1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * Linux-specific definitions for managing interactions with Microsoft's 5 * Hyper-V hypervisor. The definitions in this file are architecture 6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions 7 * that are specific to architecture <arch>. 8 * 9 * Definitions that are derived from Hyper-V code or headers should not go in 10 * this file, but should instead go in the relevant files in include/hyperv. 11 * 12 * Copyright (C) 2019, Microsoft, Inc. 13 * 14 * Author : Michael Kelley <mikelley@microsoft.com> 15 */ 16 17 #ifndef _ASM_GENERIC_MSHYPERV_H 18 #define _ASM_GENERIC_MSHYPERV_H 19 20 #include <linux/types.h> 21 #include <linux/atomic.h> 22 #include <linux/bitops.h> 23 #include <acpi/acpi_numa.h> 24 #include <linux/cpumask.h> 25 #include <linux/nmi.h> 26 #include <asm/ptrace.h> 27 #include <hyperv/hvhdk.h> 28 29 #define VTPM_BASE_ADDRESS 0xfed40000 30 31 enum hv_partition_type { 32 HV_PARTITION_TYPE_GUEST, 33 HV_PARTITION_TYPE_ROOT, 34 HV_PARTITION_TYPE_L1VH, 35 }; 36 37 struct ms_hyperv_info { 38 u32 features; 39 u32 priv_high; 40 u32 ext_features; 41 u32 misc_features; 42 u32 hints; 43 u32 nested_features; 44 u32 max_vp_index; 45 u32 max_lp_index; 46 u8 vtl; 47 union { 48 u32 isolation_config_a; 49 struct { 50 u32 paravisor_present : 1; 51 u32 reserved_a1 : 31; 52 }; 53 }; 54 union { 55 u32 isolation_config_b; 56 struct { 57 u32 cvm_type : 4; 58 u32 reserved_b1 : 1; 59 u32 shared_gpa_boundary_active : 1; 60 u32 shared_gpa_boundary_bits : 6; 61 u32 reserved_b2 : 20; 62 }; 63 }; 64 u64 shared_gpa_boundary; 65 }; 66 extern struct ms_hyperv_info ms_hyperv; 67 extern bool hv_nested; 68 extern u64 hv_current_partition_id; 69 extern enum hv_partition_type hv_curr_partition_type; 70 71 extern void * __percpu *hyperv_pcpu_input_arg; 72 extern void * __percpu *hyperv_pcpu_output_arg; 73 74 u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); 75 u64 hv_do_fast_hypercall8(u16 control, u64 input8); 76 u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2); 77 78 bool hv_isolation_type_snp(void); 79 bool hv_isolation_type_tdx(void); 80 81 /* 82 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64), 83 * it doesn't provide a recommendation flag and AEOI must be disabled. 84 */ 85 static inline bool hv_recommend_using_aeoi(void) 86 { 87 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED 88 return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED); 89 #else 90 return false; 91 #endif 92 } 93 94 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) 95 { 96 struct hv_proximity_domain_info pxm_info = {}; 97 98 if (node != NUMA_NO_NODE) { 99 pxm_info.domain_id = node_to_pxm(node); 100 pxm_info.flags.proximity_info_valid = 1; 101 pxm_info.flags.proximity_preferred = 1; 102 } 103 104 return pxm_info; 105 } 106 107 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ 108 static inline int hv_result(u64 status) 109 { 110 return status & HV_HYPERCALL_RESULT_MASK; 111 } 112 113 static inline bool hv_result_success(u64 status) 114 { 115 return hv_result(status) == HV_STATUS_SUCCESS; 116 } 117 118 static inline unsigned int hv_repcomp(u64 status) 119 { 120 /* Bits [43:32] of status have 'Reps completed' data. */ 121 return (status & HV_HYPERCALL_REP_COMP_MASK) >> 122 HV_HYPERCALL_REP_COMP_OFFSET; 123 } 124 125 /* 126 * Rep hypercalls. Callers of this functions are supposed to ensure that 127 * rep_count and varhead_size comply with Hyper-V hypercall definition. 128 */ 129 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 130 void *input, void *output) 131 { 132 u64 control = code; 133 u64 status; 134 u16 rep_comp; 135 136 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 137 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 138 139 do { 140 status = hv_do_hypercall(control, input, output); 141 if (!hv_result_success(status)) 142 return status; 143 144 rep_comp = hv_repcomp(status); 145 146 control &= ~HV_HYPERCALL_REP_START_MASK; 147 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 148 149 touch_nmi_watchdog(); 150 } while (rep_comp < rep_count); 151 152 return status; 153 } 154 155 /* Generate the guest OS identifier as described