1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11 #ifndef _ASM_GENERIC__TLB_H 12 #define _ASM_GENERIC__TLB_H 13 14 #include <linux/mmu_notifier.h> 15 #include <linux/swap.h> 16 #include <linux/hugetlb_inline.h> 17 #include <asm/tlbflush.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25 #ifndef nmi_uaccess_okay 26 # define nmi_uaccess_okay() true 27 #endif 28 29 #ifdef CONFIG_MMU 30 31 /* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu() 50 * 51 * start and finish a mmu_gather 52 * 53 * Finish in particular will issue a (final) TLB invalidate and free 54 * all (remaining) queued pages. 55 * 56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 57 * 58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 59 * there's large holes between the VMAs. 60 * 61 * - tlb_remove_table() 62 * 63 * tlb_remove_table() is the basic primitive to free page-table directories 64 * (__p*_free_tlb()). In it's most primitive form it is an alias for 65 * tlb_remove_page() below, for when page directories are pages and have no 66 * additional constraints. 67 * 68 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. 69 * 70 * - tlb_remove_page() / __tlb_remove_page() 71 * - tlb_remove_page_size() / __tlb_remove_page_size() 72 * 73 * __tlb_remove_page_size() is the basic primitive that queues a page for 74 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a 75 * boolean indicating if the queue is (now) full and a call to 76 * tlb_flush_mmu() is required. 77 * 78 * tlb_remove_page() and tlb_remove_page_size() imply the call to 79 * tlb_flush_mmu() when required and has no return value. 80 * 81 * - tlb_change_page_size() 82 * 83 * call before __tlb_remove_page*() to set the current page-size; implies a 84 * possible tlb_flush_mmu() call. 85 * 86 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 87 * 88 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 89 * related state, like the range) 90 * 91 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 92 * whatever pages are still batched. 93 * 94 * - mmu_gather::fullmm 95 * 96 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free 97 * the entire mm; this allows a number of optimizations. 98 * 99 * - We can ignore tlb_{start,end}_vma(); because we don't 100 * care about ranges. Everything will be shot down. 101 * 102 * - (RISC) architectures that use ASIDs can cycle to a new ASID 103 * and delay the invalidation until ASID space runs out. 104 * 105 * - mmu_gather::need_flush_all 106 * 107 * A flag that can be set by the arch code if it wants to force 108 * flush the entire TLB irrespective of the range. For instance 109 * x86-PAE needs this when changing top-level entries. 110 * 111 * And allows the architecture to provide and implement tlb_flush(): 112 * 113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 114 * use of: 115 * 116 * - mmu_gather::start / mmu_gather::end 117 * 118 * which provides the range that needs to be flushed to cover the pages to 119 * be freed. 120 * 121 * - mmu_gather::freed_tables 122 * 123 * set when we freed page table pages 124 * 125 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 126 * 127 * returns the smallest TLB entry size unmapped in this range. 128 * 129 * If an architecture does not provide tlb_flush() a default implementation 130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 131 * specified, in which case we'll default to flush_tlb_mm(). 132 * 133 * Additionally there are a few opt-in features: 134 * 135 * MMU_GATHER_PAGE_SIZE 136 * 137 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 138 * changes the size and provides mmu_gather::page_size to tlb_flush(). 139 * 140 * This might be useful if your architecture has size specific TLB 141 * invalidation instructions. 142 * 143 * MMU_GATHER_TABLE_FREE 144 * 145 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 146 * for page directores (__p*_free_tlb()). 147 * 148 * Useful if your architecture has non-page page directories. 149 * 150 * When used, an architecture is expected to provide __tlb_remove_table() 151 * which does the actual freeing of these pages. 152 * 153 * MMU_GATHER_RCU_TABLE_FREE 154 * 155 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see 156 * comment below). 157 * 158 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 159 * and therefore doesn't naturally serialize with software page-table walkers. 160 * 161 * MMU_GATHER_NO_FLUSH_CACHE 162 * 163 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called 164 * before unmapping a VMA. 165 * 166 * NOTE: strictly speaking we shouldn't have this knob and instead rely on 167 * flush_cache_range() being a NOP, except Sparc64 seems to be 168 * different here. 169 * 170 * MMU_GATHER_MERGE_VMAS 171 * 172 * Indicates the architecture wants to merge ranges over VMAs; typical when 173 * multiple range invalidates are more expensive than a full invalidate. 174 * 175 * MMU_GATHER_NO_RANGE 176 * 177 * Use this if your architecture lacks an efficient flush_tlb_range(). This 178 * option implies MMU_GATHER_MERGE_VMAS above. 