xref: /linux/include/crypto/aead.h (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * AEAD: Authenticated Encryption with Associated Data
3  *
4  * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_AEAD_H
14 #define _CRYPTO_AEAD_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22  *
23  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24  * (listed as type "aead" in /proc/crypto)
25  *
26  * The most prominent examples for this type of encryption is GCM and CCM.
27  * However, the kernel supports other types of AEAD ciphers which are defined
28  * with the following cipher string:
29  *
30  *	authenc(keyed message digest, block cipher)
31  *
32  * For example: authenc(hmac(sha256), cbc(aes))
33  *
34  * The example code provided for the asynchronous block cipher operation
35  * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
36  * the *aead* pendants discussed in the following. In addition, for the AEAD
37  * operation, the aead_request_set_assoc function must be used to set the
38  * pointer to the associated data memory location before performing the
39  * encryption or decryption operation. In case of an encryption, the associated
40  * data memory is filled during the encryption operation. For decryption, the
41  * associated data memory must contain data that is used to verify the integrity
42  * of the decrypted data. Another deviation from the asynchronous block cipher
43  * operation is that the caller should explicitly check for -EBADMSG of the
44  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45  * a breach in the integrity of the message. In essence, that -EBADMSG error
46  * code is the key bonus an AEAD cipher has over "standard" block chaining
47  * modes.
48  */
49 
50 /**
51  *	struct aead_request - AEAD request
52  *	@base: Common attributes for async crypto requests
53  *	@old: Boolean whether the old or new AEAD API is used
54  *	@assoclen: Length in bytes of associated data for authentication
55  *	@cryptlen: Length of data to be encrypted or decrypted
56  *	@iv: Initialisation vector
57  *	@assoc: Associated data
58  *	@src: Source data
59  *	@dst: Destination data
60  *	@__ctx: Start of private context data
61  */
62 struct aead_request {
63 	struct crypto_async_request base;
64 
65 	bool old;
66 
67 	unsigned int assoclen;
68 	unsigned int cryptlen;
69 
70 	u8 *iv;
71 
72 	struct scatterlist *assoc;
73 	struct scatterlist *src;
74 	struct scatterlist *dst;
75 
76 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
77 };
78 
79 /**
80  *	struct aead_givcrypt_request - AEAD request with IV generation
81  *	@seq: Sequence number for IV generation
82  *	@giv: Space for generated IV
83  *	@areq: The AEAD request itself
84  */
85 struct aead_givcrypt_request {
86 	u64 seq;
87 	u8 *giv;
88 
89 	struct aead_request areq;
90 };
91 
92 /**
93  * struct aead_alg - AEAD cipher definition
94  * @maxauthsize: Set the maximum authentication tag size supported by the
95  *		 transformation. A transformation may support smaller tag sizes.
96  *		 As the authentication tag is a message digest to ensure the
97  *		 integrity of the encrypted data, a consumer typically wants the
98  *		 largest authentication tag possible as defined by this
99  *		 variable.
100  * @setauthsize: Set authentication size for the AEAD transformation. This
101  *		 function is used to specify the consumer requested size of the
102  * 		 authentication tag to be either generated by the transformation
103  *		 during encryption or the size of the authentication tag to be
104  *		 supplied during the decryption operation. This function is also
105  *		 responsible for checking the authentication tag size for
106  *		 validity.
107  * @setkey: see struct ablkcipher_alg
108  * @encrypt: see struct ablkcipher_alg
109  * @decrypt: see struct ablkcipher_alg
110  * @geniv: see struct ablkcipher_alg
111  * @ivsize: see struct ablkcipher_alg
112  * @init: Initialize the cryptographic transformation object. This function
113  *	  is used to initialize the cryptographic transformation object.
114  *	  This function is called only once at the instantiation time, right
115  *	  after the transformation context was allocated. In case the
116  *	  cryptographic hardware has some special requirements which need to
117  *	  be handled by software, this function shall check for the precise
118  *	  requirement of the transformation and put any software fallbacks
119  *	  in place.
