1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * Linux-specific definitions for managing interactions with Microsoft's 5 * Hyper-V hypervisor. The definitions in this file are architecture 6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions 7 * that are specific to architecture <arch>. 8 * 9 * Definitions that are derived from Hyper-V code or headers should not go in 10 * this file, but should instead go in the relevant files in include/hyperv. 11 * 12 * Copyright (C) 2019, Microsoft, Inc. 13 * 14 * Author : Michael Kelley <mikelley@microsoft.com> 15 */ 16 17 #ifndef _ASM_GENERIC_MSHYPERV_H 18 #define _ASM_GENERIC_MSHYPERV_H 19 20 #include <linux/types.h> 21 #include <linux/atomic.h> 22 #include <linux/bitops.h> 23 #include <acpi/acpi_numa.h> 24 #include <linux/cpumask.h> 25 #include <linux/nmi.h> 26 #include <asm/ptrace.h> 27 #include <hyperv/hvhdk.h> 28 29 #define VTPM_BASE_ADDRESS 0xfed40000 30 31 struct ms_hyperv_info { 32 u32 features; 33 u32 priv_high; 34 u32 misc_features; 35 u32 hints; 36 u32 nested_features; 37 u32 max_vp_index; 38 u32 max_lp_index; 39 u8 vtl; 40 union { 41 u32 isolation_config_a; 42 struct { 43 u32 paravisor_present : 1; 44 u32 reserved_a1 : 31; 45 }; 46 }; 47 union { 48 u32 isolation_config_b; 49 struct { 50 u32 cvm_type : 4; 51 u32 reserved_b1 : 1; 52 u32 shared_gpa_boundary_active : 1; 53 u32 shared_gpa_boundary_bits : 6; 54 u32 reserved_b2 : 20; 55 }; 56 }; 57 u64 shared_gpa_boundary; 58 }; 59 extern struct ms_hyperv_info ms_hyperv; 60 extern bool hv_nested; 61 62 extern void * __percpu *hyperv_pcpu_input_arg; 63 extern void * __percpu *hyperv_pcpu_output_arg; 64 65 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); 66 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); 67 bool hv_isolation_type_snp(void); 68 bool hv_isolation_type_tdx(void); 69 70 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) 71 { 72 struct hv_proximity_domain_info pxm_info = {}; 73 74 if (node != NUMA_NO_NODE) { 75 pxm_info.domain_id = node_to_pxm(node); 76 pxm_info.flags.proximity_info_valid = 1; 77 pxm_info.flags.proximity_preferred = 1; 78 } 79 80 return pxm_info; 81 } 82 83 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ 84 static inline int hv_result(u64 status) 85 { 86 return status & HV_HYPERCALL_RESULT_MASK; 87 } 88 89 static inline bool hv_result_success(u64 status) 90 { 91 return hv_result(status) == HV_STATUS_SUCCESS; 92 } 93 94 static inline unsigned int hv_repcomp(u64 status) 95 { 96 /* Bits [43:32] of status have 'Reps completed' data. */ 97 return (status & HV_HYPERCALL_REP_COMP_MASK) >> 98 HV_HYPERCALL_REP_COMP_OFFSET; 99 } 100 101 /* 102 * Rep hypercalls. Callers of this functions are supposed to ensure that 103 * rep_count and varhead_size comply with Hyper-V hypercall definition. 104 */ 105 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 106 void *input, void *output) 107 { 108 u64 control = code; 109 u64 status; 110 u16 rep_comp; 111 112 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 113 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 114 115 do { 116 status = hv_do_hypercall(control, input, output); 117 if (!hv_result_success(status)) 118 return status; 119 120 rep_comp = hv_repcomp(status); 121 122 control &= ~HV_HYPERCALL_REP_START_MASK; 123 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 124 125 touch_nmi_watchdog(); 126 } while (rep_comp < rep_count); 127 128 return status; 129 } 130 131 /* Generate the guest OS identifier as described in the Hyper-V TLFS */ 132 static inline u64 hv_generate_guest_id(u64 kernel_version) 133 { 134 u64 guest_id; 135 136 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); 137 guest_id |= (kernel_version << 16); 138 139 return guest_id; 140 } 141 142 /* Free the message slot and signal end-of-message if required */ 143 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 144 { 145 /* 146 * On crash we're reading some other CPU's message page and we need 147 * to be careful: this other CPU may already had cleared the header 148 * and the host may already had delivered some other message there. 149 * In case we blindly write msg->header.message_type we're going 150 * to lose it. We can still lose a message of the same type but 151 * we count on the fact that there can only be one 152 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 153 * on crash. 