1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * Linux-specific definitions for managing interactions with Microsoft's 5 * Hyper-V hypervisor. The definitions in this file are architecture 6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions 7 * that are specific to architecture <arch>. 8 * 9 * Definitions that are specified in the Hyper-V Top Level Functional 10 * Spec (TLFS) should not go in this file, but should instead go in 11 * hyperv-tlfs.h. 12 * 13 * Copyright (C) 2019, Microsoft, Inc. 14 * 15 * Author : Michael Kelley <mikelley@microsoft.com> 16 */ 17 18 #ifndef _ASM_GENERIC_MSHYPERV_H 19 #define _ASM_GENERIC_MSHYPERV_H 20 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/bitops.h> 24 #include <acpi/acpi_numa.h> 25 #include <linux/cpumask.h> 26 #include <linux/nmi.h> 27 #include <asm/ptrace.h> 28 #include <asm/hyperv-tlfs.h> 29 30 #define VTPM_BASE_ADDRESS 0xfed40000 31 32 struct ms_hyperv_info { 33 u32 features; 34 u32 priv_high; 35 u32 misc_features; 36 u32 hints; 37 u32 nested_features; 38 u32 max_vp_index; 39 u32 max_lp_index; 40 u8 vtl; 41 union { 42 u32 isolation_config_a; 43 struct { 44 u32 paravisor_present : 1; 45 u32 reserved_a1 : 31; 46 }; 47 }; 48 union { 49 u32 isolation_config_b; 50 struct { 51 u32 cvm_type : 4; 52 u32 reserved_b1 : 1; 53 u32 shared_gpa_boundary_active : 1; 54 u32 shared_gpa_boundary_bits : 6; 55 u32 reserved_b2 : 20; 56 }; 57 }; 58 u64 shared_gpa_boundary; 59 }; 60 extern struct ms_hyperv_info ms_hyperv; 61 extern bool hv_nested; 62 63 extern void * __percpu *hyperv_pcpu_input_arg; 64 extern void * __percpu *hyperv_pcpu_output_arg; 65 66 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); 67 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); 68 bool hv_isolation_type_snp(void); 69 bool hv_isolation_type_tdx(void); 70 71 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) 72 { 73 struct hv_proximity_domain_info pxm_info = {}; 74 75 if (node != NUMA_NO_NODE) { 76 pxm_info.domain_id = node_to_pxm(node); 77 pxm_info.flags.proximity_info_valid = 1; 78 pxm_info.flags.proximity_preferred = 1; 79 } 80 81 return pxm_info; 82 } 83 84 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ 85 static inline int hv_result(u64 status) 86 { 87 return status & HV_HYPERCALL_RESULT_MASK; 88 } 89 90 static inline bool hv_result_success(u64 status) 91 { 92 return hv_result(status) == HV_STATUS_SUCCESS; 93 } 94 95 static inline unsigned int hv_repcomp(u64 status) 96 { 97 /* Bits [43:32] of status have 'Reps completed' data. */ 98 return (status & HV_HYPERCALL_REP_COMP_MASK) >> 99 HV_HYPERCALL_REP_COMP_OFFSET; 100 } 101 102 /* 103 * Rep hypercalls. Callers of this functions are supposed to ensure that 104 * rep_count and varhead_size comply with Hyper-V hypercall definition. 105 */ 106 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 107 void *input, void *output) 108 { 109 u64 control = code; 110 u64 status; 111 u16 rep_comp; 112 113 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 114 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 115 116 do { 117 status = hv_do_hypercall(control, input, output); 118 if (!hv_result_success(status)) 119 return status; 120 121 rep_comp = hv_repcomp(status); 122 123 control &= ~HV_HYPERCALL_REP_START_MASK; 124 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 125 126 touch_nmi_watchdog(); 127 } while (rep_comp < rep_count); 128 129 return status; 130 } 131 132 /* Generate the guest OS identifier as described in the Hyper-V TLFS */ 133 static inline u64 hv_generate_guest_id(u64 kernel_version) 134 { 135 u64 guest_id; 136 137 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); 138 guest_id |= (kernel_version << 16); 139 140 return guest_id; 141 } 142 143 /* Free the message slot and signal end-of-message if required */ 144 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 145 { 146 /* 147 * On crash we're reading some other CPU's message page and we need 148 * to be careful: this other CPU may already had cleared the header 149 * and the host may already had delivered some other message there. 150 * In case we blindly write msg->header.message_type we're going 151 * to lose it. We can still lose a message of the same type but 152 * we count on the fact that there can only be one 153 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 154 * on crash. 