xref: /linux/fs/zonefs/super.c (revision fba2689ee77e63b05e203b3f26079ef915e55660)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	trace_zonefs_zone_mgmt(inode, op);
39 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
40 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
41 	if (ret) {
42 		zonefs_err(inode->i_sb,
43 			   "Zone management operation %s at %llu failed %d\n",
44 			   blk_op_str(op), zi->i_zsector, ret);
45 		return ret;
46 	}
47 
48 	return 0;
49 }
50 
51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
52 {
53 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
54 
55 	i_size_write(inode, isize);
56 	/*
57 	 * A full zone is no longer open/active and does not need
58 	 * explicit closing.
59 	 */
60 	if (isize >= zi->i_max_size)
61 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
62 }
63 
64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
65 			      unsigned int flags, struct iomap *iomap,
66 			      struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct super_block *sb = inode->i_sb;
70 	loff_t isize;
71 
72 	/* All I/Os should always be within the file maximum size */
73 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
74 		return -EIO;
75 
76 	/*
77 	 * Sequential zones can only accept direct writes. This is already
78 	 * checked when writes are issued, so warn if we see a page writeback
79 	 * operation.
80 	 */
81 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
82 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	isize = i_size_read(inode);
92 	if (offset >= isize)
93 		iomap->type = IOMAP_UNWRITTEN;
94 	else
95 		iomap->type = IOMAP_MAPPED;
96 	if (flags & IOMAP_WRITE)
97 		length = zi->i_max_size - offset;
98 	else
99 		length = min(length, isize - offset);
100 	mutex_unlock(&zi->i_truncate_mutex);
101 
102 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
103 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
104 	iomap->bdev = inode->i_sb->s_bdev;
105 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
106 
107 	trace_zonefs_iomap_begin(inode, iomap);
108 
109 	return 0;
110 }
111 
112 static const struct iomap_ops zonefs_iomap_ops = {
113 	.iomap_begin	= zonefs_iomap_begin,
114 };
115 
116 static int zonefs_readpage(struct file *unused, struct page *page)
117 {
118 	return iomap_readpage(page, &zonefs_iomap_ops);
119 }
120 
121 static void zonefs_readahead(struct readahead_control *rac)
122 {
123 	iomap_readahead(rac, &zonefs_iomap_ops);
124 }
125 
126 /*
127  * Map blocks for page writeback. This is used only on conventional zone files,
128  * which implies that the page range can only be within the fixed inode size.
129  */
130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
131 			     struct inode *inode, loff_t offset)
132 {
133 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
134 
135 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
136 		return -EIO;
137 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
138 		return -EIO;
139 
140 	/* If the mapping is already OK, nothing needs to be done */
141 	if (offset >= wpc->iomap.offset &&
142 	    offset < wpc->iomap.offset + wpc->iomap.length)
143 		return 0;
144 
145 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
146 				  IOMAP_WRITE, &wpc->iomap, NULL);
147 }
148 
149 static const struct iomap_writeback_ops zonefs_writeback_ops = {
150 	.map_blocks		= zonefs_map_blocks,
151 };
152 
153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 	struct iomap_writepage_ctx wpc = { };
156 
157 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
158 }
159 
160 static int zonefs_writepages(struct address_space *mapping,
161 			     struct writeback_control *wbc)
162 {
163 	struct iomap_writepage_ctx wpc = { };
164 
165 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
166 }
167 
168 static int zonefs_swap_activate(struct swap_info_struct *sis,
169 				struct file *swap_file, sector_t *span)
170 {
171 	struct inode *inode = file_inode(swap_file);
172 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
173 
174 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
175 		zonefs_err(inode->i_sb,
176 			   "swap file: not a conventional zone file\n");
177 		return -EINVAL;
178 	}
179 
180 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
181 }
182 
183 static const struct address_space_operations zonefs_file_aops = {
184 	.readpage		= zonefs_readpage,
185 	.readahead		= zonefs_readahead,
186 	.writepage		= zonefs_writepage,
187 	.writepages		= zonefs_writepages,
188 	.dirty_folio		= filemap_dirty_folio,
189 	.releasepage		= iomap_releasepage,
190 	.invalidate_folio	= iomap_invalidate_folio,
191 	.migratepage		= iomap_migrate_page,
192 	.is_partially_uptodate	= iomap_is_partially_uptodate,
193 	.error_remove_page	= generic_error_remove_page,
194 	.direct_IO		= noop_direct_IO,
195 	.swap_activate		= zonefs_swap_activate,
196 };
197 
198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
199 {
200 	struct super_block *sb = inode->i_sb;
201 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
202 	loff_t old_isize = i_size_read(inode);
203 	loff_t nr_blocks;
204 
205 	if (new_isize == old_isize)
206 		return;
207 
208 	spin_lock(&sbi->s_lock);
209 
210 	/*
211 	 * This may be called for an update after an IO error.