179 * 180 * MMU_GATHER_NO_GATHER 181 * 182 * If the option is set the mmu_gather will not track individual pages for 183 * delayed page free anymore. A platform that enables the option needs to 184 * provide its own implementation of the __tlb_remove_page_size() function to 185 * free pages. 186 * 187 * This is useful if your architecture already flushes TLB entries in the 188 * various ptep_get_and_clear() functions. 189 */ 190 191 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 192 193 struct mmu_table_batch { 194 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 195 struct rcu_head rcu; 196 #endif 197 unsigned int nr; 198 void *tables[]; 199 }; 200 201 #define MAX_TABLE_BATCH \ 202 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 203 204 extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 205 206 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ 207 208 /* 209 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based 210 * page directories and we can use the normal page batching to free them. 211 */ 212 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) 213 214 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 215 216 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 217 /* 218 * This allows an architecture that does not use the linux page-tables for 219 * hardware to skip the TLBI when freeing page tables. 220 */ 221 #ifndef tlb_needs_table_invalidate 222 #define tlb_needs_table_invalidate() (true) 223 #endif 224 225 void tlb_remove_table_sync_one(void); 226 227 #else 228 229 #ifdef tlb_needs_table_invalidate 230 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE 231 #endif 232 233 static inline void tlb_remove_table_sync_one(void) { } 234 235 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 236 237 238 #ifndef CONFIG_MMU_GATHER_NO_GATHER 239 /* 240 * If we can't allocate a page to make a big batch of page pointers 241 * to work on, then just handle a few from the on-stack structure. 242 */ 243 #define MMU_GATHER_BUNDLE 8 244 245 struct mmu_gather_batch { 246 struct mmu_gather_batch *next; 247 unsigned int nr; 248 unsigned int max; 249 struct page *pages[]; 250 }; 251 252 #define MAX_GATHER_BATCH \ 253 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 254 255 /* 256 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 257 * lockups for non-preemptible kernels on huge machines when a lot of memory 258 * is zapped during unmapping. 259 * 10K pages freed at once should be safe even without a preemption point. 260 */ 261 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 262 263 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, 264 int page_size); 265 #endif 266 267 /* 268 * struct mmu_gather is an opaque type used by the mm code for passing around 269 * any data needed by arch specific code for tlb_remove_page. 270 */ 271 struct mmu_gather { 272 struct mm_struct *mm; 273 274 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 275 struct mmu_table_batch *batch; 276 #endif 277 278 unsigned long start; 279 unsigned long end; 280 /* 281 * we are in the middle of an operation to clear 282 * a full mm and can make some optimizations 283 */ 284 unsigned int fullmm : 1; 285 286 /* 287 * we have performed an operation which 288 * requires a complete flush of the tlb 289 */ 290 unsigned int need_flush_all : 1; 291 292 /* 293 * we have removed page directories 294 */ 295 unsigned int freed_tables : 1; 296 297 /* 298 * at which levels have we cleared entries? 299 */ 300 unsigned int cleared_ptes : 1; 301 unsigned int cleared_pmds : 1; 302 unsigned int cleared_puds : 1; 303 unsigned int cleared_p4ds : 1; 304 305 /* 306 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 307 */ 308 unsigned int vma_exec : 1; 309 unsigned int vma_huge : 1; 310 unsigned int vma_pfn : 1; 311 312 unsigned int batch_count; 313 314 #ifndef CONFIG_MMU_GATHER_NO_GATHER 315 struct mmu_gather_batch *active; 316 struct mmu_gather_batch local; 317 struct page *__pages[MMU_GATHER_BUNDLE]; 318 319 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 320 unsigned int page_size; 321 #endif 322 #endif 323 }; 324 325 void tlb_flush_mmu(struct mmu_gather *tlb); 326 327 static inline void __tlb_adjust_range(struct mmu_gather *tlb, 328 unsigned long address, 329 unsigned int range_size) 330 { 331 tlb->start = min(tlb->start, address); 332 tlb->end = max(tlb->end, address + range_size); 333 } 334 335 static inline void __tlb_reset_range(struct mmu_gather *tlb) 336 { 337 if (tlb->fullmm) { 338 tlb->start = tlb->end = ~0; 339 } else { 340 tlb->start = TASK_SIZE; 341 tlb->end = 0; 342 } 343 tlb->freed_tables = 0; 344 tlb->cleared_ptes = 0; 345 tlb->cleared_pmds = 0; 346 tlb->cleared_puds = 0; 347 tlb->cleared_p4ds = 0; 348 /* 349 * Do not reset mmu_gather::vma_* fields here, we do not 350 * call into tlb_start_vma() again to set them if there is an 351 * intermediate flush. 