1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11 #ifndef _ASM_GENERIC__TLB_H 12 #define _ASM_GENERIC__TLB_H 13 14 #include <linux/mmu_notifier.h> 15 #include <linux/swap.h> 16 #include <linux/hugetlb_inline.h> 17 #include <asm/tlbflush.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25 #ifndef nmi_uaccess_okay 26 # define nmi_uaccess_okay() true 27 #endif 28 29 #ifdef CONFIG_MMU 30 31 /* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu() 50 * 51 * start and finish a mmu_gather 52 * 53 * Finish in particular will issue a (final) TLB invalidate and free 54 * all (remaining) queued pages. 55 * 56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 57 * 58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 59 * there's large holes between the VMAs. 60 * 61 * - tlb_remove_table() 62 * 63 * tlb_remove_table() is the basic primitive to free page-table directories 64 * (__p*_free_tlb()). In it's most primitive form it is an alias for 65 * tlb_remove_page() below, for when page directories are pages and have no 66 * additional constraints. 67 * 68 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. 69 * 70 * - tlb_remove_page() / __tlb_remove_page() 71 * - tlb_remove_page_size() / __tlb_remove_page_size() 72 * - __tlb_remove_folio_pages() 73 * 74 * __tlb_remove_page_size() is the basic primitive that queues a page for 75 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a 76 * boolean indicating if the queue is (now) full and a call to 77 * tlb_flush_mmu() is required. 78 * 79 * tlb_remove_page() and tlb_remove_page_size() imply the call to 80 * tlb_flush_mmu() when required and has no return value. 81 * 82 * __tlb_remove_folio_pages() is similar to __tlb_remove_page(), however, 83 * instead of removing a single page, remove the given number of consecutive 84 * pages that are all part of the same (large) folio: just like calling 85 * __tlb_remove_page() on each page individually. 86 * 87 * - tlb_change_page_size() 88 * 89 * call before __tlb_remove_page*() to set the current page-size; implies a 90 * possible tlb_flush_mmu() call. 91 * 92 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 93 * 94 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 95 * related state, like the range) 96 * 97 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 98 * whatever pages are still batched. 99 * 100 * - mmu_gather::fullmm 101 * 102 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free 103 * the entire mm; this allows a number of optimizations. 104 * 105 * - We can ignore tlb_{start,end}_vma(); because we don't 106 * care about ranges. Everything will be shot down. 107 * 108 * - (RISC) architectures that use ASIDs can cycle to a new ASID 109 * and delay the invalidation until ASID space runs out. 110 * 111 * - mmu_gather::need_flush_all 112 * 113 * A flag that can be set by the arch code if it wants to force 114 * flush the entire TLB irrespective of the range. For instance 115 * x86-PAE needs this when changing top-level entries. 116 * 117 * And allows the architecture to provide and implement tlb_flush(): 118 * 119 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 120 * use of: 121 * 122 * - mmu_gather::start / mmu_gather::end 123 * 124 * which provides the range that needs to be flushed to cover the pages to 125 * be freed. 126 * 127 * - mmu_gather::freed_tables 128 * 129 * set when we freed page table pages 130 * 131 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 132 * 133 * returns the smallest TLB entry size unmapped in this range. 134 * 135 * If an architecture does not provide tlb_flush() a default implementation 136 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 137 * specified, in which case we'll default to flush_tlb_mm(). 138 * 139 * Additionally there are a few opt-in features: 140 * 141 * MMU_GATHER_PAGE_SIZE 142 * 143 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 144 * changes the size and provides mmu_gather::page_size to tlb_flush(). 145 * 146 * This might be useful if your architecture has size specific TLB 147 * invalidation instructions. 148 * 149 * MMU_GATHER_TABLE_FREE 150 * 151 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 152 * for page directores (__p*_free_tlb()). 153 * 154 * Useful if your architecture has non-page page directories. 155 * 156 * When used, an architecture is expected to provide __tlb_remove_table() 157 * which does the actual freeing of these pages. 