 * the authentication tag.
436 *
437 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
438 */
439 int crypto_aead_encrypt(struct aead_request *req);
440
441 /**
442 * crypto_aead_decrypt() - decrypt ciphertext
443 * @req: reference to the aead_request handle that holds all information
444 * needed to perform the cipher operation
445 *
446 * Decrypt ciphertext data using the aead_request handle. That data structure
447 * and how it is filled with data is discussed with the aead_request_*
448 * functions.
449 *
450 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
451 * authentication data / tag. That authentication data / tag
452 * must have the size defined by the crypto_aead_setauthsize
453 * invocation.
454 *
455 *
456 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
457 * cipher operation performs the authentication of the data during the
458 * decryption operation. Therefore, the function returns this error if
459 * the authentication of the ciphertext was unsuccessful (i.e. the
460 * integrity of the ciphertext or the associated data was violated);
461 * < 0 if an error occurred.
462 */
463 int crypto_aead_decrypt(struct aead_request *req);
464
465 /**
466 * DOC: Asynchronous AEAD Request Handle
467 *
468 * The aead_request data structure contains all pointers to data required for
469 * the AEAD cipher operation. This includes the cipher handle (which can be
470 * used by multiple aead_request instances), pointer to plaintext and
471 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
472 * aead_request_* API calls in a similar way as AEAD handle to the
473 * crypto_aead_* API calls.
474 */
475
476 /**
477 * crypto_aead_reqsize() - obtain size of the request data structure
478 * @tfm: cipher handle
479 *
480 * Return: number of bytes
481 */
crypto_aead_reqsize(struct crypto_aead * tfm)482 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
483 {
484 return tfm->reqsize;
485 }
486
487 /**
488 * aead_request_set_tfm() - update cipher handle reference in request
489 * @req: request handle to be modified
490 * @tfm: cipher handle that shall be added to the request handle
491 *
492 * Allow the caller to replace the existing aead handle in the request
493 * data structure with a different one.
494 */
aead_request_set_tfm(struct aead_request * req,struct crypto_aead * tfm)495 static inline void aead_request_set_tfm(struct aead_request *req,
496 struct crypto_aead *tfm)
497 {
498 req->base.tfm = crypto_aead_tfm(tfm);
499 }
500
aead_request_set_sync_tfm(struct aead_request * req,struct crypto_sync_aead * tfm)501 static inline void aead_request_set_sync_tfm(struct aead_request *req,
502 struct crypto_sync_aead *tfm)
503 {
504 aead_request_set_tfm(req, &tfm->base);
505 }
506
507 /**
508 * aead_request_alloc() - allocate request data structure
509 * @tfm: cipher handle to be registered with the request
510 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
511 *
512 * Allocate the request data structure that must be used with the AEAD
513 * encrypt and decrypt API calls. During the allocation, the provided aead
514 * handle is registered in the request data structure.
515 *
516 * Return: allocated request handle in case of success, or NULL if out of memory
517 */
aead_request_alloc(struct crypto_aead * tfm,gfp_t gfp)518 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
519 gfp_t gfp)
520 {
521 struct aead_request *req;
522
523 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
524
525 if (likely(req))
526 aead_request_set_tfm(req, tfm);
527
528 return req;
529 }
530
531 /**
532 * aead_request_free() - zeroize and free request data structure
533 * @req: request data structure cipher handle to be freed
534 */
aead_request_free(struct aead_request * req)535 static inline void aead_request_free(struct aead_request *req)
536 {
537 kfree_sensitive(req);
538 }
539
540 /**
541 * aead_request_set_callback() - set asynchronous callback function
542 * @req: request handle
543 * @flags: specify zero or an ORing of the flags
544 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
545 * increase the wait queue beyond the initial maximum size;
546 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
547 * @compl: callback function pointer to be registered with the request handle
548 * @data: The data pointer refers to memory that is not used by the kernel
549 * crypto API, but provided to the callback function for it to use. Here,
550 * the caller can provide a reference to memory the callback function can
551 * operate on. As the callback function is invoked asynchronously to the
552 * related functionality, it may need to access data structures of the
553 * related functionality which can be referenced using this pointer. The
554 * callback function can access the memory via the "data" field in the
555 * crypto_async_request data structure provided to the callback function.
556 *
557 * Setting the callback function that is triggered once the cipher operation
558 * completes
559 *
560 * The callback function is registered with the aead_request handle and
561 * must comply with the following template::
562 *
563 * void callback_function(struct crypto_async_request *req, int error)
564 */
aead_request_set_callback(struct aead_request * req,u32 flags,crypto_completion_t compl,void * data)565 static inline void aead_request_set_callback(struct aead_request *req,
566 u32 flags,
567 crypto_completion_t compl,
568 void *data)
569 {
570 req->base.complete = compl;
571 req->base.data = data;
572 req->base.flags = flags;
573 }
574
575 /**
576 * aead_request_set_crypt - set data buffers
577 * @req: request handle
578 * @src: source scatter / gather list
579 * @dst: destination scatter / gather list
580 * @cryptlen: number of bytes to process from @src
581 * @iv: IV for the cipher operation which must comply with the IV size defined
582 * by crypto_aead_ivsize()
583 *
584 * Setting the source data and destination data scatter / gather lists which
585 * hold the associated data concatenated with the plaintext or ciphertext. See
586 * below for the authentication tag.
587 *
588 * For encryption, the source is treated as the plaintext and the
589 * destination is the ciphertext. For a decryption operation, the use is
590 * reversed - the source is the ciphertext and the destination is the plaintext.
591 *
592 * The memory structure for cipher operation has the following structure:
593 *
594 * - AEAD encryption input: assoc data || plaintext
595 * - AEAD encryption output: assoc data || ciphertext || auth tag
596 * - AEAD decryption input: assoc data || ciphertext || auth tag
597 * - AEAD decryption output: assoc data || plaintext
598 *
599 * Albeit the kernel requires the presence of the AAD buffer, however,
600 * the kernel does not fill the AAD buffer in the output case. If the
601 * caller wants to have that data buffer filled, the caller must either
602 * use an in-place cipher operation (i.e. same memory location for
603 * input/output memory location).
604 */
aead_request_set_crypt(struct aead_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,u8 * iv)605 static inline void aead_request_set_crypt(struct aead_request *req,
606 struct scatterlist *src,
607 struct scatterlist *dst,
608 unsigned int cryptlen, u8 *iv)
609 {
610 req->src = src;
611 req->dst = dst;
612 req->cryptlen = cryptlen;
613 req->iv = iv;
614 }
615
616 /**
617 * aead_request_set_ad - set associated data information
618 * @req: request handle
619 * @assoclen: number of bytes in associated data
620 *
621 * Setting the AD information. This function sets the length of
622 * the associated data.
623 */
aead_request_set_ad(struct aead_request * req,unsigned int assoclen)624 static inline void aead_request_set_ad(struct aead_request *req,
625 unsigned int assoclen)
626 {
627 req->assoclen = assoclen;
628 }
629
630 #endif /* _CRYPTO_AEAD_H */
631