212 	 * So beware of the values seen.
213 	 */
214 	if (new_isize < old_isize) {
215 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
216 		if (sbi->s_used_blocks > nr_blocks)
217 			sbi->s_used_blocks -= nr_blocks;
218 		else
219 			sbi->s_used_blocks = 0;
220 	} else {
221 		sbi->s_used_blocks +=
222 			(new_isize - old_isize) >> sb->s_blocksize_bits;
223 		if (sbi->s_used_blocks > sbi->s_blocks)
224 			sbi->s_used_blocks = sbi->s_blocks;
225 	}
226 
227 	spin_unlock(&sbi->s_lock);
228 }
229 
230 /*
231  * Check a zone condition and adjust its file inode access permissions for
232  * offline and readonly zones. Return the inode size corresponding to the
233  * amount of readable data in the zone.
234  */
235 static loff_t zonefs_check_zone_condition(struct inode *inode,
236 					  struct blk_zone *zone, bool warn,
237 					  bool mount)
238 {
239 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
240 
241 	switch (zone->cond) {
242 	case BLK_ZONE_COND_OFFLINE:
243 		/*
244 		 * Dead zone: make the inode immutable, disable all accesses
245 		 * and set the file size to 0 (zone wp set to zone start).
246 		 */
247 		if (warn)
248 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
249 				    inode->i_ino);
250 		inode->i_flags |= S_IMMUTABLE;
251 		inode->i_mode &= ~0777;
252 		zone->wp = zone->start;
253 		return 0;
254 	case BLK_ZONE_COND_READONLY:
255 		/*
256 		 * The write pointer of read-only zones is invalid. If such a
257 		 * zone is found during mount, the file size cannot be retrieved
258 		 * so we treat the zone as offline (mount == true case).
259 		 * Otherwise, keep the file size as it was when last updated
260 		 * so that the user can recover data. In both cases, writes are
261 		 * always disabled for the zone.
262 		 */
263 		if (warn)
264 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
265 				    inode->i_ino);
266 		inode->i_flags |= S_IMMUTABLE;
267 		if (mount) {
268 			zone->cond = BLK_ZONE_COND_OFFLINE;
269 			inode->i_mode &= ~0777;
270 			zone->wp = zone->start;
271 			return 0;
272 		}
273 		inode->i_mode &= ~0222;
274 		return i_size_read(inode);
275 	case BLK_ZONE_COND_FULL:
276 		/* The write pointer of full zones is invalid. */
277 		return zi->i_max_size;
278 	default:
279 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
280 			return zi->i_max_size;
281 		return (zone->wp - zone->start) << SECTOR_SHIFT;
282 	}
283 }
284 
285 struct zonefs_ioerr_data {
286 	struct inode	*inode;
287 	bool		write;
288 };
289 
290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
291 			      void *data)
292 {
293 	struct zonefs_ioerr_data *err = data;
294 	struct inode *inode = err->inode;
295 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
296 	struct super_block *sb = inode->i_sb;
297 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
298 	loff_t isize, data_size;
299 
300 	/*
301 	 * Check the zone condition: if the zone is not "bad" (offline or
302 	 * read-only), read errors are simply signaled to the IO issuer as long
303 	 * as there is no inconsistency between the inode size and the amount of
304 	 * data writen in the zone (data_size).
305 	 */
306 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
307 	isize = i_size_read(inode);
308 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
309 	    zone->cond != BLK_ZONE_COND_READONLY &&
310 	    !err->write && isize == data_size)
311 		return 0;
312 
313 	/*
314 	 * At this point, we detected either a bad zone or an inconsistency
315 	 * between the inode size and the amount of data written in the zone.
316 	 * For the latter case, the cause may be a write IO error or an external
317 	 * action on the device. Two error patterns exist:
318 	 * 1) The inode size is lower than the amount of data in the zone:
319 	 *    a write operation partially failed and data was writen at the end
320 	 *    of the file. This can happen in the case of a large direct IO
321 	 *    needing several BIOs and/or write requests to be processed.
322 	 * 2) The inode size is larger than the amount of data in the zone:
323 	 *    this can happen with a deferred write error with the use of the
324 	 *    device side write cache after getting successful write IO
325 	 *    completions. Other possibilities are (a) an external corruption,
326 	 *    e.g. an application reset the zone directly, or (b) the device
327 	 *    has a serious problem (e.g. firmware bug).
