1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11 #ifndef _ASM_GENERIC__TLB_H 12 #define _ASM_GENERIC__TLB_H 13 14 #include <linux/mmu_notifier.h> 15 #include <linux/swap.h> 16 #include <linux/hugetlb_inline.h> 17 #include <asm/tlbflush.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25 #ifndef nmi_uaccess_okay 26 # define nmi_uaccess_okay() true 27 #endif 28 29 #ifdef CONFIG_MMU 30 31 /* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_gather_mmu_vma() / 50 * tlb_finish_mmu() 51 * 52 * start and finish a mmu_gather 53 * 54 * Finish in particular will issue a (final) TLB invalidate and free 55 * all (remaining) queued pages. 56 * 57 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 58 * 59 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 60 * there's large holes between the VMAs. 61 * 62 * - tlb_free_vmas() 63 * 64 * tlb_free_vmas() marks the start of unlinking of one or more vmas 65 * and freeing page-tables. 66 * 67 * - tlb_remove_table() 68 * 69 * tlb_remove_table() is the basic primitive to free page-table directories 70 * (__p*_free_tlb()). In it's most primitive form it is an alias for 71 * tlb_remove_page() below, for when page directories are pages and have no 72 * additional constraints. 73 * 74 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. 75 * 76 * - tlb_remove_page() / tlb_remove_page_size() 77 * - __tlb_remove_folio_pages() / __tlb_remove_page_size() 78 * - __tlb_remove_folio_pages_size() 79 * 80 * __tlb_remove_folio_pages_size() is the basic primitive that queues pages 81 * for freeing. It will return a boolean indicating if the queue is (now) 82 * full and a call to tlb_flush_mmu() is required. 83 * 84 * tlb_remove_page() and tlb_remove_page_size() imply the call to 85 * tlb_flush_mmu() when required and has no return value. 86 * 87 * __tlb_remove_folio_pages() is similar to __tlb_remove_page_size(), 88 * however, instead of removing a single page, assume PAGE_SIZE and remove 89 * the given number of consecutive pages that are all part of the 90 * same (large) folio. 91 * 92 * - tlb_change_page_size() 93 * 94 * call before __tlb_remove_page*() to set the current page-size; implies a 95 * possible tlb_flush_mmu() call. 96 * 97 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 98 * 99 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 100 * related state, like the range) 101 * 102 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 103 * whatever pages are still batched. 104 * 105 * - mmu_gather::fullmm 106 * 107 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free 108 * the entire mm; this allows a number of optimizations. 109 * 110 * - We can ignore tlb_{start,end}_vma(); because we don't 111 * care about ranges. Everything will be shot down. 112 * 113 * - (RISC) architectures that use ASIDs can cycle to a new ASID 114 * and delay the invalidation until ASID space runs out. 115 * 116 * - mmu_gather::need_flush_all 117 * 118 * A flag that can be set by the arch code if it wants to force 119 * flush the entire TLB irrespective of the range. For instance 120 * x86-PAE needs this when changing top-level entries. 121 * 122 * And allows the architecture to provide and implement tlb_flush(): 123 * 124 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 125 * use of: 126 * 127 * - mmu_gather::start / mmu_gather::end 128 * 129 * which provides the range that needs to be flushed to cover the pages to 130 * be freed. 131 * 132 * - mmu_gather::freed_tables 133 * 134 * set when we freed page table pages 135 * 136 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 137 * 138 * returns the smallest TLB entry size unmapped in this range. 139 * 140 * If an architecture does not provide tlb_flush() a default implementation 141 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 142 * specified, in which case we'll default to flush_tlb_mm(). 143 * 144 * Additionally there are a few opt-in features: 145 * 146 * MMU_GATHER_PAGE_SIZE 147 * 148 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 149 * changes the size and provides mmu_gather::page_size to tlb_flush(). 150 * 151 * This might be useful if your architecture has size specific TLB 152 * invalidation instructions. 