1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11 #ifndef _ASM_GENERIC__TLB_H 12 #define _ASM_GENERIC__TLB_H 13 14 #include <linux/mmu_notifier.h> 15 #include <linux/swap.h> 16 #include <linux/hugetlb_inline.h> 17 #include <asm/tlbflush.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25 #ifndef nmi_uaccess_okay 26 # define nmi_uaccess_okay() true 27 #endif 28 29 #ifdef CONFIG_MMU 30 31 /* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu() 50 * 51 * start and finish a mmu_gather 52 * 53 * Finish in particular will issue a (final) TLB invalidate and free 54 * all (remaining) queued pages. 55 * 56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 57 * 58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 59 * there's large holes between the VMAs. 60 * 61 * - tlb_free_vmas() 62 * 63 * tlb_free_vmas() marks the start of unlinking of one or more vmas 64 * and freeing page-tables. 65 * 66 * - tlb_remove_table() 67 * 68 * tlb_remove_table() is the basic primitive to free page-table directories 69 * (__p*_free_tlb()). In it's most primitive form it is an alias for 70 * tlb_remove_page() below, for when page directories are pages and have no 71 * additional constraints. 72 * 73 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. 74 * 75 * - tlb_remove_page() / tlb_remove_page_size() 76 * - __tlb_remove_folio_pages() / __tlb_remove_page_size() 77 * - __tlb_remove_folio_pages_size() 78 * 79 * __tlb_remove_folio_pages_size() is the basic primitive that queues pages 80 * for freeing. It will return a boolean indicating if the queue is (now) 81 * full and a call to tlb_flush_mmu() is required. 82 * 83 * tlb_remove_page() and tlb_remove_page_size() imply the call to 84 * tlb_flush_mmu() when required and has no return value. 85 * 86 * __tlb_remove_folio_pages() is similar to __tlb_remove_page_size(), 87 * however, instead of removing a single page, assume PAGE_SIZE and remove 88 * the given number of consecutive pages that are all part of the 89 * same (large) folio. 90 * 91 * - tlb_change_page_size() 92 * 93 * call before __tlb_remove_page*() to set the current page-size; implies a 94 * possible tlb_flush_mmu() call. 95 * 96 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 97 * 98 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 99 * related state, like the range) 100 * 101 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 102 * whatever pages are still batched. 103 * 104 * - mmu_gather::fullmm 105 * 106 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free 107 * the entire mm; this allows a number of optimizations. 108 * 109 * - We can ignore tlb_{start,end}_vma(); because we don't 110 * care about ranges. Everything will be shot down. 111 * 112 * - (RISC) architectures that use ASIDs can cycle to a new ASID 113 * and delay the invalidation until ASID space runs out. 114 * 115 * - mmu_gather::need_flush_all 116 * 117 * A flag that can be set by the arch code if it wants to force 118 * flush the entire TLB irrespective of the range. For instance 119 * x86-PAE needs this when changing top-level entries. 120 * 121 * And allows the architecture to provide and implement tlb_flush(): 122 * 123 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 124 * use of: 125 * 126 * - mmu_gather::start / mmu_gather::end 127 * 128 * which provides the range that needs to be flushed to cover the pages to 129 * be freed. 130 * 131 * - mmu_gather::freed_tables 132 * 133 * set when we freed page table pages 134 * 135 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 136 * 137 * returns the smallest TLB entry size unmapped in this range. 138 * 139 * If an architecture does not provide tlb_flush() a default implementation 140 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 141 * specified, in which case we'll default to flush_tlb_mm(). 142 * 143 * Additionally there are a few opt-in features: 144 * 145 * MMU_GATHER_PAGE_SIZE 146 * 147 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 148 * changes the size and provides mmu_gather::page_size to tlb_flush(). 149 * 150 * This might be useful if your architecture has size specific TLB 151 * invalidation instructions. 152 * 153 * MMU_GATHER_TABLE_FREE 154 * 155 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 156 * for page directores (__p*_free_tlb()). 157 * 158 * Useful if your architecture has non-page page directories. 159 * 160 * When used, an architecture is expected to provide __tlb_remove_table() or 161 * use the generic __tlb_remove_table(), which does the actual freeing of these 162 * pages. 