328 	 *
329 	 * In all cases, warn about inode size inconsistency and handle the
330 	 * IO error according to the zone condition and to the mount options.
331 	 */
332 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
333 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
334 			    inode->i_ino, isize, data_size);
335 
336 	/*
337 	 * First handle bad zones signaled by hardware. The mount options
338 	 * errors=zone-ro and errors=zone-offline result in changing the
339 	 * zone condition to read-only and offline respectively, as if the
340 	 * condition was signaled by the hardware.
341 	 */
342 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
343 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
344 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
345 			    inode->i_ino);
346 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
347 			zone->cond = BLK_ZONE_COND_OFFLINE;
348 			data_size = zonefs_check_zone_condition(inode, zone,
349 								false, false);
350 		}
351 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
352 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
353 		zonefs_warn(sb, "inode %lu: write access disabled\n",
354 			    inode->i_ino);
355 		if (zone->cond != BLK_ZONE_COND_READONLY) {
356 			zone->cond = BLK_ZONE_COND_READONLY;
357 			data_size = zonefs_check_zone_condition(inode, zone,
358 								false, false);
359 		}
360 	}
361 
362 	/*
363 	 * If the filesystem is mounted with the explicit-open mount option, we
364 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
365 	 * the read-only or offline condition, to avoid attempting an explicit
366 	 * close of the zone when the inode file is closed.
367 	 */
368 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
369 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
370 	     zone->cond == BLK_ZONE_COND_READONLY))
371 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
372 
373 	/*
374 	 * If error=remount-ro was specified, any error result in remounting
375 	 * the volume as read-only.
376 	 */
377 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
378 		zonefs_warn(sb, "remounting filesystem read-only\n");
379 		sb->s_flags |= SB_RDONLY;
380 	}
381 
382 	/*
383 	 * Update block usage stats and the inode size  to prevent access to
384 	 * invalid data.
385 	 */
386 	zonefs_update_stats(inode, data_size);
387 	zonefs_i_size_write(inode, data_size);
388 	zi->i_wpoffset = data_size;
389 
390 	return 0;
391 }
392 
393 /*
394  * When an file IO error occurs, check the file zone to see if there is a change
395  * in the zone condition (e.g. offline or read-only). For a failed write to a
396  * sequential zone, the zone write pointer position must also be checked to
397  * eventually correct the file size and zonefs inode write pointer offset
398  * (which can be out of sync with the drive due to partial write failures).
399  */
400 static void __zonefs_io_error(struct inode *inode, bool write)
401 {
402 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
403 	struct super_block *sb = inode->i_sb;
404 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
405 	unsigned int noio_flag;
406 	unsigned int nr_zones =
407 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
408 	struct zonefs_ioerr_data err = {
409 		.inode = inode,
410 		.write = write,
411 	};
412 	int ret;
413 
414 	/*
415 	 * Memory allocations in blkdev_report_zones() can trigger a memory
416 	 * reclaim which may in turn cause a recursion into zonefs as well as
417 	 * struct request allocations for the same device. The former case may
418 	 * end up in a deadlock on the inode truncate mutex, while the latter
419 	 * may prevent IO forward progress. Executing the report zones under
420 	 * the GFP_NOIO context avoids both problems.
421 	 */
422 	noio_flag = memalloc_noio_save();
423 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
424 				  zonefs_io_error_cb, &err);
425 	if (ret != nr_zones)
426 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
427 			   inode->i_ino, ret);
428 	memalloc_noio_restore(noio_flag);
429 }
430 
431 static void zonefs_io_error(struct inode *inode, bool write)
432 {
433 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
434 
435 	mutex_lock(&zi->i_truncate_mutex);
436 	__zonefs_io_error(inode, write);
437 	mutex_unlock(&zi->i_truncate_mutex);
438 }
439 
440 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
441 {
442 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
443 	loff_t old_isize;
444 	enum req_opf op;
445 	int ret = 0;
446 
447 	/*
448 	 * Only sequential zone files can be truncated and truncation is allowed
449 	 * only down to a 0 size, which is equivalent to a zone reset, and to
450 	 * the maximum file size, which is equivalent to a zone finish.