120  * @exit: Deinitialize the cryptographic transformation object. This is a
121  *	  counterpart to @init, used to remove various changes set in
122  *	  @init.
123  *
124  * All fields except @ivsize is mandatory and must be filled.
125  */
126 struct aead_alg {
127 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
128 	              unsigned int keylen);
129 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
130 	int (*encrypt)(struct aead_request *req);
131 	int (*decrypt)(struct aead_request *req);
132 	int (*init)(struct crypto_aead *tfm);
133 	void (*exit)(struct crypto_aead *tfm);
134 
135 	const char *geniv;
136 
137 	unsigned int ivsize;
138 	unsigned int maxauthsize;
139 
140 	struct crypto_alg base;
141 };
142 
143 struct crypto_aead {
144 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
145 	              unsigned int keylen);
146 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
147 	int (*encrypt)(struct aead_request *req);
148 	int (*decrypt)(struct aead_request *req);
149 	int (*givencrypt)(struct aead_givcrypt_request *req);
150 	int (*givdecrypt)(struct aead_givcrypt_request *req);
151 
152 	struct crypto_aead *child;
153 
154 	unsigned int authsize;
155 	unsigned int reqsize;
156 
157 	struct crypto_tfm base;
158 };
159 
160 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
161 {
162 	return container_of(tfm, struct crypto_aead, base);
163 }
164 
165 /**
166  * crypto_alloc_aead() - allocate AEAD cipher handle
167  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
168  *	     AEAD cipher
169  * @type: specifies the type of the cipher
170  * @mask: specifies the mask for the cipher
171  *
172  * Allocate a cipher handle for an AEAD. The returned struct
173  * crypto_aead is the cipher handle that is required for any subsequent
174  * API invocation for that AEAD.
175  *
176  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
177  *	   of an error, PTR_ERR() returns the error code.
178  */
179 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
180 
181 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
182 {
183 	return &tfm->base;
184 }
185 
186 /**
187  * crypto_free_aead() - zeroize and free aead handle
188  * @tfm: cipher handle to be freed
189  */
190 static inline void crypto_free_aead(struct crypto_aead *tfm)
191 {
192 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
193 }
194 
195 static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
196 {
197 	return tfm;
198 }
199 
200 static inline struct old_aead_alg *crypto_old_aead_alg(struct crypto_aead *tfm)
201 {
202 	return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
203 }
204 
205 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
206 {
207 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
208 			    struct aead_alg, base);
209 }
210 
211 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
212 {
213 	return alg->base.cra_aead.encrypt ? alg->base.cra_aead.ivsize :
214 					    alg->ivsize;
215 }
216 
217 /**
218  * crypto_aead_ivsize() - obtain IV size
219  * @tfm: cipher handle
220  *
221  * The size of the IV for the aead referenced by the cipher handle is
222  * returned. This IV size may be zero if the cipher does not need an IV.
223  *
224  * Return: IV size in bytes
225  */
226 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
227 {
228 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
229 }
230 
231 /**
232  * crypto_aead_authsize() - obtain maximum authentication data size
233  * @tfm: cipher handle
234  *
235  * The maximum size of the authentication data for the AEAD cipher referenced
236  * by the AEAD cipher handle is returned. The authentication data size may be
237  * zero if the cipher implements a hard-coded maximum.
238  *
239  * The authentication data may also be known as "tag value".
240  *
241  * Return: authentication data size / tag size in bytes
242  */
243 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
244 {
245 	return tfm->authsize;
246 }
247 
248 /**
249  * crypto_aead_blocksize() - obtain block size of cipher
250  * @tfm: cipher handle
251  *
252  * The block size for the AEAD referenced with the cipher handle is returned.