158 * 159 * MMU_GATHER_RCU_TABLE_FREE 160 * 161 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see 162 * comment below). 163 * 164 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 165 * and therefore doesn't naturally serialize with software page-table walkers. 166 * 167 * MMU_GATHER_NO_FLUSH_CACHE 168 * 169 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called 170 * before unmapping a VMA. 171 * 172 * NOTE: strictly speaking we shouldn't have this knob and instead rely on 173 * flush_cache_range() being a NOP, except Sparc64 seems to be 174 * different here. 175 * 176 * MMU_GATHER_MERGE_VMAS 177 * 178 * Indicates the architecture wants to merge ranges over VMAs; typical when 179 * multiple range invalidates are more expensive than a full invalidate. 180 * 181 * MMU_GATHER_NO_RANGE 182 * 183 * Use this if your architecture lacks an efficient flush_tlb_range(). This 184 * option implies MMU_GATHER_MERGE_VMAS above. 185 * 186 * MMU_GATHER_NO_GATHER 187 * 188 * If the option is set the mmu_gather will not track individual pages for 189 * delayed page free anymore. A platform that enables the option needs to 190 * provide its own implementation of the __tlb_remove_page_size() function to 191 * free pages. 192 * 193 * This is useful if your architecture already flushes TLB entries in the 194 * various ptep_get_and_clear() functions. 195 */ 196 197 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 198 199 struct mmu_table_batch { 200 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 201 struct rcu_head rcu; 202 #endif 203 unsigned int nr; 204 void *tables[]; 205 }; 206 207 #define MAX_TABLE_BATCH \ 208 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 209 210 extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 211 212 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ 213 214 /* 215 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based 216 * page directories and we can use the normal page batching to free them. 217 */ 218 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) 219 220 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 221 222 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 223 /* 224 * This allows an architecture that does not use the linux page-tables for 225 * hardware to skip the TLBI when freeing page tables. 226 */ 227 #ifndef tlb_needs_table_invalidate 228 #define tlb_needs_table_invalidate() (true) 229 #endif 230 231 void tlb_remove_table_sync_one(void); 232 233 #else 234 235 #ifdef tlb_needs_table_invalidate 236 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE 237 #endif 238 239 static inline void tlb_remove_table_sync_one(void) { } 240 241 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 242 243 244 #ifndef CONFIG_MMU_GATHER_NO_GATHER 245 /* 246 * If we can't allocate a page to make a big batch of page pointers 247 * to work on, then just handle a few from the on-stack structure. 248 */ 249 #define MMU_GATHER_BUNDLE 8 250 251 struct mmu_gather_batch { 252 struct mmu_gather_batch *next; 253 unsigned int nr; 254 unsigned int max; 255 struct encoded_page *encoded_pages[]; 256 }; 257 258 #define MAX_GATHER_BATCH \ 259 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 260 261 /* 262 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 263 * lockups for non-preemptible kernels on huge machines when a lot of memory 264 * is zapped during unmapping. 265 * 10K pages freed at once should be safe even without a preemption point. 266 */ 267 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 268 269 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, 270 bool delay_rmap, int page_size); 271 bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page, 272 unsigned int nr_pages, bool delay_rmap); 273 274 #ifdef CONFIG_SMP 275 /* 276 * This both sets 'delayed_rmap', and returns true. It would be an inline 277 * function, except we define it before the 'struct mmu_gather'. 