451 	 */
452 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
453 		return -EPERM;
454 
455 	if (!isize)
456 		op = REQ_OP_ZONE_RESET;
457 	else if (isize == zi->i_max_size)
458 		op = REQ_OP_ZONE_FINISH;
459 	else
460 		return -EPERM;
461 
462 	inode_dio_wait(inode);
463 
464 	/* Serialize against page faults */
465 	filemap_invalidate_lock(inode->i_mapping);
466 
467 	/* Serialize against zonefs_iomap_begin() */
468 	mutex_lock(&zi->i_truncate_mutex);
469 
470 	old_isize = i_size_read(inode);
471 	if (isize == old_isize)
472 		goto unlock;
473 
474 	ret = zonefs_zone_mgmt(inode, op);
475 	if (ret)
476 		goto unlock;
477 
478 	/*
479 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
480 	 * take care of open zones.
481 	 */
482 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
483 		/*
484 		 * Truncating a zone to EMPTY or FULL is the equivalent of
485 		 * closing the zone. For a truncation to 0, we need to
486 		 * re-open the zone to ensure new writes can be processed.
487 		 * For a truncation to the maximum file size, the zone is
488 		 * closed and writes cannot be accepted anymore, so clear
489 		 * the open flag.
490 		 */
491 		if (!isize)
492 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
493 		else
494 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
495 	}
496 
497 	zonefs_update_stats(inode, isize);
498 	truncate_setsize(inode, isize);
499 	zi->i_wpoffset = isize;
500 
501 unlock:
502 	mutex_unlock(&zi->i_truncate_mutex);
503 	filemap_invalidate_unlock(inode->i_mapping);
504 
505 	return ret;
506 }
507 
508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
509 				struct dentry *dentry, struct iattr *iattr)
510 {
511 	struct inode *inode = d_inode(dentry);
512 	int ret;
513 
514 	if (unlikely(IS_IMMUTABLE(inode)))
515 		return -EPERM;
516 
517 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
518 	if (ret)
519 		return ret;
520 
521 	/*
522 	 * Since files and directories cannot be created nor deleted, do not
523 	 * allow setting any write attributes on the sub-directories grouping
524 	 * files by zone type.
525 	 */
526 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
527 	    (iattr->ia_mode & 0222))
528 		return -EPERM;
529 
530 	if (((iattr->ia_valid & ATTR_UID) &&
531 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
532 	    ((iattr->ia_valid & ATTR_GID) &&
533 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
534 		ret = dquot_transfer(inode, iattr);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	if (iattr->ia_valid & ATTR_SIZE) {
540 		ret = zonefs_file_truncate(inode, iattr->ia_size);
541 		if (ret)
542 			return ret;
543 	}
544 
545 	setattr_copy(&init_user_ns, inode, iattr);
546 
547 	return 0;
548 }
549 
550 static const struct inode_operations zonefs_file_inode_operations = {
551 	.setattr	= zonefs_inode_setattr,
552 };
553 
554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
555 			     int datasync)
556 {
557 	struct inode *inode = file_inode(file);
558 	int ret = 0;
559 
560 	if (unlikely(IS_IMMUTABLE(inode)))
561 		return -EPERM;
562 
563 	/*
564 	 * Since only direct writes are allowed in sequential files, page cache
565 	 * flush is needed only for conventional zone files.
566 	 */
567 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
568 		ret = file_write_and_wait_range(file, start, end);
569 	if (!ret)
570 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
571 
572 	if (ret)
573 		zonefs_io_error(inode, true);
574 
575 	return ret;
576 }
577 
578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
579 {
580 	struct inode *inode = file_inode(vmf->vma->vm_file);
581 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
582 	vm_fault_t ret;
583 
584 	if (unlikely(IS_IMMUTABLE(inode)))
585 		return VM_FAULT_SIGBUS;
586 
587 	/*
588 	 * Sanity check: only conventional zone files can have shared
589 	 * writeable mappings.
590 	 */
591 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
592 		return VM_FAULT_NOPAGE;
593 
594 	sb_start_pagefault(inode->i_sb);
595 	file_update_time(vmf->vma->vm_file);
596 
597 	/* Serialize against truncates */
598 	filemap_invalidate_lock_shared(inode->i_mapping);
599 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
600 	filemap_invalidate_unlock_shared(inode->i_mapping);
601 
602 	sb_end_pagefault(inode->i_sb);
603 	return ret;
604 }
605 
606 static const struct vm_operations_struct zonefs_file_vm_ops = {
607 	.fault		= filemap_fault,
608 	.map_pages	= filemap_map_pages,
609 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
610 };
611 
612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
613 {
614 	/*
615 	 * Conventional zones accept random writes, so their files can support
616 	 * shared writable mappings. For sequential zone files, only read
617 	 * mappings are possible since there are no guarantees for write
618 	 * ordering between msync() and page cache writeback.