253  * The caller may use that information to allocate appropriate memory for the
254  * data returned by the encryption or decryption operation
255  *
256  * Return: block size of cipher
257  */
258 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
259 {
260 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
261 }
262 
263 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
264 {
265 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
266 }
267 
268 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
269 {
270 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
271 }
272 
273 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
274 {
275 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
276 }
277 
278 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
279 {
280 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
281 }
282 
283 /**
284  * crypto_aead_setkey() - set key for cipher
285  * @tfm: cipher handle
286  * @key: buffer holding the key
287  * @keylen: length of the key in bytes
288  *
289  * The caller provided key is set for the AEAD referenced by the cipher
290  * handle.
291  *
292  * Note, the key length determines the cipher type. Many block ciphers implement
293  * different cipher modes depending on the key size, such as AES-128 vs AES-192
294  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
295  * is performed.
296  *
297  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
298  */
299 int crypto_aead_setkey(struct crypto_aead *tfm,
300 		       const u8 *key, unsigned int keylen);
301 
302 /**
303  * crypto_aead_setauthsize() - set authentication data size
304  * @tfm: cipher handle
305  * @authsize: size of the authentication data / tag in bytes
306  *
307  * Set the authentication data size / tag size. AEAD requires an authentication
308  * tag (or MAC) in addition to the associated data.
309  *
310  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
311  */
312 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
313 
314 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
315 {
316 	return __crypto_aead_cast(req->base.tfm);
317 }
318 
319 /**
320  * crypto_aead_encrypt() - encrypt plaintext
321  * @req: reference to the aead_request handle that holds all information
322  *	 needed to perform the cipher operation
323  *
324  * Encrypt plaintext data using the aead_request handle. That data structure
325  * and how it is filled with data is discussed with the aead_request_*
326  * functions.
327  *
328  * IMPORTANT NOTE The encryption operation creates the authentication data /
329  *		  tag. That data is concatenated with the created ciphertext.
330  *		  The ciphertext memory size is therefore the given number of
331  *		  block cipher blocks + the size defined by the
332  *		  crypto_aead_setauthsize invocation. The caller must ensure
333  *		  that sufficient memory is available for the ciphertext and
334  *		  the authentication tag.
335  *
336  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
337  */
338 static inline int crypto_aead_encrypt(struct aead_request *req)
339 {
340 	return crypto_aead_reqtfm(req)->encrypt(req);
341 }
342 
343 /**
344  * crypto_aead_decrypt() - decrypt ciphertext
345  * @req: reference to the ablkcipher_request handle that holds all information
346  *	 needed to perform the cipher operation
347  *
348  * Decrypt ciphertext data using the aead_request handle. That data structure
349  * and how it is filled with data is discussed with the aead_request_*
350  * functions.
351  *
352  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
353  *		  authentication data / tag. That authentication data / tag
354  *		  must have the size defined by the crypto_aead_setauthsize
355  *		  invocation.
356  *
357  *
358  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
359  *	   cipher operation performs the authentication of the data during the
360  *	   decryption operation. Therefore, the function returns this error if
361  *	   the authentication of the ciphertext was unsuccessful (i.e. the
362  *	   integrity of the ciphertext or the associated data was violated);
363  *	   < 0 if an error occurred.
364  */
365 static inline int crypto_aead_decrypt(struct aead_request *req)
366 {
367 	if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
368 		return -EINVAL;
369 
370 	return crypto_aead_reqtfm(req)->decrypt(req);
371 }
372 
373 /**
374  * DOC: Asynchronous AEAD Request Handle
375  *
376  * The aead_request data structure contains all pointers to data required for
377  * the AEAD cipher operation. This includes the cipher handle (which can be
378  * used by multiple aead_request instances), pointer to plaintext and
379  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
380  * aead_request_* API calls in a similar way as AEAD handle to the
381  * crypto_aead_* API calls.
