1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Asynchronous Compression operations 4 * 5 * Copyright (c) 2016, Intel Corporation 6 * Authors: Weigang Li <weigang.li@intel.com> 7 * Giovanni Cabiddu <giovanni.cabiddu@intel.com> 8 */ 9 #ifndef _CRYPTO_ACOMP_H 10 #define _CRYPTO_ACOMP_H 11 #include <linux/crypto.h> 12 13 #define CRYPTO_ACOMP_ALLOC_OUTPUT 0x00000001 14 #define CRYPTO_ACOMP_DST_MAX 131072 15 16 /** 17 * struct acomp_req - asynchronous (de)compression request 18 * 19 * @base: Common attributes for asynchronous crypto requests 20 * @src: Source Data 21 * @dst: Destination data 22 * @slen: Size of the input buffer 23 * @dlen: Size of the output buffer and number of bytes produced 24 * @flags: Internal flags 25 * @__ctx: Start of private context data 26 */ 27 struct acomp_req { 28 struct crypto_async_request base; 29 struct scatterlist *src; 30 struct scatterlist *dst; 31 unsigned int slen; 32 unsigned int dlen; 33 u32 flags; 34 void *__ctx[] CRYPTO_MINALIGN_ATTR; 35 }; 36 37 /** 38 * struct crypto_acomp - user-instantiated objects which encapsulate 39 * algorithms and core processing logic 40 * 41 * @compress: Function performs a compress operation 42 * @decompress: Function performs a de-compress operation 43 * @dst_free: Frees destination buffer if allocated inside the 44 * algorithm 45 * @reqsize: Context size for (de)compression requests 46 * @base: Common crypto API algorithm data structure 47 */ 48 struct crypto_acomp { 49 int (*compress)(struct acomp_req *req); 50 int (*decompress)(struct acomp_req *req); 51 void (*dst_free)(struct scatterlist *dst); 52 unsigned int reqsize; 53 struct crypto_tfm base; 54 }; 55 56 /** 57 * struct acomp_alg - asynchronous compression algorithm 58 * 59 * @compress: Function performs a compress operation 60 * @decompress: Function performs a de-compress operation 61 * @dst_free: Frees destination buffer if allocated inside the algorithm 62 * @init: Initialize the cryptographic transformation object. 63 * This function is used to initialize the cryptographic 64 * transformation object. This function is called only once at 65 * the instantiation time, right after the transformation context 66 * was allocated. In case the cryptographic hardware has some 67 * special requirements which need to be handled by software, this 68 * function shall check for the precise requirement of the 69 * transformation and put any software fallbacks in place. 70 * @exit: Deinitialize the cryptographic transformation object. This is a 71 * counterpart to @init, used to remove various changes set in 72 * @init. 73 * 74 * @reqsize: Context size for (de)compression requests 75 * @base: Common crypto API algorithm data structure 76 */ 77 struct acomp_alg { 78 int (*compress)(struct acomp_req *req); 79 int (*decompress)(struct acomp_req *req); 80 void (*dst_free)(struct scatterlist *dst); 81 int (*init)(struct crypto_acomp *tfm); 82 void (*exit)(struct crypto_acomp *tfm); 83 unsigned int reqsize; 84 struct crypto_alg base; 85 }; 86 87 /** 88 * DOC: Asynchronous Compression API 89 * 90 * The Asynchronous Compression API is used with the algorithms of type 91 * CRYPTO_ALG_TYPE_ACOMPRESS (listed as type "acomp" in /proc/crypto) 92 */ 93 94 /** 95 * crypto_alloc_acomp() -- allocate ACOMPRESS tfm handle 96 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 97 * compression algorithm e.g. "deflate" 98 * @type: specifies the type of the algorithm 99 * @mask: specifies the mask for the algorithm 100 * 101 * Allocate a handle for a compression algorithm. The returned struct 102 * crypto_acomp is the handle that is required for any subsequent 103 * API invocation for the compression operations. 104 * 105 * Return: allocated handle in case of success; IS_ERR() is true in case 106 * of an error, PTR_ERR() returns the error code. 107 */ 108 struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type, 109 u32 mask); 110 /** 111 * crypto_alloc_acomp_node() -- allocate ACOMPRESS tfm handle with desired NUMA node 112 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 113 * compression algorithm e.g. "deflate" 114 * @type: specifies the type of the algorithm 115 * @mask: specifies the mask for the algorithm 116 * @node: specifies the NUMA node the ZIP hardware belongs to 117 * 118 * Allocate a handle for a compression algorithm. Drivers should try to use 119 * (de)compressors on the specified NUMA node. 120 * The returned struct crypto_acomp is the handle that is required for any 121 * subsequent API invocation for the compression operations. 