153 * 154 * MMU_GATHER_TABLE_FREE 155 * 156 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 157 * for page directores (__p*_free_tlb()). 158 * 159 * Useful if your architecture has non-page page directories. 160 * 161 * When used, an architecture is expected to provide __tlb_remove_table() or 162 * use the generic __tlb_remove_table(), which does the actual freeing of these 163 * pages. 164 * 165 * MMU_GATHER_RCU_TABLE_FREE 166 * 167 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see 168 * comment below). 169 * 170 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 171 * and therefore doesn't naturally serialize with software page-table walkers. 172 * 173 * MMU_GATHER_NO_FLUSH_CACHE 174 * 175 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called 176 * before unmapping a VMA. 177 * 178 * NOTE: strictly speaking we shouldn't have this knob and instead rely on 179 * flush_cache_range() being a NOP, except Sparc64 seems to be 180 * different here. 181 * 182 * MMU_GATHER_MERGE_VMAS 183 * 184 * Indicates the architecture wants to merge ranges over VMAs; typical when 185 * multiple range invalidates are more expensive than a full invalidate. 186 * 187 * MMU_GATHER_NO_RANGE 188 * 189 * Use this if your architecture lacks an efficient flush_tlb_range(). This 190 * option implies MMU_GATHER_MERGE_VMAS above. 191 * 192 * MMU_GATHER_NO_GATHER 193 * 194 * If the option is set the mmu_gather will not track individual pages for 195 * delayed page free anymore. A platform that enables the option needs to 196 * provide its own implementation of the __tlb_remove_page_size() function to 197 * free pages. 198 * 199 * This is useful if your architecture already flushes TLB entries in the 200 * various ptep_get_and_clear() functions. 201 */ 202 203 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 204 205 struct mmu_table_batch { 206 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 207 struct rcu_head rcu; 208 #endif 209 unsigned int nr; 210 void *tables[]; 211 }; 212 213 #define MAX_TABLE_BATCH \ 214 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 215 216 #ifndef CONFIG_HAVE_ARCH_TLB_REMOVE_TABLE 217 static inline void __tlb_remove_table(void *table) 218 { 219 struct ptdesc *ptdesc = (struct ptdesc *)table; 220 221 pagetable_dtor_free(ptdesc); 222 } 223 #endif 224 225 extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 226 227 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */ 228 229 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page); 230 /* 231 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based 232 * page directories and we can use the normal page batching to free them. 233 */ 234 static inline void tlb_remove_table(struct mmu_gather *tlb, void *table) 235 { 236 struct ptdesc *ptdesc = (struct ptdesc *)table; 237 238 pagetable_dtor(ptdesc); 239 tlb_remove_page(tlb, ptdesc_page(ptdesc)); 240 } 241 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 242 243 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 244 /* 245 * This allows an architecture that does not use the linux page-tables for 246 * hardware to skip the TLBI when freeing page tables. 247 */ 248 #ifndef tlb_needs_table_invalidate 249 #define tlb_needs_table_invalidate() (true) 250 #endif 251 252 void tlb_remove_table_sync_one(void); 253 254 #else 255 256 #ifdef tlb_needs_table_invalidate 257 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE 258 #endif 259 260 static inline void tlb_remove_table_sync_one(void) { } 261 262 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 263 264 265 #ifndef CONFIG_MMU_GATHER_NO_GATHER 266 /* 267 * If we can't allocate a page to make a big batch of page pointers 268 * to work on, then just handle a few from the on-stack structure. 269 */ 270 #define MMU_GATHER_BUNDLE 8 271 272 struct mmu_gather_batch { 273 struct mmu_gather_batch *next; 274 unsigned int nr; 275 unsigned int max; 276 struct encoded_page *encoded_pages[]; 277 }; 278 279 #define MAX_GATHER_BATCH \ 280 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 281 282 /* 283 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 284 * lockups for non-preemptible kernels on huge machines when a lot of memory 285 * is zapped during unmapping. 286 * 10K pages freed at once should be safe even without a preemption point. 