154 */ 155 if (cmpxchg(&msg->header.message_type, old_msg_type, 156 HVMSG_NONE) != old_msg_type) 157 return; 158 159 /* 160 * The cmxchg() above does an implicit memory barrier to 161 * ensure the write to MessageType (ie set to 162 * HVMSG_NONE) happens before we read the 163 * MessagePending and EOMing. Otherwise, the EOMing 164 * will not deliver any more messages since there is 165 * no empty slot 166 */ 167 if (msg->header.message_flags.msg_pending) { 168 /* 169 * This will cause message queue rescan to 170 * possibly deliver another msg from the 171 * hypervisor 172 */ 173 hv_set_msr(HV_MSR_EOM, 0); 174 } 175 } 176 177 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); 178 179 void hv_setup_vmbus_handler(void (*handler)(void)); 180 void hv_remove_vmbus_handler(void); 181 void hv_setup_stimer0_handler(void (*handler)(void)); 182 void hv_remove_stimer0_handler(void); 183 184 void hv_setup_kexec_handler(void (*handler)(void)); 185 void hv_remove_kexec_handler(void); 186 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 187 void hv_remove_crash_handler(void); 188 189 extern int vmbus_interrupt; 190 extern int vmbus_irq; 191 192 extern bool hv_root_partition; 193 194 #if IS_ENABLED(CONFIG_HYPERV) 195 /* 196 * Hypervisor's notion of virtual processor ID is different from 197 * Linux' notion of CPU ID. This information can only be retrieved 198 * in the context of the calling CPU. Setup a map for easy access 199 * to this information. 200 */ 201 extern u32 *hv_vp_index; 202 extern u32 hv_max_vp_index; 203 204 extern u64 (*hv_read_reference_counter)(void); 205 206 /* Sentinel value for an uninitialized entry in hv_vp_index array */ 207 #define VP_INVAL U32_MAX 208 209 int __init hv_common_init(void); 210 void __init hv_common_free(void); 211 void __init ms_hyperv_late_init(void); 212 int hv_common_cpu_init(unsigned int cpu); 213 int hv_common_cpu_die(unsigned int cpu); 214 215 void *hv_alloc_hyperv_page(void); 216 void *hv_alloc_hyperv_zeroed_page(void); 217 void hv_free_hyperv_page(void *addr); 218 219 /** 220 * hv_cpu_number_to_vp_number() - Map CPU to VP. 221 * @cpu_number: CPU number in Linux terms 222 * 223 * This function returns the mapping between the Linux processor 224 * number and the hypervisor's virtual processor number, useful 225 * in making hypercalls and such that talk about specific 226 * processors. 227 * 228 * Return: Virtual processor number in Hyper-V terms 229 */ 230 static inline int hv_cpu_number_to_vp_number(int cpu_number) 231 { 232 return hv_vp_index[cpu_number]; 233 } 234 235 static inline int __cpumask_to_vpset(struct hv_vpset *vpset, 236 const struct cpumask *cpus, 237 bool (*func)(int cpu)) 238 { 239 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 240 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; 241 242 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ 243 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) 244 return 0; 245 246 /* 247 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 248 * structs are not cleared between calls, we risk flushing unneeded 249 * vCPUs otherwise. 250 */ 251 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) 252 vpset->bank_contents[vcpu_bank] = 0; 253 254 /* 255 * Some banks may end up being empty but this is acceptable. 256 */ 257 for_each_cpu(cpu, cpus) { 258 if (func && func(cpu)) 259 continue; 260 vcpu = hv_cpu_number_to_vp_number(cpu); 261 if (vcpu == VP_INVAL) 262 return -1; 263 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; 264 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; 265 __set_bit(vcpu_offset, (unsigned long *) 266 &vpset->bank_contents[vcpu_bank]); 267 if (vcpu_bank >= nr_bank) 268 nr_bank = vcpu_bank + 1; 269 } 270 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 271 return nr_bank; 272 } 273 274 /* 275 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, 276 * 'func' is called for each CPU present in cpumask. If 'func' returns 277 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* 278 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are 279 * skipped. 280 */ 281 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 282 const struct cpumask *cpus) 283 { 284 return __cpumask_to_vpset(vpset, cpus, NULL); 285 } 286 287 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, 288 const struct cpumask *cpus, 289 bool (*func)(int cpu)) 290 { 291 return __cpumask_to_vpset(vpset, cpus, func); 292 } 293 294 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); 295 bool hv_is_hyperv_initialized(void); 296 bool hv_is_hibernation_supported(void); 297 enum hv_isolation_type hv_get_isolation_type(void); 298 bool hv_is_isolation_supported(void); 299 bool hv_isolation_type_snp(void); 300 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); 301 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); 302 void hyperv_cleanup(void); 303 bool hv_query_ext_cap(u64 cap_query); 304 void hv_setup_dma_ops(struct device *dev, bool coherent); 305 #else /* CONFIG_HYPERV */ 306 static inline bool hv_is_hyperv_initialized(void) { return false; } 307 static inline bool hv_is_hibernation_supported(void) { return false; } 308 static inline void hyperv_cleanup(void) {} 309 static inline void ms_hyperv_late_init(void) {} 310 static inline bool hv_is_isolation_supported(void) { return false; } 311 static inline enum hv_isolation_type hv_get_isolation_type(void) 312 { 313 return HV_ISOLATION_TYPE_NONE; 314 } 315 #endif /* CONFIG_HYPERV */ 316 317 #endif 318