155 */ 156 if (cmpxchg(&msg->header.message_type, old_msg_type, 157 HVMSG_NONE) != old_msg_type) 158 return; 159 160 /* 161 * The cmxchg() above does an implicit memory barrier to 162 * ensure the write to MessageType (ie set to 163 * HVMSG_NONE) happens before we read the 164 * MessagePending and EOMing. Otherwise, the EOMing 165 * will not deliver any more messages since there is 166 * no empty slot 167 */ 168 if (msg->header.message_flags.msg_pending) { 169 /* 170 * This will cause message queue rescan to 171 * possibly deliver another msg from the 172 * hypervisor 173 */ 174 hv_set_msr(HV_MSR_EOM, 0); 175 } 176 } 177 178 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); 179 180 void hv_setup_vmbus_handler(void (*handler)(void)); 181 void hv_remove_vmbus_handler(void); 182 void hv_setup_stimer0_handler(void (*handler)(void)); 183 void hv_remove_stimer0_handler(void); 184 185 void hv_setup_kexec_handler(void (*handler)(void)); 186 void hv_remove_kexec_handler(void); 187 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 188 void hv_remove_crash_handler(void); 189 190 extern int vmbus_interrupt; 191 extern int vmbus_irq; 192 193 extern bool hv_root_partition; 194 195 #if IS_ENABLED(CONFIG_HYPERV) 196 /* 197 * Hypervisor's notion of virtual processor ID is different from 198 * Linux' notion of CPU ID. This information can only be retrieved 199 * in the context of the calling CPU. Setup a map for easy access 200 * to this information. 201 */ 202 extern u32 *hv_vp_index; 203 extern u32 hv_max_vp_index; 204 205 extern u64 (*hv_read_reference_counter)(void); 206 207 /* Sentinel value for an uninitialized entry in hv_vp_index array */ 208 #define VP_INVAL U32_MAX 209 210 int __init hv_common_init(void); 211 void __init hv_common_free(void); 212 void __init ms_hyperv_late_init(void); 213 int hv_common_cpu_init(unsigned int cpu); 214 int hv_common_cpu_die(unsigned int cpu); 215 216 void *hv_alloc_hyperv_page(void); 217 void *hv_alloc_hyperv_zeroed_page(void); 218 void hv_free_hyperv_page(void *addr); 219 220 /** 221 * hv_cpu_number_to_vp_number() - Map CPU to VP. 222 * @cpu_number: CPU number in Linux terms 223 * 224 * This function returns the mapping between the Linux processor 225 * number and the hypervisor's virtual processor number, useful 226 * in making hypercalls and such that talk about specific 227 * processors. 228 * 229 * Return: Virtual processor number in Hyper-V terms 230 */ 231 static inline int hv_cpu_number_to_vp_number(int cpu_number) 232 { 233 return hv_vp_index[cpu_number]; 234 } 235 236 static inline int __cpumask_to_vpset(struct hv_vpset *vpset, 237 const struct cpumask *cpus, 238 bool (*func)(int cpu)) 239 { 240 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 241 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; 242 243 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ 244 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) 245 return 0; 246 247 /* 248 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 249 * structs are not cleared between calls, we risk flushing unneeded 250 * vCPUs otherwise. 251 */ 252 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) 253 vpset->bank_contents[vcpu_bank] = 0; 254 255 /* 256 * Some banks may end up being empty but this is acceptable. 257 */ 258 for_each_cpu(cpu, cpus) { 259 if (func && func(cpu)) 260 continue; 261 vcpu = hv_cpu_number_to_vp_number(cpu); 262 if (vcpu == VP_INVAL) 263 return -1; 264 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; 265 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; 266 __set_bit(vcpu_offset, (unsigned long *) 267 &vpset->bank_contents[vcpu_bank]); 268 if (vcpu_bank >= nr_bank) 269 nr_bank = vcpu_bank + 1; 270 } 271 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 272 return nr_bank; 273 } 274 275 /* 276 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, 277 * 'func' is called for each CPU present in cpumask. If 'func' returns 278 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* 279 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are 280 * skipped. 281 */ 282 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 283 const struct cpumask *cpus) 284 { 285 return __cpumask_to_vpset(vpset, cpus, NULL); 286 } 287 288 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, 289 const struct cpumask *cpus, 290 bool (*func)(int cpu)) 291 { 292 return __cpumask_to_vpset(vpset, cpus, func); 293 } 294 295 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); 296 bool hv_is_hyperv_initialized(void); 297 bool hv_is_hibernation_supported(void); 298 enum hv_isolation_type hv_get_isolation_type(void); 299 bool hv_is_isolation_supported(void); 300 bool hv_isolation_type_snp(void); 301 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); 302 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); 303 void hyperv_cleanup(void); 304 bool hv_query_ext_cap(u64 cap_query); 305 void hv_setup_dma_ops(struct device *dev, bool coherent); 306 #else /* CONFIG_HYPERV */ 307 static inline bool hv_is_hyperv_initialized(void) { return false; } 308 static inline bool hv_is_hibernation_supported(void) { return false; } 309 static inline void hyperv_cleanup(void) {} 310 static inline void ms_hyperv_late_init(void) {} 311 static inline bool hv_is_isolation_supported(void) { return false; } 312 static inline enum hv_isolation_type hv_get_isolation_type(void) 313 { 314 return HV_ISOLATION_TYPE_NONE; 315 } 316 #endif /* CONFIG_HYPERV */ 317 318 #endif 319