287 */ 288 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 289 290 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); 291 bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page, 292 unsigned int nr_pages, bool delay_rmap); 293 294 #ifdef CONFIG_SMP 295 /* 296 * This both sets 'delayed_rmap', and returns true. It would be an inline 297 * function, except we define it before the 'struct mmu_gather'. 298 */ 299 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true) 300 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma); 301 #endif 302 303 #endif 304 305 /* 306 * We have a no-op version of the rmap removal that doesn't 307 * delay anything. That is used on S390, which flushes remote 308 * TLBs synchronously, and on UP, which doesn't have any 309 * remote TLBs to flush and is not preemptible due to this 310 * all happening under the page table lock. 311 */ 312 #ifndef tlb_delay_rmap 313 #define tlb_delay_rmap(tlb) (false) 314 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 315 #endif 316 317 /* 318 * struct mmu_gather is an opaque type used by the mm code for passing around 319 * any data needed by arch specific code for tlb_remove_page. 320 */ 321 struct mmu_gather { 322 struct mm_struct *mm; 323 324 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 325 struct mmu_table_batch *batch; 326 #endif 327 328 unsigned long start; 329 unsigned long end; 330 /* 331 * we are in the middle of an operation to clear 332 * a full mm and can make some optimizations 333 */ 334 unsigned int fullmm : 1; 335 336 /* 337 * we have performed an operation which 338 * requires a complete flush of the tlb 339 */ 340 unsigned int need_flush_all : 1; 341 342 /* 343 * we have removed page directories 344 */ 345 unsigned int freed_tables : 1; 346 347 /* 348 * Do we have pending delayed rmap removals? 349 */ 350 unsigned int delayed_rmap : 1; 351 352 /* 353 * at which levels have we cleared entries? 354 */ 355 unsigned int cleared_ptes : 1; 356 unsigned int cleared_pmds : 1; 357 unsigned int cleared_puds : 1; 358 unsigned int cleared_p4ds : 1; 359 360 /* 361 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 362 */ 363 unsigned int vma_exec : 1; 364 unsigned int vma_huge : 1; 365 unsigned int vma_pfn : 1; 366 367 /* 368 * Did we unshare (unmap) any shared page tables? For now only 369 * used for hugetlb PMD table sharing. 370 */ 371 unsigned int unshared_tables : 1; 372 373 /* 374 * Did we unshare any page tables such that they are now exclusive 375 * and could get reused+modified by the new owner? When setting this 376 * flag, "unshared_tables" will be set as well. For now only used 377 * for hugetlb PMD table sharing. 378 */ 379 unsigned int fully_unshared_tables : 1; 380 381 unsigned int batch_count; 382 383 #ifndef CONFIG_MMU_GATHER_NO_GATHER 384 struct mmu_gather_batch *active; 385 struct mmu_gather_batch local; 386 struct page *__pages[MMU_GATHER_BUNDLE]; 387 388 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 389 unsigned int page_size; 390 #endif 391 #endif 392 }; 393 394 void tlb_flush_mmu(struct mmu_gather *tlb); 395 396 static inline void __tlb_adjust_range(struct mmu_gather *tlb, 397 unsigned long address, 398 unsigned int range_size) 399 { 400 tlb->start = min(tlb->start, address); 401 tlb->end = max(tlb->end, address + range_size); 402 } 403 404 static inline void __tlb_reset_range(struct mmu_gather *tlb) 405 { 406 if (tlb->fullmm) { 407 tlb->start = tlb->end = ~0; 408 } else { 409 tlb->start = TASK_SIZE; 410 tlb->end = 0; 411 } 412 tlb->freed_tables = 0; 413 tlb->cleared_ptes = 0; 414 tlb->cleared_pmds = 0; 415 tlb->cleared_puds = 0; 416 tlb->cleared_p4ds = 0; 417 tlb->unshared_tables = 0; 418 /* 419 * Do not reset mmu_gather::vma_* fields here, we do not 420 * call into tlb_start_vma() again to set them if there is an 421 * intermediate flush. 422 */ 423 } 424 425 #ifdef CONFIG_MMU_GATHER_NO_RANGE 426 427 #if defined(tlb_flush) 428 #error MMU_GATHER_NO_RANGE relies on default tlb_flush() 429 #endif 430 431 /* 432 * When an architecture does not have efficient means of range flushing TLBs 433 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 434 * range small. We equally don't have to worry about page granularity or other 435 * things. 