278 */ 279 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true) 280 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma); 281 #endif 282 283 #endif 284 285 /* 286 * We have a no-op version of the rmap removal that doesn't 287 * delay anything. That is used on S390, which flushes remote 288 * TLBs synchronously, and on UP, which doesn't have any 289 * remote TLBs to flush and is not preemptible due to this 290 * all happening under the page table lock. 291 */ 292 #ifndef tlb_delay_rmap 293 #define tlb_delay_rmap(tlb) (false) 294 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 295 #endif 296 297 /* 298 * struct mmu_gather is an opaque type used by the mm code for passing around 299 * any data needed by arch specific code for tlb_remove_page. 300 */ 301 struct mmu_gather { 302 struct mm_struct *mm; 303 304 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 305 struct mmu_table_batch *batch; 306 #endif 307 308 unsigned long start; 309 unsigned long end; 310 /* 311 * we are in the middle of an operation to clear 312 * a full mm and can make some optimizations 313 */ 314 unsigned int fullmm : 1; 315 316 /* 317 * we have performed an operation which 318 * requires a complete flush of the tlb 319 */ 320 unsigned int need_flush_all : 1; 321 322 /* 323 * we have removed page directories 324 */ 325 unsigned int freed_tables : 1; 326 327 /* 328 * Do we have pending delayed rmap removals? 329 */ 330 unsigned int delayed_rmap : 1; 331 332 /* 333 * at which levels have we cleared entries? 334 */ 335 unsigned int cleared_ptes : 1; 336 unsigned int cleared_pmds : 1; 337 unsigned int cleared_puds : 1; 338 unsigned int cleared_p4ds : 1; 339 340 /* 341 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 342 */ 343 unsigned int vma_exec : 1; 344 unsigned int vma_huge : 1; 345 unsigned int vma_pfn : 1; 346 347 unsigned int batch_count; 348 349 #ifndef CONFIG_MMU_GATHER_NO_GATHER 350 struct mmu_gather_batch *active; 351 struct mmu_gather_batch local; 352 struct page *__pages[MMU_GATHER_BUNDLE]; 353 354 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 355 unsigned int page_size; 356 #endif 357 #endif 358 }; 359 360 void tlb_flush_mmu(struct mmu_gather *tlb); 361 362 static inline void __tlb_adjust_range(struct mmu_gather *tlb, 363 unsigned long address, 364 unsigned int range_size) 365 { 366 tlb->start = min(tlb->start, address); 367 tlb->end = max(tlb->end, address + range_size); 368 } 369 370 static inline void __tlb_reset_range(struct mmu_gather *tlb) 371 { 372 if (tlb->fullmm) { 373 tlb->start = tlb->end = ~0; 374 } else { 375 tlb->start = TASK_SIZE; 376 tlb->end = 0; 377 } 378 tlb->freed_tables = 0; 379 tlb->cleared_ptes = 0; 380 tlb->cleared_pmds = 0; 381 tlb->cleared_puds = 0; 382 tlb->cleared_p4ds = 0; 383 /* 384 * Do not reset mmu_gather::vma_* fields here, we do not 385 * call into tlb_start_vma() again to set them if there is an 386 * intermediate flush. 387 */ 388 } 389 390 #ifdef CONFIG_MMU_GATHER_NO_RANGE 391 392 #if defined(tlb_flush) 393 #error MMU_GATHER_NO_RANGE relies on default tlb_flush() 394 #endif 395 396 /* 397 * When an architecture does not have efficient means of range flushing TLBs 398 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 399 * range small. We equally don't have to worry about page granularity or other 400 * things. 401 * 402 * All we need to do is issue a full flush for any !0 range. 403 */ 404 static inline void tlb_flush(struct mmu_gather *tlb) 405 { 406 if (tlb->end) 407 flush_tlb_mm(tlb->mm); 408 } 409 410 #else /* CONFIG_MMU_GATHER_NO_RANGE */ 411 412 #ifndef tlb_flush 413 /* 414 * When an architecture does not provide its own tlb_flush() implementation 415 * but does have a reasonably efficient flush_vma_range() implementation 416 * use that. 417 */ 418 static inline void tlb_flush(struct mmu_gather *tlb) 419 { 420 if (tlb->fullmm || tlb->need_flush_all) { 421 flush_tlb_mm(tlb->mm); 422 } else if (tlb->end) { 423 struct vm_area_struct vma = { 424 .vm_mm = tlb->mm, 425 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 426 (tlb->vma_huge ? VM_HUGETLB : 0), 427 }; 428 429 flush_tlb_range(&vma, tlb->start, tlb->end); 430 } 431 } 432 #endif 433 434 #endif /* CONFIG_MMU_GATHER_NO_RANGE */ 435 436 static inline void 437 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 438 { 439 /* 440 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 441 * mips-4k) flush only large pages. 442 * 443 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 444 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 445 * range. 446 * 447 * We rely on tlb_end_vma() to issue a flush, such that when we reset 448 * these values the batch is empty. 