382  */
383 
384 /**
385  * crypto_aead_reqsize() - obtain size of the request data structure
386  * @tfm: cipher handle
387  *
388  * Return: number of bytes
389  */
390 unsigned int crypto_aead_reqsize(struct crypto_aead *tfm);
391 
392 /**
393  * aead_request_set_tfm() - update cipher handle reference in request
394  * @req: request handle to be modified
395  * @tfm: cipher handle that shall be added to the request handle
396  *
397  * Allow the caller to replace the existing aead handle in the request
398  * data structure with a different one.
399  */
400 static inline void aead_request_set_tfm(struct aead_request *req,
401 					struct crypto_aead *tfm)
402 {
403 	req->base.tfm = crypto_aead_tfm(tfm->child);
404 }
405 
406 /**
407  * aead_request_alloc() - allocate request data structure
408  * @tfm: cipher handle to be registered with the request
409  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
410  *
411  * Allocate the request data structure that must be used with the AEAD
412  * encrypt and decrypt API calls. During the allocation, the provided aead
413  * handle is registered in the request data structure.
414  *
415  * Return: allocated request handle in case of success; IS_ERR() is true in case
416  *	   of an error, PTR_ERR() returns the error code.
417  */
418 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
419 						      gfp_t gfp)
420 {
421 	struct aead_request *req;
422 
423 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
424 
425 	if (likely(req))
426 		aead_request_set_tfm(req, tfm);
427 
428 	return req;
429 }
430 
431 /**
432  * aead_request_free() - zeroize and free request data structure
433  * @req: request data structure cipher handle to be freed
434  */
435 static inline void aead_request_free(struct aead_request *req)
436 {
437 	kzfree(req);
438 }
439 
440 /**
441  * aead_request_set_callback() - set asynchronous callback function
442  * @req: request handle
443  * @flags: specify zero or an ORing of the flags
444  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
445  *	   increase the wait queue beyond the initial maximum size;
446  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
447  * @compl: callback function pointer to be registered with the request handle
448  * @data: The data pointer refers to memory that is not used by the kernel
449  *	  crypto API, but provided to the callback function for it to use. Here,
450  *	  the caller can provide a reference to memory the callback function can
451  *	  operate on. As the callback function is invoked asynchronously to the
452  *	  related functionality, it may need to access data structures of the
453  *	  related functionality which can be referenced using this pointer. The
454  *	  callback function can access the memory via the "data" field in the
455  *	  crypto_async_request data structure provided to the callback function.
456  *
457  * Setting the callback function that is triggered once the cipher operation
458  * completes
459  *
460  * The callback function is registered with the aead_request handle and
461  * must comply with the following template
462  *
463  *	void callback_function(struct crypto_async_request *req, int error)
464  */
465 static inline void aead_request_set_callback(struct aead_request *req,
466 					     u32 flags,
467 					     crypto_completion_t compl,
468 					     void *data)
469 {
470 	req->base.complete = compl;
471 	req->base.data = data;
472 	req->base.flags = flags;
473 }
474 
475 /**
476  * aead_request_set_crypt - set data buffers
477  * @req: request handle
478  * @src: source scatter / gather list
479  * @dst: destination scatter / gather list
480  * @cryptlen: number of bytes to process from @src
481  * @iv: IV for the cipher operation which must comply with the IV size defined
482  *      by crypto_aead_ivsize()
483  *
484  * Setting the source data and destination data scatter / gather lists which
485  * hold the associated data concatenated with the plaintext or ciphertext. See
486  * below for the authentication tag.
487  *
488  * For encryption, the source is treated as the plaintext and the
489  * destination is the ciphertext. For a decryption operation, the use is
490  * reversed - the source is the ciphertext and the destination is the plaintext.
491  *
492  * For both src/dst the layout is associated data, plain/cipher text,
493  * authentication tag.
494  *
495  * The content of the AD in the destination buffer after processing
496  * will either be untouched, or it will contain a copy of the AD
497  * from the source buffer.  In order to ensure that it always has
498  * a copy of the AD, the user must copy the AD over either before
499  * or after processing.  Of course this is not relevant if the user
500  * is doing in-place processing where src == dst.