436 * 437 * All we need to do is issue a full flush for any !0 range. 438 */ 439 static inline void tlb_flush(struct mmu_gather *tlb) 440 { 441 if (tlb->end) 442 flush_tlb_mm(tlb->mm); 443 } 444 445 #else /* CONFIG_MMU_GATHER_NO_RANGE */ 446 447 #ifndef tlb_flush 448 /* 449 * When an architecture does not provide its own tlb_flush() implementation 450 * but does have a reasonably efficient flush_vma_range() implementation 451 * use that. 452 */ 453 static inline void tlb_flush(struct mmu_gather *tlb) 454 { 455 if (tlb->fullmm || tlb->need_flush_all) { 456 flush_tlb_mm(tlb->mm); 457 } else if (tlb->end) { 458 struct vm_area_struct vma = { 459 .vm_mm = tlb->mm, 460 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 461 (tlb->vma_huge ? VM_HUGETLB : 0), 462 }; 463 464 flush_tlb_range(&vma, tlb->start, tlb->end); 465 } 466 } 467 #endif 468 469 #endif /* CONFIG_MMU_GATHER_NO_RANGE */ 470 471 static inline void 472 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 473 { 474 /* 475 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 476 * mips-4k) flush only large pages. 477 * 478 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 479 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 480 * range. 481 * 482 * We rely on tlb_end_vma() to issue a flush, such that when we reset 483 * these values the batch is empty. 484 */ 485 tlb->vma_huge = is_vm_hugetlb_page(vma); 486 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 487 488 /* 489 * Track if there's at least one VM_PFNMAP/VM_MIXEDMAP vma 490 * in the tracked range, see tlb_free_vmas(). 491 */ 492 tlb->vma_pfn |= !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)); 493 } 494 495 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 496 { 497 /* 498 * Anything calling __tlb_adjust_range() also sets at least one of 499 * these bits. 500 */ 501 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || 502 tlb->cleared_puds || tlb->cleared_p4ds || tlb->unshared_tables)) 503 return; 504 505 tlb_flush(tlb); 506 __tlb_reset_range(tlb); 507 } 508 509 static inline void tlb_remove_page_size(struct mmu_gather *tlb, 510 struct page *page, int page_size) 511 { 512 if (__tlb_remove_page_size(tlb, page, page_size)) 513 tlb_flush_mmu(tlb); 514 } 515 516 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 517 { 518 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 519 } 520 521 static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt) 522 { 523 tlb_remove_table(tlb, pt); 524 } 525 526 static inline void tlb_change_page_size(struct mmu_gather *tlb, 527 unsigned int page_size) 528 { 529 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 530 if (tlb->page_size && tlb->page_size != page_size) { 531 if (!tlb->fullmm && !tlb->need_flush_all) 532 tlb_flush_mmu(tlb); 533 } 534 535 tlb->page_size = page_size; 536 #endif 537 } 538 539 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 540 { 541 if (tlb->cleared_ptes) 542 return PAGE_SHIFT; 543 if (tlb->cleared_pmds) 544 return PMD_SHIFT; 545 if (tlb->cleared_puds) 546 return PUD_SHIFT; 547 if (tlb->cleared_p4ds) 548 return P4D_SHIFT; 549 550 return PAGE_SHIFT; 551 } 552 553 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 554 { 555 return 1UL << tlb_get_unmap_shift(tlb); 556 } 557 558 /* 559 * In the case of tlb vma handling, we can optimise these away in the 560 * case where we're doing a full MM flush. When we're doing a munmap, 561 * the vmas are adjusted to only cover the region to be torn down. 562 */ 563 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 564 { 565 if (tlb->fullmm) 566 return; 567 568 tlb_update_vma_flags(tlb, vma); 569 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE 570 flush_cache_range(vma, vma->vm_start, vma->vm_end); 571 #endif 572 } 573 574 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 575 { 576 if (tlb->fullmm || IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) 577 return; 578 579 /* 580 * Do a TLB flush and reset the range at VMA boundaries; this avoids 581 * the ranges growing with the unused space between consecutive VMAs, 582 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on 583 * this. 584 */ 585 tlb_flush_mmu_tlbonly(tlb); 586 } 587 588 static inline void tlb_free_vmas(struct mmu_gather *tlb) 589 { 590 if (tlb->fullmm) 591 return; 592 593 /* 594 * VM_PFNMAP is more fragile because the core mm will not track the 595 * page mapcount -- there might not be page-frames for these PFNs 596 * after all. 597 * 598 * Specifically() there is a race between munmap() and 599 * unmap_mapping_range(), where munmap() will unlink the VMA, such 600 * that unmap_mapping_range() will no longer observe the VMA and 601 * no-op, without observing the TLBI, returning prematurely. 