449 */ 450 tlb->vma_huge = is_vm_hugetlb_page(vma); 451 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 452 tlb->vma_pfn = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)); 453 } 454 455 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 456 { 457 /* 458 * Anything calling __tlb_adjust_range() also sets at least one of 459 * these bits. 460 */ 461 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || 462 tlb->cleared_puds || tlb->cleared_p4ds)) 463 return; 464 465 tlb_flush(tlb); 466 __tlb_reset_range(tlb); 467 } 468 469 static inline void tlb_remove_page_size(struct mmu_gather *tlb, 470 struct page *page, int page_size) 471 { 472 if (__tlb_remove_page_size(tlb, page, false, page_size)) 473 tlb_flush_mmu(tlb); 474 } 475 476 static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb, 477 struct page *page, bool delay_rmap) 478 { 479 return __tlb_remove_page_size(tlb, page, delay_rmap, PAGE_SIZE); 480 } 481 482 /* tlb_remove_page 483 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when 484 * required. 485 */ 486 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 487 { 488 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 489 } 490 491 static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, void *pt) 492 { 493 tlb_remove_table(tlb, pt); 494 } 495 496 /* Like tlb_remove_ptdesc, but for page-like page directories. */ 497 static inline void tlb_remove_page_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt) 498 { 499 tlb_remove_page(tlb, ptdesc_page(pt)); 500 } 501 502 static inline void tlb_change_page_size(struct mmu_gather *tlb, 503 unsigned int page_size) 504 { 505 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 506 if (tlb->page_size && tlb->page_size != page_size) { 507 if (!tlb->fullmm && !tlb->need_flush_all) 508 tlb_flush_mmu(tlb); 509 } 510 511 tlb->page_size = page_size; 512 #endif 513 } 514 515 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 516 { 517 if (tlb->cleared_ptes) 518 return PAGE_SHIFT; 519 if (tlb->cleared_pmds) 520 return PMD_SHIFT; 521 if (tlb->cleared_puds) 522 return PUD_SHIFT; 523 if (tlb->cleared_p4ds) 524 return P4D_SHIFT; 525 526 return PAGE_SHIFT; 527 } 528 529 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 530 { 531 return 1UL << tlb_get_unmap_shift(tlb); 532 } 533 534 /* 535 * In the case of tlb vma handling, we can optimise these away in the 536 * case where we're doing a full MM flush. When we're doing a munmap, 537 * the vmas are adjusted to only cover the region to be torn down. 538 */ 539 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 540 { 541 if (tlb->fullmm) 542 return; 543 544 tlb_update_vma_flags(tlb, vma); 545 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE 546 flush_cache_range(vma, vma->vm_start, vma->vm_end); 547 #endif 548 } 549 550 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 551 { 552 if (tlb->fullmm) 553 return; 554 555 /* 556 * VM_PFNMAP is more fragile because the core mm will not track the 557 * page mapcount -- there might not be page-frames for these PFNs after 558 * all. Force flush TLBs for such ranges to avoid munmap() vs 559 * unmap_mapping_range() races. 560 */ 561 if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) { 562 /* 563 * Do a TLB flush and reset the range at VMA boundaries; this avoids 564 * the ranges growing with the unused space between consecutive VMAs. 565 */ 566 tlb_flush_mmu_tlbonly(tlb); 567 } 568 } 569 570 /* 571 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, 572 * and set corresponding cleared_*. 573 */ 574 static inline void tlb_flush_pte_range(struct mmu_gather *tlb, 575 unsigned long address, unsigned long size) 576 { 577 __tlb_adjust_range(tlb, address, size); 578 tlb->cleared_ptes = 1; 579 } 580 581 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, 582 unsigned long address, unsigned long size) 583 { 584 __tlb_adjust_range(tlb, address, size); 585 tlb->cleared_pmds = 1; 586 } 587 588 static inline void tlb_flush_pud_range(struct mmu_gather *tlb, 589 unsigned long address, unsigned long size) 590 { 591 __tlb_adjust_range(tlb, address, size); 592 tlb->cleared_puds = 1; 593 } 594 595 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, 596 unsigned long address, unsigned long size) 597 { 598 __tlb_adjust_range(tlb, address, size); 599 tlb->cleared_p4ds = 1; 600 } 601 602 #ifndef __tlb_remove_tlb_entry 603 static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address) 604 { 605 } 606 #endif 607 608 /** 609 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 610 * 611 * Record the fact that pte's were really unmapped by updating the range, 612 * so we can later optimise away the tlb invalidate. This helps when 613 * userspace is unmapping already-unmapped pages, which happens quite a lot. 614 */ 615 #define tlb_remove_tlb_entry(tlb, ptep, address) \ 616 do { \ 617 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ 618 __tlb_remove_tlb_entry(tlb, ptep, address); \ 619 } while (0) 620 621 /** 622 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for 623 * later tlb invalidation. 