619 	 */
620 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
621 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
622 		return -EINVAL;
623 
624 	file_accessed(file);
625 	vma->vm_ops = &zonefs_file_vm_ops;
626 
627 	return 0;
628 }
629 
630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
631 {
632 	loff_t isize = i_size_read(file_inode(file));
633 
634 	/*
635 	 * Seeks are limited to below the zone size for conventional zones
636 	 * and below the zone write pointer for sequential zones. In both
637 	 * cases, this limit is the inode size.
638 	 */
639 	return generic_file_llseek_size(file, offset, whence, isize, isize);
640 }
641 
642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
643 					int error, unsigned int flags)
644 {
645 	struct inode *inode = file_inode(iocb->ki_filp);
646 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
647 
648 	if (error) {
649 		zonefs_io_error(inode, true);
650 		return error;
651 	}
652 
653 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
654 		/*
655 		 * Note that we may be seeing completions out of order,
656 		 * but that is not a problem since a write completed
657 		 * successfully necessarily means that all preceding writes
658 		 * were also successful. So we can safely increase the inode
659 		 * size to the write end location.
660 		 */
661 		mutex_lock(&zi->i_truncate_mutex);
662 		if (i_size_read(inode) < iocb->ki_pos + size) {
663 			zonefs_update_stats(inode, iocb->ki_pos + size);
664 			zonefs_i_size_write(inode, iocb->ki_pos + size);
665 		}
666 		mutex_unlock(&zi->i_truncate_mutex);
667 	}
668 
669 	return 0;
670 }
671 
672 static const struct iomap_dio_ops zonefs_write_dio_ops = {
673 	.end_io			= zonefs_file_write_dio_end_io,
674 };
675 
676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
677 {
678 	struct inode *inode = file_inode(iocb->ki_filp);
679 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
680 	struct block_device *bdev = inode->i_sb->s_bdev;
681 	unsigned int max;
682 	struct bio *bio;
683 	ssize_t size;
684 	int nr_pages;
685 	ssize_t ret;
686 
687 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
688 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
689 	iov_iter_truncate(from, max);
690 
691 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
692 	if (!nr_pages)
693 		return 0;
694 
695 	bio = bio_alloc(bdev, nr_pages,
696 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
697 	bio->bi_iter.bi_sector = zi->i_zsector;
698 	bio->bi_ioprio = iocb->ki_ioprio;
699 	if (iocb->ki_flags & IOCB_DSYNC)
700 		bio->bi_opf |= REQ_FUA;
701 
702 	ret = bio_iov_iter_get_pages(bio, from);
703 	if (unlikely(ret))
704 		goto out_release;
705 
706 	size = bio->bi_iter.bi_size;
707 	task_io_account_write(size);
708 
709 	if (iocb->ki_flags & IOCB_HIPRI)
710 		bio_set_polled(bio, iocb);
711 
712 	ret = submit_bio_wait(bio);
713 
714 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
715 	trace_zonefs_file_dio_append(inode, size, ret);
716 
717 out_release:
718 	bio_release_pages(bio, false);
719 	bio_put(bio);
720 
721 	if (ret >= 0) {
722 		iocb->ki_pos += size;
723 		return size;
724 	}
725 
726 	return ret;
727 }
728 
729 /*
730  * Do not exceed the LFS limits nor the file zone size. If pos is under the
731  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
732  */
733 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
734 					loff_t count)
735 {
736 	struct inode *inode = file_inode(file);
737 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
738 	loff_t limit = rlimit(RLIMIT_FSIZE);
739 	loff_t max_size = zi->i_max_size;
740 
741 	if (limit != RLIM_INFINITY) {
742 		if (pos >= limit) {
743 			send_sig(SIGXFSZ, current, 0);
744 			return -EFBIG;
745 		}
746 		count = min(count, limit - pos);
747 	}
748 
749 	if (!(file->f_flags & O_LARGEFILE))
750 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
751 
752 	if (unlikely(pos >= max_size))
753 		return -EFBIG;
754 
755 	return min(count, max_size - pos);
756 }
757 
758 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
759 {
760 	struct file *file = iocb->ki_filp;
761 	struct inode *inode = file_inode(file);
762 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
763 	loff_t count;
764 
765 	if (IS_SWAPFILE(inode))
766 		return -ETXTBSY;
767 
768 	if (!iov_iter_count(from))
769 		return 0;
770 
771 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
772 		return -EINVAL;
773 
774 	if (iocb->ki_flags & IOCB_APPEND) {
775 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
776 			return -EINVAL;
777 		mutex_lock(&zi->i_truncate_mutex);
778 		iocb->ki_pos = zi->i_wpoffset;
779 		mutex_unlock(&zi->i_truncate_mutex);
780 	}
781 
782 	count = zonefs_write_check_limits(file, iocb->ki_pos,
783 					  iov_iter_count(from));
784 	if (count < 0)
785 		return count;
786 
787 	iov_iter_truncate(from, count);
788 	return iov_iter_count(from);
789 }
790 
791 /*
792  * Handle direct writes. For sequential zone files, this is the only possible
793  * write path. For these files, check that the user is issuing writes
794  * sequentially from the end of the file. This code assumes that the block layer
795  * delivers write requests to the device in sequential order. This is always the
796  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
797  * elevator feature is being used (e.g. mq-deadline). The block layer always
798  * automatically select such an elevator for zoned block devices during the
799  * device initialization.