352 */ 353 } 354 355 #ifdef CONFIG_MMU_GATHER_NO_RANGE 356 357 #if defined(tlb_flush) 358 #error MMU_GATHER_NO_RANGE relies on default tlb_flush() 359 #endif 360 361 /* 362 * When an architecture does not have efficient means of range flushing TLBs 363 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 364 * range small. We equally don't have to worry about page granularity or other 365 * things. 366 * 367 * All we need to do is issue a full flush for any !0 range. 368 */ 369 static inline void tlb_flush(struct mmu_gather *tlb) 370 { 371 if (tlb->end) 372 flush_tlb_mm(tlb->mm); 373 } 374 375 #else /* CONFIG_MMU_GATHER_NO_RANGE */ 376 377 #ifndef tlb_flush 378 /* 379 * When an architecture does not provide its own tlb_flush() implementation 380 * but does have a reasonably efficient flush_vma_range() implementation 381 * use that. 382 */ 383 static inline void tlb_flush(struct mmu_gather *tlb) 384 { 385 if (tlb->fullmm || tlb->need_flush_all) { 386 flush_tlb_mm(tlb->mm); 387 } else if (tlb->end) { 388 struct vm_area_struct vma = { 389 .vm_mm = tlb->mm, 390 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 391 (tlb->vma_huge ? VM_HUGETLB : 0), 392 }; 393 394 flush_tlb_range(&vma, tlb->start, tlb->end); 395 } 396 } 397 #endif 398 399 #endif /* CONFIG_MMU_GATHER_NO_RANGE */ 400 401 static inline void 402 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 403 { 404 /* 405 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 406 * mips-4k) flush only large pages. 407 * 408 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 409 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 410 * range. 411 * 412 * We rely on tlb_end_vma() to issue a flush, such that when we reset 413 * these values the batch is empty. 414 */ 415 tlb->vma_huge = is_vm_hugetlb_page(vma); 416 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 417 tlb->vma_pfn = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)); 418 } 419 420 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 421 { 422 /* 423 * Anything calling __tlb_adjust_range() also sets at least one of 424 * these bits. 425 */ 426 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || 427 tlb->cleared_puds || tlb->cleared_p4ds)) 428 return; 429 430 tlb_flush(tlb); 431 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 432 __tlb_reset_range(tlb); 433 } 434 435 static inline void tlb_remove_page_size(struct mmu_gather *tlb, 436 struct page *page, int page_size) 437 { 438 if (__tlb_remove_page_size(tlb, page, page_size)) 439 tlb_flush_mmu(tlb); 440 } 441 442 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 443 { 444 return __tlb_remove_page_size(tlb, page, PAGE_SIZE); 445 } 446 447 /* tlb_remove_page 448 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when 449 * required. 450 */ 451 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 452 { 453 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 454 } 455 456 static inline void tlb_change_page_size(struct mmu_gather *tlb, 457 unsigned int page_size) 458 { 459 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 460 if (tlb->page_size && tlb->page_size != page_size) { 461 if (!tlb->fullmm && !tlb->need_flush_all) 462 tlb_flush_mmu(tlb); 463 } 464 465 tlb->page_size = page_size; 466 #endif 467 } 468 469 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 470 { 471 if (tlb->cleared_ptes) 472 return PAGE_SHIFT; 473 if (tlb->cleared_pmds) 474 return PMD_SHIFT; 475 if (tlb->cleared_puds) 476 return PUD_SHIFT; 477 if (tlb->cleared_p4ds) 478 return P4D_SHIFT; 479 480 return PAGE_SHIFT; 481 } 482 483 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 484 { 485 return 1UL << tlb_get_unmap_shift(tlb); 486 } 487 488 /* 489 * In the case of tlb vma handling, we can optimise these away in the 490 * case where we're doing a full MM flush. When we're doing a munmap, 491 * the vmas are adjusted to only cover the region to be torn down. 492 */ 493 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 494 { 495 if (tlb->fullmm) 496 return; 497 498 tlb_update_vma_flags(tlb, vma); 499 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE 500 flush_cache_range(vma, vma->vm_start, vma->vm_end); 501 #endif 502 } 503 504 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 505 { 506 if (tlb->fullmm) 507 return; 508 509 /* 510 * VM_PFNMAP is more fragile because the core mm will not track the 511 * page mapcount -- there might not be page-frames for these PFNs after 512 * all. Force flush TLBs for such ranges to avoid munmap() vs 513 * unmap_mapping_range() races. 514 */ 515 if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) { 516 /* 517 * Do a TLB flush and reset the range at VMA boundaries; this avoids 518 * the ranges growing with the unused space between consecutive VMAs. 519 */ 520 tlb_flush_mmu_tlbonly(tlb); 521 } 522 } 523 524 /* 525 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, 526 * and set corresponding cleared_*. 