602 * 603 * So if we're about to unlink such a VMA, and we have pending 604 * TLBI for such a vma, flush things now. 605 */ 606 if (tlb->vma_pfn) 607 tlb_flush_mmu_tlbonly(tlb); 608 } 609 610 /* 611 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, 612 * and set corresponding cleared_*. 613 */ 614 static inline void tlb_flush_pte_range(struct mmu_gather *tlb, 615 unsigned long address, unsigned long size) 616 { 617 __tlb_adjust_range(tlb, address, size); 618 tlb->cleared_ptes = 1; 619 } 620 621 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, 622 unsigned long address, unsigned long size) 623 { 624 __tlb_adjust_range(tlb, address, size); 625 tlb->cleared_pmds = 1; 626 } 627 628 static inline void tlb_flush_pud_range(struct mmu_gather *tlb, 629 unsigned long address, unsigned long size) 630 { 631 __tlb_adjust_range(tlb, address, size); 632 tlb->cleared_puds = 1; 633 } 634 635 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, 636 unsigned long address, unsigned long size) 637 { 638 __tlb_adjust_range(tlb, address, size); 639 tlb->cleared_p4ds = 1; 640 } 641 642 #ifndef __tlb_remove_tlb_entry 643 static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address) 644 { 645 } 646 #endif 647 648 /** 649 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 650 * 651 * Record the fact that pte's were really unmapped by updating the range, 652 * so we can later optimise away the tlb invalidate. This helps when 653 * userspace is unmapping already-unmapped pages, which happens quite a lot. 654 */ 655 #define tlb_remove_tlb_entry(tlb, ptep, address) \ 656 do { \ 657 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ 658 __tlb_remove_tlb_entry(tlb, ptep, address); \ 659 } while (0) 660 661 /** 662 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for 663 * later tlb invalidation. 664 * 665 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple 666 * consecutive ptes instead of only a single one. 667 */ 668 static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb, 669 pte_t *ptep, unsigned int nr, unsigned long address) 670 { 671 tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr); 672 for (;;) { 673 __tlb_remove_tlb_entry(tlb, ptep, address); 674 if (--nr == 0) 675 break; 676 ptep++; 677 address += PAGE_SIZE; 678 } 679 } 680 681 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 682 do { \ 683 unsigned long _sz = huge_page_size(h); \ 684 if (_sz >= P4D_SIZE) \ 685 tlb_flush_p4d_range(tlb, address, _sz); \ 686 else if (_sz >= PUD_SIZE) \ 687 tlb_flush_pud_range(tlb, address, _sz); \ 688 else if (_sz >= PMD_SIZE) \ 689 tlb_flush_pmd_range(tlb, address, _sz); \ 690 else \ 691 tlb_flush_pte_range(tlb, address, _sz); \ 692 __tlb_remove_tlb_entry(tlb, ptep, address); \ 693 } while (0) 694 695 /** 696 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 697 * This is a nop so far, because only x86 needs it. 698 */ 699 #ifndef __tlb_remove_pmd_tlb_entry 700 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 701 #endif 702 703 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 704 do { \ 705 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ 706 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 707 } while (0) 708 709 /** 710 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 711 * invalidation. This is a nop so far, because only x86 needs it. 712 */ 713 #ifndef __tlb_remove_pud_tlb_entry 714 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 715 #endif 716 717 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 718 do { \ 719 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ 720 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 721 } while (0) 722 723 /* 724 * For things like page tables caches (ie caching addresses "inside" the 725 * page tables, like x86 does), for legacy reasons, flushing an 726 * individual page had better flush the page table caches behind it. This 727 * is definitely how x86 works, for example. And if you have an 728 * architected non-legacy page table cache (which I'm not aware of 729 * anybody actually doing), you're going to have some architecturally 730 * explicit flushing for that, likely *separate* from a regular TLB entry 731 * flush, and thus you'd need more than just some range expansion.. 