163 * 164 * MMU_GATHER_RCU_TABLE_FREE 165 * 166 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see 167 * comment below). 168 * 169 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 170 * and therefore doesn't naturally serialize with software page-table walkers. 171 * 172 * MMU_GATHER_NO_FLUSH_CACHE 173 * 174 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called 175 * before unmapping a VMA. 176 * 177 * NOTE: strictly speaking we shouldn't have this knob and instead rely on 178 * flush_cache_range() being a NOP, except Sparc64 seems to be 179 * different here. 180 * 181 * MMU_GATHER_MERGE_VMAS 182 * 183 * Indicates the architecture wants to merge ranges over VMAs; typical when 184 * multiple range invalidates are more expensive than a full invalidate. 185 * 186 * MMU_GATHER_NO_RANGE 187 * 188 * Use this if your architecture lacks an efficient flush_tlb_range(). This 189 * option implies MMU_GATHER_MERGE_VMAS above. 190 * 191 * MMU_GATHER_NO_GATHER 192 * 193 * If the option is set the mmu_gather will not track individual pages for 194 * delayed page free anymore. A platform that enables the option needs to 195 * provide its own implementation of the __tlb_remove_page_size() function to 196 * free pages. 197 * 198 * This is useful if your architecture already flushes TLB entries in the 199 * various ptep_get_and_clear() functions. 200 */ 201 202 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 203 204 struct mmu_table_batch { 205 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 206 struct rcu_head rcu; 207 #endif 208 unsigned int nr; 209 void *tables[]; 210 }; 211 212 #define MAX_TABLE_BATCH \ 213 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 214 215 #ifndef __HAVE_ARCH_TLB_REMOVE_TABLE 216 static inline void __tlb_remove_table(void *table) 217 { 218 struct ptdesc *ptdesc = (struct ptdesc *)table; 219 220 pagetable_dtor_free(ptdesc); 221 } 222 #endif 223 224 extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 225 226 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */ 227 228 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page); 229 /* 230 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based 231 * page directories and we can use the normal page batching to free them. 232 */ 233 static inline void tlb_remove_table(struct mmu_gather *tlb, void *table) 234 { 235 struct ptdesc *ptdesc = (struct ptdesc *)table; 236 237 pagetable_dtor(ptdesc); 238 tlb_remove_page(tlb, ptdesc_page(ptdesc)); 239 } 240 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 241 242 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 243 /* 244 * This allows an architecture that does not use the linux page-tables for 245 * hardware to skip the TLBI when freeing page tables. 246 */ 247 #ifndef tlb_needs_table_invalidate 248 #define tlb_needs_table_invalidate() (true) 249 #endif 250 251 void tlb_remove_table_sync_one(void); 252 253 #else 254 255 #ifdef tlb_needs_table_invalidate 256 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE 257 #endif 258 259 static inline void tlb_remove_table_sync_one(void) { } 260 261 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 262 263 264 #ifndef CONFIG_MMU_GATHER_NO_GATHER 265 /* 266 * If we can't allocate a page to make a big batch of page pointers 267 * to work on, then just handle a few from the on-stack structure. 268 */ 269 #define MMU_GATHER_BUNDLE 8 270 271 struct mmu_gather_batch { 272 struct mmu_gather_batch *next; 273 unsigned int nr; 274 unsigned int max; 275 struct encoded_page *encoded_pages[]; 276 }; 277 278 #define MAX_GATHER_BATCH \ 279 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 280 281 /* 282 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 283 * lockups for non-preemptible kernels on huge machines when a lot of memory 284 * is zapped during unmapping. 285 * 10K pages freed at once should be safe even without a preemption point. 286 */ 287 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 288 289 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, 290 bool delay_rmap, int page_size); 291 bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page, 292 unsigned int nr_pages, bool delay_rmap); 293 294 #ifdef CONFIG_SMP 295 /* 296 * This both sets 'delayed_rmap', and returns true. It would be an inline 297 * function, except we define it before the 'struct mmu_gather'. 