624 * 625 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple 626 * consecutive ptes instead of only a single one. 627 */ 628 static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb, 629 pte_t *ptep, unsigned int nr, unsigned long address) 630 { 631 tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr); 632 for (;;) { 633 __tlb_remove_tlb_entry(tlb, ptep, address); 634 if (--nr == 0) 635 break; 636 ptep++; 637 address += PAGE_SIZE; 638 } 639 } 640 641 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 642 do { \ 643 unsigned long _sz = huge_page_size(h); \ 644 if (_sz >= P4D_SIZE) \ 645 tlb_flush_p4d_range(tlb, address, _sz); \ 646 else if (_sz >= PUD_SIZE) \ 647 tlb_flush_pud_range(tlb, address, _sz); \ 648 else if (_sz >= PMD_SIZE) \ 649 tlb_flush_pmd_range(tlb, address, _sz); \ 650 else \ 651 tlb_flush_pte_range(tlb, address, _sz); \ 652 __tlb_remove_tlb_entry(tlb, ptep, address); \ 653 } while (0) 654 655 /** 656 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 657 * This is a nop so far, because only x86 needs it. 658 */ 659 #ifndef __tlb_remove_pmd_tlb_entry 660 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 661 #endif 662 663 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 664 do { \ 665 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ 666 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 667 } while (0) 668 669 /** 670 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 671 * invalidation. This is a nop so far, because only x86 needs it. 672 */ 673 #ifndef __tlb_remove_pud_tlb_entry 674 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 675 #endif 676 677 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 678 do { \ 679 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ 680 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 681 } while (0) 682 683 /* 684 * For things like page tables caches (ie caching addresses "inside" the 685 * page tables, like x86 does), for legacy reasons, flushing an 686 * individual page had better flush the page table caches behind it. This 687 * is definitely how x86 works, for example. And if you have an 688 * architected non-legacy page table cache (which I'm not aware of 689 * anybody actually doing), you're going to have some architecturally 690 * explicit flushing for that, likely *separate* from a regular TLB entry 691 * flush, and thus you'd need more than just some range expansion.. 692 * 693 * So if we ever find an architecture 694 * that would want something that odd, I think it is up to that 695 * architecture to do its own odd thing, not cause pain for others 696 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 697 * 698 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 699 */ 700 701 #ifndef pte_free_tlb 702 #define pte_free_tlb(tlb, ptep, address) \ 703 do { \ 704 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ 705 tlb->freed_tables = 1; \ 706 __pte_free_tlb(tlb, ptep, address); \ 707 } while (0) 708 #endif 709 710 #ifndef pmd_free_tlb 711 #define pmd_free_tlb(tlb, pmdp, address) \ 712 do { \ 713 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ 714 tlb->freed_tables = 1; \ 715 __pmd_free_tlb(tlb, pmdp, address); \ 716 } while (0) 717 #endif 718 719 #ifndef pud_free_tlb 720 #define pud_free_tlb(tlb, pudp, address) \ 721 do { \ 722 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ 723 tlb->freed_tables = 1; \ 724 __pud_free_tlb(tlb, pudp, address); \ 725 } while (0) 726 #endif 727 728 #ifndef p4d_free_tlb 729 #define p4d_free_tlb(tlb, pudp, address) \ 730 do { \ 731 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 732 tlb->freed_tables = 1; \ 733 __p4d_free_tlb(tlb, pudp, address); \ 734 } while (0) 735 #endif 736 737 #ifndef pte_needs_flush 738 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte) 739 { 740 return true; 741 } 742 #endif 743 744 #ifndef huge_pmd_needs_flush 745 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd) 746 { 747 return true; 748 } 749 #endif 750 751 #endif /* CONFIG_MMU */ 752 753 #endif /* _ASM_GENERIC__TLB_H */ 754