732 * 733 * So if we ever find an architecture 734 * that would want something that odd, I think it is up to that 735 * architecture to do its own odd thing, not cause pain for others 736 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 737 * 738 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 739 */ 740 741 #ifndef pte_free_tlb 742 #define pte_free_tlb(tlb, ptep, address) \ 743 do { \ 744 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ 745 tlb->freed_tables = 1; \ 746 __pte_free_tlb(tlb, ptep, address); \ 747 } while (0) 748 #endif 749 750 #ifndef pmd_free_tlb 751 #define pmd_free_tlb(tlb, pmdp, address) \ 752 do { \ 753 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ 754 tlb->freed_tables = 1; \ 755 __pmd_free_tlb(tlb, pmdp, address); \ 756 } while (0) 757 #endif 758 759 #ifndef pud_free_tlb 760 #define pud_free_tlb(tlb, pudp, address) \ 761 do { \ 762 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ 763 tlb->freed_tables = 1; \ 764 __pud_free_tlb(tlb, pudp, address); \ 765 } while (0) 766 #endif 767 768 #ifndef p4d_free_tlb 769 #define p4d_free_tlb(tlb, pudp, address) \ 770 do { \ 771 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 772 tlb->freed_tables = 1; \ 773 __p4d_free_tlb(tlb, pudp, address); \ 774 } while (0) 775 #endif 776 777 #ifndef pte_needs_flush 778 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte) 779 { 780 return true; 781 } 782 #endif 783 784 #ifndef huge_pmd_needs_flush 785 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd) 786 { 787 return true; 788 } 789 #endif 790 791 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 792 static inline void tlb_unshare_pmd_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt, 793 unsigned long addr) 794 { 795 /* 796 * The caller must make sure that concurrent unsharing + exclusive 797 * reuse is impossible until tlb_flush_unshared_tables() was called. 798 */ 799 VM_WARN_ON_ONCE(!ptdesc_pmd_is_shared(pt)); 800 ptdesc_pmd_pts_dec(pt); 801 802 /* Clearing a PUD pointing at a PMD table with PMD leaves. */ 803 tlb_flush_pmd_range(tlb, addr & PUD_MASK, PUD_SIZE); 804 805 /* 806 * If the page table is now exclusively owned, we fully unshared 807 * a page table. 808 */ 809 if (!ptdesc_pmd_is_shared(pt)) 810 tlb->fully_unshared_tables = true; 811 tlb->unshared_tables = true; 812 } 813 814 static inline void tlb_flush_unshared_tables(struct mmu_gather *tlb) 815 { 816 /* 817 * As soon as the caller drops locks to allow for reuse of 818 * previously-shared tables, these tables could get modified and 819 * even reused outside of hugetlb context, so we have to make sure that 820 * any page table walkers (incl. TLB, GUP-fast) are aware of that 821 * change. 822 * 823 * Even if we are not fully unsharing a PMD table, we must 824 * flush the TLB for the unsharer now. 825 */ 826 if (tlb->unshared_tables) 827 tlb_flush_mmu_tlbonly(tlb); 828 829 /* 830 * Similarly, we must make sure that concurrent GUP-fast will not 831 * walk previously-shared page tables that are getting modified+reused 832 * elsewhere. So broadcast an IPI to wait for any concurrent GUP-fast. 833 * 834 * We only perform this when we are the last sharer of a page table, 835 * as the IPI will reach all CPUs: any GUP-fast. 836 * 837 * Note that on configs where tlb_remove_table_sync_one() is a NOP, 838 * the expectation is that the tlb_flush_mmu_tlbonly() would have issued 839 * required IPIs already for us. 840 */ 841 if (tlb->fully_unshared_tables) { 842 tlb_remove_table_sync_one(); 843 tlb->fully_unshared_tables = false; 844 } 845 } 846 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 847 848 #endif /* CONFIG_MMU */ 849 850 #endif /* _ASM_GENERIC__TLB_H */ 851