800  */
801 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
802 {
803 	struct inode *inode = file_inode(iocb->ki_filp);
804 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
805 	struct super_block *sb = inode->i_sb;
806 	bool sync = is_sync_kiocb(iocb);
807 	bool append = false;
808 	ssize_t ret, count;
809 
810 	/*
811 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
812 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
813 	 * on the inode lock but the second goes through but is now unaligned).
814 	 */
815 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
816 	    (iocb->ki_flags & IOCB_NOWAIT))
817 		return -EOPNOTSUPP;
818 
819 	if (iocb->ki_flags & IOCB_NOWAIT) {
820 		if (!inode_trylock(inode))
821 			return -EAGAIN;
822 	} else {
823 		inode_lock(inode);
824 	}
825 
826 	count = zonefs_write_checks(iocb, from);
827 	if (count <= 0) {
828 		ret = count;
829 		goto inode_unlock;
830 	}
831 
832 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
833 		ret = -EINVAL;
834 		goto inode_unlock;
835 	}
836 
837 	/* Enforce sequential writes (append only) in sequential zones */
838 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
839 		mutex_lock(&zi->i_truncate_mutex);
840 		if (iocb->ki_pos != zi->i_wpoffset) {
841 			mutex_unlock(&zi->i_truncate_mutex);
842 			ret = -EINVAL;
843 			goto inode_unlock;
844 		}
845 		mutex_unlock(&zi->i_truncate_mutex);
846 		append = sync;
847 	}
848 
849 	if (append)
850 		ret = zonefs_file_dio_append(iocb, from);
851 	else
852 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
853 				   &zonefs_write_dio_ops, 0, 0);
854 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
855 	    (ret > 0 || ret == -EIOCBQUEUED)) {
856 		if (ret > 0)
857 			count = ret;
858 		mutex_lock(&zi->i_truncate_mutex);
859 		zi->i_wpoffset += count;
860 		mutex_unlock(&zi->i_truncate_mutex);
861 	}
862 
863 inode_unlock:
864 	inode_unlock(inode);
865 
866 	return ret;
867 }
868 
869 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
870 					  struct iov_iter *from)
871 {
872 	struct inode *inode = file_inode(iocb->ki_filp);
873 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
874 	ssize_t ret;
875 
876 	/*
877 	 * Direct IO writes are mandatory for sequential zone files so that the
878 	 * write IO issuing order is preserved.