122 * 123 * Return: allocated handle in case of success; IS_ERR() is true in case 124 * of an error, PTR_ERR() returns the error code. 125 */ 126 struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type, 127 u32 mask, int node); 128 129 static inline struct crypto_tfm *crypto_acomp_tfm(struct crypto_acomp *tfm) 130 { 131 return &tfm->base; 132 } 133 134 static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg) 135 { 136 return container_of(alg, struct acomp_alg, base); 137 } 138 139 static inline struct crypto_acomp *__crypto_acomp_tfm(struct crypto_tfm *tfm) 140 { 141 return container_of(tfm, struct crypto_acomp, base); 142 } 143 144 static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm) 145 { 146 return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg); 147 } 148 149 static inline unsigned int crypto_acomp_reqsize(struct crypto_acomp *tfm) 150 { 151 return tfm->reqsize; 152 } 153 154 static inline void acomp_request_set_tfm(struct acomp_req *req, 155 struct crypto_acomp *tfm) 156 { 157 req->base.tfm = crypto_acomp_tfm(tfm); 158 } 159 160 static inline struct crypto_acomp *crypto_acomp_reqtfm(struct acomp_req *req) 161 { 162 return __crypto_acomp_tfm(req->base.tfm); 163 } 164 165 /** 166 * crypto_free_acomp() -- free ACOMPRESS tfm handle 167 * 168 * @tfm: ACOMPRESS tfm handle allocated with crypto_alloc_acomp() 169 * 170 * If @tfm is a NULL or error pointer, this function does nothing. 171 */ 172 static inline void crypto_free_acomp(struct crypto_acomp *tfm) 173 { 174 crypto_destroy_tfm(tfm, crypto_acomp_tfm(tfm)); 175 } 176 177 static inline int crypto_has_acomp(const char *alg_name, u32 type, u32 mask) 178 { 179 type &= ~CRYPTO_ALG_TYPE_MASK; 180 type |= CRYPTO_ALG_TYPE_ACOMPRESS; 181 mask |= CRYPTO_ALG_TYPE_ACOMPRESS_MASK; 182 183 return crypto_has_alg(alg_name, type, mask); 184 } 185 186 /** 187 * acomp_request_alloc() -- allocates asynchronous (de)compression request 188 * 189 * @tfm: ACOMPRESS tfm handle allocated with crypto_alloc_acomp() 190 * 191 * Return: allocated handle in case of success or NULL in case of an error 192 */ 193 struct acomp_req *acomp_request_alloc(struct crypto_acomp *tfm); 194 195 /** 196 * acomp_request_free() -- zeroize and free asynchronous (de)compression 197 * request as well as the output buffer if allocated 198 * inside the algorithm 199 * 200 * @req: request to free 201 */ 202 void acomp_request_free(struct acomp_req *req); 203 204 /** 205 * acomp_request_set_callback() -- Sets an asynchronous callback 206 * 207 * Callback will be called when an asynchronous operation on a given 208 * request is finished. 209 * 210 * @req: request that the callback will be set for 211 * @flgs: specify for instance if the operation may backlog 212 * @cmlp: callback which will be called 213 * @data: private data used by the caller 214 */ 215 static inline void acomp_request_set_callback(struct acomp_req *req, 216 u32 flgs, 217 crypto_completion_t cmpl, 218 void *data) 219 { 220 req->base.complete = cmpl; 221 req->base.data = data; 222 req->base.flags = flgs; 223 } 224 225 /** 226 * acomp_request_set_params() -- Sets request parameters 227 * 228 * Sets parameters required by an acomp operation 229 * 230 * @req: asynchronous compress request 231 * @src: pointer to input buffer scatterlist 232 * @dst: pointer to output buffer scatterlist. If this is NULL, the 233 * acomp layer will allocate the output memory 234 * @slen: size of the input buffer 235 * @dlen: size of the output buffer. If dst is NULL, this can be used by 236 * the user to specify the maximum amount of memory to allocate 237 */ 238 static inline void acomp_request_set_params(struct acomp_req *req, 239 struct scatterlist *src, 240 struct scatterlist *dst, 241 unsigned int slen, 242 unsigned int dlen) 243 { 244 req->src = src; 245 req->dst = dst; 246 req->slen = slen; 247 req->dlen = dlen; 248 249 if (!req->dst) 250 req->flags |= CRYPTO_ACOMP_ALLOC_OUTPUT; 251 } 252 253 /** 254 * crypto_acomp_compress() -- Invoke asynchronous compress operation 255 * 256 * Function invokes the asynchronous compress operation 257 * 258 * @req: asynchronous compress request 259 * 260 * Return: zero on success; error code in case of error 261 */ 262 static inline int crypto_acomp_compress(struct acomp_req *req) 263 { 264 struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); 265 struct crypto_alg *alg = tfm->base.__crt_alg; 266 unsigned int slen = req->slen; 267 int ret; 268 269 crypto_stats_get(alg); 270 ret = tfm->compress(req); 271 crypto_stats_compress(slen, ret, alg); 272 return ret; 273 } 274 275 /** 276 * crypto_acomp_decompress() -- Invoke asynchronous decompress operation 277 * 278 * Function invokes the asynchronous decompress operation 279 * 280 * @req: asynchronous compress request 281 * 282 * Return: zero on success; error code in case of error 283 */ 284 static inline int crypto_acomp_decompress(struct acomp_req *req) 285 { 286 struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); 287 struct crypto_alg *alg = tfm->base.__crt_alg; 288 unsigned int slen = req->slen; 289 int ret; 290 291 crypto_stats_get(alg); 292 ret = tfm->decompress(req); 293 crypto_stats_decompress(slen, ret, alg); 294 return ret; 295 } 296 297 #endif 298