501  *
502  * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
503  *		  the caller must concatenate the ciphertext followed by the
504  *		  authentication tag and provide the entire data stream to the
505  *		  decryption operation (i.e. the data length used for the
506  *		  initialization of the scatterlist and the data length for the
507  *		  decryption operation is identical). For encryption, however,
508  *		  the authentication tag is created while encrypting the data.
509  *		  The destination buffer must hold sufficient space for the
510  *		  ciphertext and the authentication tag while the encryption
511  *		  invocation must only point to the plaintext data size. The
512  *		  following code snippet illustrates the memory usage
513  *		  buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
514  *		  sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
515  *		  aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
516  */
517 static inline void aead_request_set_crypt(struct aead_request *req,
518 					  struct scatterlist *src,
519 					  struct scatterlist *dst,
520 					  unsigned int cryptlen, u8 *iv)
521 {
522 	req->src = src;
523 	req->dst = dst;
524 	req->cryptlen = cryptlen;
525 	req->iv = iv;
526 }
527 
528 /**
529  * aead_request_set_assoc() - set the associated data scatter / gather list
530  * @req: request handle
531  * @assoc: associated data scatter / gather list
532  * @assoclen: number of bytes to process from @assoc
533  *
534  * Obsolete, do not use.
535  */
536 static inline void aead_request_set_assoc(struct aead_request *req,
537 					  struct scatterlist *assoc,
538 					  unsigned int assoclen)
539 {
540 	req->assoc = assoc;
541 	req->assoclen = assoclen;
542 	req->old = true;
543 }
544 
545 /**
546  * aead_request_set_ad - set associated data information
547  * @req: request handle
548  * @assoclen: number of bytes in associated data
549  *
550  * Setting the AD information.  This function sets the length of
551  * the associated data.
552  */
553 static inline void aead_request_set_ad(struct aead_request *req,
554 				       unsigned int assoclen)
555 {
556 	req->assoclen = assoclen;
557 	req->old = false;
558 }
559 
560 static inline struct crypto_aead *aead_givcrypt_reqtfm(
561 	struct aead_givcrypt_request *req)
562 {
563 	return crypto_aead_reqtfm(&req->areq);
564 }
565 
566 static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
567 {
568 	return aead_givcrypt_reqtfm(req)->givencrypt(req);
569 };
570 
571 static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
572 {
573 	return aead_givcrypt_reqtfm(req)->givdecrypt(req);
574 };
575 
576 static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
577 					 struct crypto_aead *tfm)
578 {
579 	req->areq.base.tfm = crypto_aead_tfm(tfm);
580 }
581 
582 static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
583 	struct crypto_aead *tfm, gfp_t gfp)
584 {
585 	struct aead_givcrypt_request *req;
586 
587 	req = kmalloc(sizeof(struct aead_givcrypt_request) +
588 		      crypto_aead_reqsize(tfm), gfp);
589 
590 	if (likely(req))
591 		aead_givcrypt_set_tfm(req, tfm);
592 
593 	return req;
594 }
595 
596 static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
597 {
598 	kfree(req);
599 }
600 
601 static inline void aead_givcrypt_set_callback(
602 	struct aead_givcrypt_request *req, u32 flags,
603 	crypto_completion_t compl, void *data)
604 {
605 	aead_request_set_callback(&req->areq, flags, compl, data);
606 }
607 
608 static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
609 					   struct scatterlist *src,
610 					   struct scatterlist *dst,
611 					   unsigned int nbytes, void *iv)
612 {
613 	aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
614 }
615 
616 static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
617 					   struct scatterlist *assoc,
618 					   unsigned int assoclen)
619 {
620 	aead_request_set_assoc(&req->areq, assoc, assoclen);
621 }
622 
623 static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
624 					 u8 *giv, u64 seq)
625 {
626 	req->giv = giv;
627 	req->seq = seq;
628 }
629 
630 #endif	/* _CRYPTO_AEAD_H */
631