879 	 */
880 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
881 		return -EIO;
882 
883 	if (iocb->ki_flags & IOCB_NOWAIT) {
884 		if (!inode_trylock(inode))
885 			return -EAGAIN;
886 	} else {
887 		inode_lock(inode);
888 	}
889 
890 	ret = zonefs_write_checks(iocb, from);
891 	if (ret <= 0)
892 		goto inode_unlock;
893 
894 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
895 	if (ret > 0)
896 		iocb->ki_pos += ret;
897 	else if (ret == -EIO)
898 		zonefs_io_error(inode, true);
899 
900 inode_unlock:
901 	inode_unlock(inode);
902 	if (ret > 0)
903 		ret = generic_write_sync(iocb, ret);
904 
905 	return ret;
906 }
907 
908 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
909 {
910 	struct inode *inode = file_inode(iocb->ki_filp);
911 
912 	if (unlikely(IS_IMMUTABLE(inode)))
913 		return -EPERM;
914 
915 	if (sb_rdonly(inode->i_sb))
916 		return -EROFS;
917 
918 	/* Write operations beyond the zone size are not allowed */
919 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
920 		return -EFBIG;
921 
922 	if (iocb->ki_flags & IOCB_DIRECT) {
923 		ssize_t ret = zonefs_file_dio_write(iocb, from);
924 		if (ret != -ENOTBLK)
925 			return ret;
926 	}
927 
928 	return zonefs_file_buffered_write(iocb, from);
929 }
930 
931 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
932 				       int error, unsigned int flags)
933 {
934 	if (error) {
935 		zonefs_io_error(file_inode(iocb->ki_filp), false);
936 		return error;
937 	}
938 
939 	return 0;
940 }
941 
942 static const struct iomap_dio_ops zonefs_read_dio_ops = {
943 	.end_io			= zonefs_file_read_dio_end_io,
944 };
945 
946 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
947 {
948 	struct inode *inode = file_inode(iocb->ki_filp);
949 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
950 	struct super_block *sb = inode->i_sb;
951 	loff_t isize;
952 	ssize_t ret;
953 
954 	/* Offline zones cannot be read */
955 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
956 		return -EPERM;
957 
958 	if (iocb->ki_pos >= zi->i_max_size)
959 		return 0;
960 
961 	if (iocb->ki_flags & IOCB_NOWAIT) {
962 		if (!inode_trylock_shared(inode))
963 			return -EAGAIN;
964 	} else {
965 		inode_lock_shared(inode);
966 	}
967 
968 	/* Limit read operations to written data */
969 	mutex_lock(&zi->i_truncate_mutex);
970 	isize = i_size_read(inode);
971 	if (iocb->ki_pos >= isize) {
972 		mutex_unlock(&zi->i_truncate_mutex);
973 		ret = 0;
974 		goto inode_unlock;
975 	}
976 	iov_iter_truncate(to, isize - iocb->ki_pos);
977 	mutex_unlock(&zi->i_truncate_mutex);
978 
979 	if (iocb->ki_flags & IOCB_DIRECT) {
980 		size_t count = iov_iter_count(to);
981 
982 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
983 			ret = -EINVAL;
984 			goto inode_unlock;
985 		}
986 		file_accessed(iocb->ki_filp);
987 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
988 				   &zonefs_read_dio_ops, 0, 0);
989 	} else {
990 		ret = generic_file_read_iter(iocb, to);
991 		if (ret == -EIO)
992 			zonefs_io_error(inode, false);
993 	}
994 
995 inode_unlock:
996 	inode_unlock_shared(inode);
997 
998 	return ret;
999 }
1000 
1001 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1002 {
1003 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1004 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1005 
1006 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1007 		return false;
1008 
1009 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1010 		return false;
1011 
1012 	if (!(file->f_mode & FMODE_WRITE))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 static int zonefs_open_zone(struct inode *inode)
1019 {
1020 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1021 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1022 	int ret = 0;
1023 
1024 	mutex_lock(&zi->i_truncate_mutex);
1025 
1026 	if (!zi->i_wr_refcnt) {
1027 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1028 			atomic_dec(&sbi->s_open_zones);
1029 			ret = -EBUSY;
1030 			goto unlock;
1031 		}
1032 
1033 		if (i_size_read(inode) < zi->i_max_size) {
1034 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1035 			if (ret) {
1036 				atomic_dec(&sbi->s_open_zones);
1037 				goto unlock;
1038 			}
1039 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1040 		}
1041 	}
1042 
1043 	zi->i_wr_refcnt++;
1044 
1045 unlock:
1046 	mutex_unlock(&zi->i_truncate_mutex);
1047 
1048 	return ret;
1049 }
1050 
1051 static int zonefs_file_open(struct inode *inode, struct file *file)
1052 {
1053 	int ret;
1054 
1055 	ret = generic_file_open(inode, file);
1056 	if (ret)
1057 		return ret;
1058 
1059 	if (zonefs_file_use_exp_open(inode, file))
1060 		return zonefs_open_zone(inode);
1061 
1062 	return 0;
1063 }
1064 
1065 static void zonefs_close_zone(struct inode *inode)
1066 {
1067 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1068 	int ret = 0;
1069 
1070 	mutex_lock(&zi->i_truncate_mutex);
1071 	zi->i_wr_refcnt--;
1072 	if (!zi->i_wr_refcnt) {
1073 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1074 		struct super_block *sb = inode->i_sb;
1075 
1076 		/*
1077 		 * If the file zone is full, it is not open anymore and we only
1078 		 * need to decrement the open count.
1079 		 */
1080 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1081 			goto dec;
1082 
1083 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1084 		if (ret) {
1085 			__zonefs_io_error(inode, false);
1086 			/*
1087 			 * Leaving zones explicitly open may lead to a state
1088 			 * where most zones cannot be written (zone resources
1089 			 * exhausted). So take preventive action by remounting
1090 			 * read-only.