527 */ 528 static inline void tlb_flush_pte_range(struct mmu_gather *tlb, 529 unsigned long address, unsigned long size) 530 { 531 __tlb_adjust_range(tlb, address, size); 532 tlb->cleared_ptes = 1; 533 } 534 535 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, 536 unsigned long address, unsigned long size) 537 { 538 __tlb_adjust_range(tlb, address, size); 539 tlb->cleared_pmds = 1; 540 } 541 542 static inline void tlb_flush_pud_range(struct mmu_gather *tlb, 543 unsigned long address, unsigned long size) 544 { 545 __tlb_adjust_range(tlb, address, size); 546 tlb->cleared_puds = 1; 547 } 548 549 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, 550 unsigned long address, unsigned long size) 551 { 552 __tlb_adjust_range(tlb, address, size); 553 tlb->cleared_p4ds = 1; 554 } 555 556 #ifndef __tlb_remove_tlb_entry 557 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) 558 #endif 559 560 /** 561 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 562 * 563 * Record the fact that pte's were really unmapped by updating the range, 564 * so we can later optimise away the tlb invalidate. This helps when 565 * userspace is unmapping already-unmapped pages, which happens quite a lot. 566 */ 567 #define tlb_remove_tlb_entry(tlb, ptep, address) \ 568 do { \ 569 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ 570 __tlb_remove_tlb_entry(tlb, ptep, address); \ 571 } while (0) 572 573 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 574 do { \ 575 unsigned long _sz = huge_page_size(h); \ 576 if (_sz >= P4D_SIZE) \ 577 tlb_flush_p4d_range(tlb, address, _sz); \ 578 else if (_sz >= PUD_SIZE) \ 579 tlb_flush_pud_range(tlb, address, _sz); \ 580 else if (_sz >= PMD_SIZE) \ 581 tlb_flush_pmd_range(tlb, address, _sz); \ 582 else \ 583 tlb_flush_pte_range(tlb, address, _sz); \ 584 __tlb_remove_tlb_entry(tlb, ptep, address); \ 585 } while (0) 586 587 /** 588 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 589 * This is a nop so far, because only x86 needs it. 590 */ 591 #ifndef __tlb_remove_pmd_tlb_entry 592 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 593 #endif 594 595 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 596 do { \ 597 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ 598 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 599 } while (0) 600 601 /** 602 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 603 * invalidation. This is a nop so far, because only x86 needs it. 604 */ 605 #ifndef __tlb_remove_pud_tlb_entry 606 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 607 #endif 608 609 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 610 do { \ 611 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ 612 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 613 } while (0) 614 615 /* 616 * For things like page tables caches (ie caching addresses "inside" the 617 * page tables, like x86 does), for legacy reasons, flushing an 618 * individual page had better flush the page table caches behind it. This 619 * is definitely how x86 works, for example. And if you have an 620 * architected non-legacy page table cache (which I'm not aware of 621 * anybody actually doing), you're going to have some architecturally 622 * explicit flushing for that, likely *separate* from a regular TLB entry 623 * flush, and thus you'd need more than just some range expansion.. 624 * 625 * So if we ever find an architecture 626 * that would want something that odd, I think it is up to that 627 * architecture to do its own odd thing, not cause pain for others 628 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 629 * 630 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 631 */ 632 633 #ifndef pte_free_tlb 634 #define pte_free_tlb(tlb, ptep, address) \ 635 do { \ 636 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ 637 tlb->freed_tables = 1; \ 638 __pte_free_tlb(tlb, ptep, address); \ 639 } while (0) 640 #endif 641 642 #ifndef pmd_free_tlb 643 #define pmd_free_tlb(tlb, pmdp, address) \ 644 do { \ 645 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ 646 tlb->freed_tables = 1; \ 647 __pmd_free_tlb(tlb, pmdp, address); \ 648 } while (0) 649 #endif 650 651 #ifndef pud_free_tlb 652 #define pud_free_tlb(tlb, pudp, address) \ 653 do { \ 654 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ 655 tlb->freed_tables = 1; \ 656 __pud_free_tlb(tlb, pudp, address); \ 657 } while (0) 658 #endif 659 660 #ifndef p4d_free_tlb 661 #define p4d_free_tlb(tlb, pudp, address) \ 662 do { \ 663 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 664 tlb->freed_tables = 1; \ 665 __p4d_free_tlb(tlb, pudp, address); \ 666 } while (0) 667 #endif 668 669 #ifndef pte_needs_flush 670 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte) 671 { 672 return true; 673 } 674 #endif 675 676 #ifndef huge_pmd_needs_flush 677 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd) 678 { 679 return true; 680 } 681 #endif 682 683 #endif /* CONFIG_MMU */ 684 685 #endif /* _ASM_GENERIC__TLB_H */ 686