in the Hyper-V TLFS */ 156 static inline u64 hv_generate_guest_id(u64 kernel_version) 157 { 158 u64 guest_id; 159 160 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); 161 guest_id |= (kernel_version << 16); 162 163 return guest_id; 164 } 165 166 #if IS_ENABLED(CONFIG_HYPERV_VMBUS) 167 /* Free the message slot and signal end-of-message if required */ 168 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 169 { 170 /* 171 * On crash we're reading some other CPU's message page and we need 172 * to be careful: this other CPU may already had cleared the header 173 * and the host may already had delivered some other message there. 174 * In case we blindly write msg->header.message_type we're going 175 * to lose it. We can still lose a message of the same type but 176 * we count on the fact that there can only be one 177 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 178 * on crash. 179 */ 180 if (cmpxchg(&msg->header.message_type, old_msg_type, 181 HVMSG_NONE) != old_msg_type) 182 return; 183 184 /* 185 * The cmxchg() above does an implicit memory barrier to 186 * ensure the write to MessageType (ie set to 187 * HVMSG_NONE) happens before we read the 188 * MessagePending and EOMing. Otherwise, the EOMing 189 * will not deliver any more messages since there is 190 * no empty slot 191 */ 192 if (msg->header.message_flags.msg_pending) { 193 /* 194 * This will cause message queue rescan to 195 * possibly deliver another msg from the 196 * hypervisor 197 */ 198 hv_set_msr(HV_MSR_EOM, 0); 199 } 200 } 201 202 extern int vmbus_interrupt; 203 extern int vmbus_irq; 204 #endif /* CONFIG_HYPERV_VMBUS */ 205 206 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); 207 208 void hv_setup_vmbus_handler(void (*handler)(void)); 209 void hv_remove_vmbus_handler(void); 210 void hv_setup_stimer0_handler(void (*handler)(void)); 211 void hv_remove_stimer0_handler(void); 212 213 void hv_setup_kexec_handler(void (*handler)(void)); 214 void hv_remove_kexec_handler(void); 215 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 216 void hv_remove_crash_handler(void); 217 void hv_setup_mshv_handler(void (*handler)(void)); 218 219 #if IS_ENABLED(CONFIG_HYPERV) 220 /* 221 * Hypervisor's notion of virtual processor ID is different from 222 * Linux' notion of CPU ID. This information can only be retrieved 223 * in the context of the calling CPU. Setup a map for easy access 224 * to this information. 225 */ 226 extern u32 *hv_vp_index; 227 extern u32 hv_max_vp_index; 228 229 extern u64 (*hv_read_reference_counter)(void); 230 231 /* Sentinel value for an uninitialized entry in hv_vp_index array */ 232 #define VP_INVAL U32_MAX 233 234 int __init hv_common_init(void); 235 void __init hv_get_partition_id(void); 236 void __init hv_common_free(void); 237 void __init ms_hyperv_late_init(void); 238 int hv_common_cpu_init(unsigned int cpu); 239 int hv_common_cpu_die(unsigned int cpu); 240 void hv_identify_partition_type(void); 241 242 /** 243 * hv_cpu_number_to_vp_number() - Map CPU to VP. 244 * @cpu_number: CPU number in Linux terms 245 * 246 * This function returns the mapping between the Linux processor 247 * number and the hypervisor's virtual processor number, useful 248 * in making hypercalls and such that talk about specific 249 * processors. 250 * 251 * Return: Virtual processor number in Hyper-V terms 252 */ 253 static inline int hv_cpu_number_to_vp_number(int cpu_number) 254 { 255 return hv_vp_index[cpu_number]; 256 } 257 258 static inline int __cpumask_to_vpset(struct hv_vpset *vpset, 259 const struct cpumask *cpus, 260 bool (*func)(int cpu)) 261 { 262 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 263 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; 264 265 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ 266 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) 267 return 0; 268 269 /* 270 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 271 * structs are not cleared between calls, we risk flushing unneeded 272 * vCPUs otherwise. 273 */ 274 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) 275 vpset->bank_contents[vcpu_bank] = 0; 276 277 /* 278 * Some banks may end up being empty but this is acceptable. 