298 */ 299 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true) 300 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma); 301 #endif 302 303 #endif 304 305 /* 306 * We have a no-op version of the rmap removal that doesn't 307 * delay anything. That is used on S390, which flushes remote 308 * TLBs synchronously, and on UP, which doesn't have any 309 * remote TLBs to flush and is not preemptible due to this 310 * all happening under the page table lock. 311 */ 312 #ifndef tlb_delay_rmap 313 #define tlb_delay_rmap(tlb) (false) 314 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 315 #endif 316 317 /* 318 * struct mmu_gather is an opaque type used by the mm code for passing around 319 * any data needed by arch specific code for tlb_remove_page. 320 */ 321 struct mmu_gather { 322 struct mm_struct *mm; 323 324 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 325 struct mmu_table_batch *batch; 326 #endif 327 328 unsigned long start; 329 unsigned long end; 330 /* 331 * we are in the middle of an operation to clear 332 * a full mm and can make some optimizations 333 */ 334 unsigned int fullmm : 1; 335 336 /* 337 * we have performed an operation which 338 * requires a complete flush of the tlb 339 */ 340 unsigned int need_flush_all : 1; 341 342 /* 343 * we have removed page directories 344 */ 345 unsigned int freed_tables : 1; 346 347 /* 348 * Do we have pending delayed rmap removals? 349 */ 350 unsigned int delayed_rmap : 1; 351 352 /* 353 * at which levels have we cleared entries? 354 */ 355 unsigned int cleared_ptes : 1; 356 unsigned int cleared_pmds : 1; 357 unsigned int cleared_puds : 1; 358 unsigned int cleared_p4ds : 1; 359 360 /* 361 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 362 */ 363 unsigned int vma_exec : 1; 364 unsigned int vma_huge : 1; 365 unsigned int vma_pfn : 1; 366 367 unsigned int batch_count; 368 369 #ifndef CONFIG_MMU_GATHER_NO_GATHER 370 struct mmu_gather_batch *active; 371 struct mmu_gather_batch local; 372 struct page *__pages[MMU_GATHER_BUNDLE]; 373 374 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 375 unsigned int page_size; 376 #endif 377 #endif 378 }; 379 380 void tlb_flush_mmu(struct mmu_gather *tlb); 381 382 static inline void __tlb_adjust_range(struct mmu_gather *tlb, 383 unsigned long address, 384 unsigned int range_size) 385 { 386 tlb->start = min(tlb->start, address); 387 tlb->end = max(tlb->end, address + range_size); 388 } 389 390 static inline void __tlb_reset_range(struct mmu_gather *tlb) 391 { 392 if (tlb->fullmm) { 393 tlb->start = tlb->end = ~0; 394 } else { 395 tlb->start = TASK_SIZE; 396 tlb->end = 0; 397 } 398 tlb->freed_tables = 0; 399 tlb->cleared_ptes = 0; 400 tlb->cleared_pmds = 0; 401 tlb->cleared_puds = 0; 402 tlb->cleared_p4ds = 0; 403 /* 404 * Do not reset mmu_gather::vma_* fields here, we do not 405 * call into tlb_start_vma() again to set them if there is an 406 * intermediate flush. 407 */ 408 } 409 410 #ifdef CONFIG_MMU_GATHER_NO_RANGE 411 412 #if defined(tlb_flush) 413 #error MMU_GATHER_NO_RANGE relies on default tlb_flush() 414 #endif 415 416 /* 417 * When an architecture does not have efficient means of range flushing TLBs 418 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 419 * range small. We equally don't have to worry about page granularity or other 420 * things. 421 * 422 * All we need to do is issue a full flush for any !0 range. 423 */ 424 static inline void tlb_flush(struct mmu_gather *tlb) 425 { 426 if (tlb->end) 427 flush_tlb_mm(tlb->mm); 428 } 429 430 #else /* CONFIG_MMU_GATHER_NO_RANGE */ 431 432 #ifndef tlb_flush 433 /* 434 * When an architecture does not provide its own tlb_flush() implementation 435 * but does have a reasonably efficient flush_vma_range() implementation 436 * use that. 437 */ 438 static inline void tlb_flush(struct mmu_gather *tlb) 439 { 440 if (tlb->fullmm || tlb->need_flush_all) { 441 flush_tlb_mm(tlb->mm); 442 } else if (tlb->end) { 443 struct vm_area_struct vma = { 444 .vm_mm = tlb->mm, 445 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 446 (tlb->vma_huge ? VM_HUGETLB : 0), 447 }; 448 449 flush_tlb_range(&vma, tlb->start, tlb->end); 450 } 451 } 452 #endif 453 454 #endif /* CONFIG_MMU_GATHER_NO_RANGE */ 455 456 static inline void 457 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 458 { 459 /* 460 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 461 * mips-4k) flush only large pages. 462 * 463 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 464 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 465 * range. 466 * 467 * We rely on tlb_end_vma() to issue a flush, such that when we reset 468 * these values the batch is empty. 469 */ 470 tlb->vma_huge = is_vm_hugetlb_page(vma); 471 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 472 473 /* 474 * Track if there's at least one VM_PFNMAP/VM_MIXEDMAP vma 475 * in the tracked range, see tlb_free_vmas(). 476 */ 477 tlb->vma_pfn |= !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)); 478 } 479 480 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 481 { 482 /* 483 * Anything calling __tlb_adjust_range() also sets at least one of 484 * these bits. 485 */ 486 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || 487 tlb->cleared_puds || tlb->cleared_p4ds)) 488 return; 489 490 tlb_flush(tlb); 491 __tlb_reset_range(tlb); 492 } 493 494 static inline void tlb_remove_page_size(struct mmu_gather *tlb, 495 struct page *page, int page_size) 496 { 497 if (__tlb_remove_page_size(tlb, page, false, page_size)) 498 tlb_flush_mmu(tlb); 499 } 500 501 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 502 { 503 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 504 } 505 506 static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt) 507 { 508 tlb_remove_table(tlb, pt); 509 } 510 511 static inline void tlb_change_page_size(struct mmu_gather *tlb, 512 unsigned int page_size) 513 { 514 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 515 if (tlb->page_size && tlb->page_size != page_size) { 516 if (!tlb->fullmm && !tlb->need_flush_all) 517 tlb_flush_mmu(tlb); 518 } 519 520 tlb->page_size = page_size; 521 #endif 522 } 523 524 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 525 { 526 if (tlb->cleared_ptes) 527 return PAGE_SHIFT; 528 if (tlb->cleared_pmds) 529 return PMD_SHIFT; 530 if (tlb->cleared_puds) 531 return PUD_SHIFT; 532 if (tlb->cleared_p4ds) 533 return P4D_SHIFT; 534 535 return PAGE_SHIFT; 536 } 537 538 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 539 { 540 return 1UL << tlb_get_unmap_shift(tlb); 541 } 542 543 /* 544 * In the case of tlb vma handling, we can optimise these away in the 545 * case where we're doing a full MM flush. When we're doing a munmap, 546 * the vmas are adjusted to only cover the region to be torn down. 547 */ 548 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 549 { 550 if (tlb->fullmm) 551 return; 552 553 tlb_update_vma_flags(tlb, vma); 554 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE 555 flush_cache_range(vma, vma->vm_start, vma->vm_end); 556 #endif 557 } 558 559 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 560 { 561 if (tlb->fullmm || IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) 562 return; 563 564 /* 565 * Do a TLB flush and reset the range at VMA boundaries; this avoids 566 * the ranges growing with the unused space between consecutive VMAs, 567 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on 568 * this. 569 */ 570 tlb_flush_mmu_tlbonly(tlb); 571 } 572 573 static inline void tlb_free_vmas(struct mmu_gather *tlb) 574 { 575 if (tlb->fullmm) 576 return; 577 578 /* 579 * VM_PFNMAP is more fragile because the core mm will not track the 580 * page mapcount -- there might not be page-frames for these PFNs 581 * after all. 582 * 583 * Specifically() there is a race between munmap() and 584 * unmap_mapping_range(), where munmap() will unlink the VMA, such 585 * that unmap_mapping_range() will no longer observe the VMA and 586 * no-op, without observing the TLBI, returning prematurely. 587 * 588 * So if we're about to unlink such a VMA, and we have pending 589 * TLBI for such a vma, flush things now. 590 */ 591 if (tlb->vma_pfn) 592 tlb_flush_mmu_tlbonly(tlb); 593 } 594 595 /* 596 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, 597 * and set corresponding cleared_*. 598 */ 599 static inline void tlb_flush_pte_range(struct mmu_gather *tlb, 600 unsigned long address, unsigned long size) 601 { 602 __tlb_adjust_range(tlb, address, size); 603 tlb->cleared_ptes = 1; 604 } 605 606 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, 607 unsigned long address, unsigned long size) 608 { 609 __tlb_adjust_range(tlb, address, size); 610 tlb->cleared_pmds = 1; 611 } 612 613 static inline void tlb_flush_pud_range(struct mmu_gather *tlb, 614 unsigned long address, unsigned long size) 615 { 616 __tlb_adjust_range(tlb, address, size); 617 tlb->cleared_puds = 1; 618 } 619 620 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, 621 unsigned long address, unsigned long size) 622 { 623 __tlb_adjust_range(tlb, address, size); 624 tlb->cleared_p4ds = 1; 625 } 626 627 #ifndef __tlb_remove_tlb_entry 628 static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address) 629 { 630 } 631 #endif 632 633 /** 634 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 635 * 636 * Record the fact that pte's were really unmapped by updating the range, 637 * so we can later optimise away the tlb invalidate. This helps when 638 * userspace is unmapping already-unmapped pages, which happens quite a lot. 639 */ 640 #define tlb_remove_tlb_entry(tlb, ptep, address) \ 641 do { \ 642 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ 643 __tlb_remove_tlb_entry(tlb, ptep, address); \ 644 } while (0) 645 646 /** 647 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for 648 * later tlb invalidation. 