279 */ 280 for_each_cpu(cpu, cpus) { 281 if (func && func(cpu)) 282 continue; 283 vcpu = hv_cpu_number_to_vp_number(cpu); 284 if (vcpu == VP_INVAL) 285 return -1; 286 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; 287 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; 288 __set_bit(vcpu_offset, (unsigned long *) 289 &vpset->bank_contents[vcpu_bank]); 290 if (vcpu_bank >= nr_bank) 291 nr_bank = vcpu_bank + 1; 292 } 293 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 294 return nr_bank; 295 } 296 297 /* 298 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, 299 * 'func' is called for each CPU present in cpumask. If 'func' returns 300 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* 301 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are 302 * skipped. 303 */ 304 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 305 const struct cpumask *cpus) 306 { 307 return __cpumask_to_vpset(vpset, cpus, NULL); 308 } 309 310 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, 311 const struct cpumask *cpus, 312 bool (*func)(int cpu)) 313 { 314 return __cpumask_to_vpset(vpset, cpus, func); 315 } 316 317 #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt 318 #define hv_status_printk(level, status, fmt, ...) \ 319 do { \ 320 u64 __status = (status); \ 321 pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \ 322 hv_result_to_string(__status), ##__VA_ARGS__); \ 323 } while (0) 324 #define hv_status_err(status, fmt, ...) \ 325 hv_status_printk(err, status, fmt, ##__VA_ARGS__) 326 #define hv_status_debug(status, fmt, ...) \ 327 hv_status_printk(debug, status, fmt, ##__VA_ARGS__) 328 329 const char *hv_result_to_string(u64 hv_status); 330 int hv_result_to_errno(u64 status); 331 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); 332 bool hv_is_hyperv_initialized(void); 333 bool hv_is_hibernation_supported(void); 334 enum hv_isolation_type hv_get_isolation_type(void); 335 bool hv_is_isolation_supported(void); 336 bool hv_isolation_type_snp(void); 337 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); 338 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); 339 void hyperv_cleanup(void); 340 bool hv_query_ext_cap(u64 cap_query); 341 void hv_setup_dma_ops(struct device *dev, bool coherent); 342 #else /* CONFIG_HYPERV */ 343 static inline void hv_identify_partition_type(void) {} 344 static inline bool hv_is_hyperv_initialized(void) { return false; } 345 static inline bool hv_is_hibernation_supported(void) { return false; } 346 static inline void hyperv_cleanup(void) {} 347 static inline void ms_hyperv_late_init(void) {} 348 static inline bool hv_is_isolation_supported(void) { return false; } 349 static inline enum hv_isolation_type hv_get_isolation_type(void) 350 { 351 return HV_ISOLATION_TYPE_NONE; 352 } 353 #endif /* CONFIG_HYPERV */ 354 355 #if IS_ENABLED(CONFIG_MSHV_ROOT) 356 static inline bool hv_root_partition(void) 357 { 358 return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT; 359 } 360 static inline bool hv_l1vh_partition(void) 361 { 362 return hv_curr_partition_type == HV_PARTITION_TYPE_L1VH; 363 } 364 static inline bool hv_parent_partition(void) 365 { 366 return hv_root_partition() || hv_l1vh_partition(); 367 } 368 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages); 369 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id); 370 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags); 371 372 #else /* CONFIG_MSHV_ROOT */ 373 static inline bool hv_root_partition(void) { return false; } 374 static inline bool hv_l1vh_partition(void) { return false; } 375 static inline bool hv_parent_partition(void) { return false; } 376 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages) 377 { 378 return -EOPNOTSUPP; 379 } 380 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id) 381 { 382 return -EOPNOTSUPP; 383 } 384 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags) 385 { 386 return -EOPNOTSUPP; 387 } 388 #endif /* CONFIG_MSHV_ROOT */ 389 390 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE) 391 u8 __init get_vtl(void); 392 #else 393 static inline u8 get_vtl(void) { return 0; } 394 #endif 395 396 #endif 397