649 * 650 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple 651 * consecutive ptes instead of only a single one. 652 */ 653 static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb, 654 pte_t *ptep, unsigned int nr, unsigned long address) 655 { 656 tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr); 657 for (;;) { 658 __tlb_remove_tlb_entry(tlb, ptep, address); 659 if (--nr == 0) 660 break; 661 ptep++; 662 address += PAGE_SIZE; 663 } 664 } 665 666 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 667 do { \ 668 unsigned long _sz = huge_page_size(h); \ 669 if (_sz >= P4D_SIZE) \ 670 tlb_flush_p4d_range(tlb, address, _sz); \ 671 else if (_sz >= PUD_SIZE) \ 672 tlb_flush_pud_range(tlb, address, _sz); \ 673 else if (_sz >= PMD_SIZE) \ 674 tlb_flush_pmd_range(tlb, address, _sz); \ 675 else \ 676 tlb_flush_pte_range(tlb, address, _sz); \ 677 __tlb_remove_tlb_entry(tlb, ptep, address); \ 678 } while (0) 679 680 /** 681 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 682 * This is a nop so far, because only x86 needs it. 683 */ 684 #ifndef __tlb_remove_pmd_tlb_entry 685 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 686 #endif 687 688 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 689 do { \ 690 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ 691 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 692 } while (0) 693 694 /** 695 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 696 * invalidation. This is a nop so far, because only x86 needs it. 697 */ 698 #ifndef __tlb_remove_pud_tlb_entry 699 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 700 #endif 701 702 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 703 do { \ 704 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ 705 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 706 } while (0) 707 708 /* 709 * For things like page tables caches (ie caching addresses "inside" the 710 * page tables, like x86 does), for legacy reasons, flushing an 711 * individual page had better flush the page table caches behind it. This 712 * is definitely how x86 works, for example. And if you have an 713 * architected non-legacy page table cache (which I'm not aware of 714 * anybody actually doing), you're going to have some architecturally 715 * explicit flushing for that, likely *separate* from a regular TLB entry 716 * flush, and thus you'd need more than just some range expansion.. 717 * 718 * So if we ever find an architecture 719 * that would want something that odd, I think it is up to that 720 * architecture to do its own odd thing, not cause pain for others 721 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 722 * 723 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 724 */ 725 726 #ifndef pte_free_tlb 727 #define pte_free_tlb(tlb, ptep, address) \ 728 do { \ 729 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ 730 tlb->freed_tables = 1; \ 731 __pte_free_tlb(tlb, ptep, address); \ 732 } while (0) 733 #endif 734 735 #ifndef pmd_free_tlb 736 #define pmd_free_tlb(tlb, pmdp, address) \ 737 do { \ 738 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ 739 tlb->freed_tables = 1; \ 740 __pmd_free_tlb(tlb, pmdp, address); \ 741 } while (0) 742 #endif 743 744 #ifndef pud_free_tlb 745 #define pud_free_tlb(tlb, pudp, address) \ 746 do { \ 747 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ 748 tlb->freed_tables = 1; \ 749 __pud_free_tlb(tlb, pudp, address); \ 750 } while (0) 751 #endif 752 753 #ifndef p4d_free_tlb 754 #define p4d_free_tlb(tlb, pudp, address) \ 755 do { \ 756 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 757 tlb->freed_tables = 1; \ 758 __p4d_free_tlb(tlb, pudp, address); \ 759 } while (0) 760 #endif 761 762 #ifndef pte_needs_flush 763 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte) 764 { 765 return true; 766 } 767 #endif 768 769 #ifndef huge_pmd_needs_flush 770 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd) 771 { 772 return true; 773 } 774 #endif 775 776 #endif /* CONFIG_MMU */ 777 778 #endif /* _ASM_GENERIC__TLB_H */ 779