1091 			 */
1092 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1093 			    !(sb->s_flags & SB_RDONLY)) {
1094 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1095 				sb->s_flags |= SB_RDONLY;
1096 			}
1097 		}
1098 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1099 dec:
1100 		atomic_dec(&sbi->s_open_zones);
1101 	}
1102 	mutex_unlock(&zi->i_truncate_mutex);
1103 }
1104 
1105 static int zonefs_file_release(struct inode *inode, struct file *file)
1106 {
1107 	/*
1108 	 * If we explicitly open a zone we must close it again as well, but the
1109 	 * zone management operation can fail (either due to an IO error or as
1110 	 * the zone has gone offline or read-only). Make sure we don't fail the
1111 	 * close(2) for user-space.
1112 	 */
1113 	if (zonefs_file_use_exp_open(inode, file))
1114 		zonefs_close_zone(inode);
1115 
1116 	return 0;
1117 }
1118 
1119 static const struct file_operations zonefs_file_operations = {
1120 	.open		= zonefs_file_open,
1121 	.release	= zonefs_file_release,
1122 	.fsync		= zonefs_file_fsync,
1123 	.mmap		= zonefs_file_mmap,
1124 	.llseek		= zonefs_file_llseek,
1125 	.read_iter	= zonefs_file_read_iter,
1126 	.write_iter	= zonefs_file_write_iter,
1127 	.splice_read	= generic_file_splice_read,
1128 	.splice_write	= iter_file_splice_write,
1129 	.iopoll		= iocb_bio_iopoll,
1130 };
1131 
1132 static struct kmem_cache *zonefs_inode_cachep;
1133 
1134 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1135 {
1136 	struct zonefs_inode_info *zi;
1137 
1138 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1139 	if (!zi)
1140 		return NULL;
1141 
1142 	inode_init_once(&zi->i_vnode);
1143 	mutex_init(&zi->i_truncate_mutex);
1144 	zi->i_wr_refcnt = 0;
1145 
1146 	return &zi->i_vnode;
1147 }
1148 
1149 static void zonefs_free_inode(struct inode *inode)
1150 {
1151 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1152 }
1153 
1154 /*
1155  * File system stat.
1156  */
1157 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1158 {
1159 	struct super_block *sb = dentry->d_sb;
1160 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1161 	enum zonefs_ztype t;
1162 
1163 	buf->f_type = ZONEFS_MAGIC;
1164 	buf->f_bsize = sb->s_blocksize;
1165 	buf->f_namelen = ZONEFS_NAME_MAX;
1166 
1167 	spin_lock(&sbi->s_lock);
1168 
1169 	buf->f_blocks = sbi->s_blocks;
1170 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1171 		buf->f_bfree = 0;
1172 	else
1173 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1174 	buf->f_bavail = buf->f_bfree;
1175 
1176 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1177 		if (sbi->s_nr_files[t])
1178 			buf->f_files += sbi->s_nr_files[t] + 1;
1179 	}
1180 	buf->f_ffree = 0;
1181 
1182 	spin_unlock(&sbi->s_lock);
1183 
1184 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1185 
1186 	return 0;
1187 }
1188 
1189 enum {
1190 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1191 	Opt_explicit_open, Opt_err,
1192 };
1193 
1194 static const match_table_t tokens = {
1195 	{ Opt_errors_ro,	"errors=remount-ro"},
1196 	{ Opt_errors_zro,	"errors=zone-ro"},
1197 	{ Opt_errors_zol,	"errors=zone-offline"},
1198 	{ Opt_errors_repair,	"errors=repair"},
1199 	{ Opt_explicit_open,	"explicit-open" },
1200 	{ Opt_err,		NULL}
1201 };
1202 
1203 static int zonefs_parse_options(struct super_block *sb, char *options)
1204 {
1205 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1206 	substring_t args[MAX_OPT_ARGS];
1207 	char *p;
1208 
1209 	if (!options)
1210 		return 0;
1211 
1212 	while ((p = strsep(&options, ",")) != NULL) {
1213 		int token;
1214 
1215 		if (!*p)
1216 			continue;
1217 
1218 		token = match_token(p, tokens, args);
1219 		switch (token) {
1220 		case Opt_errors_ro:
1221 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1222 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1223 			break;
1224 		case Opt_errors_zro:
1225 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1226 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1227 			break;
1228 		case Opt_errors_zol:
1229 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1230 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1231 			break;
1232 		case Opt_errors_repair:
1233 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1234 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1235 			break;
1236 		case Opt_explicit_open:
1237 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1238 			break;
1239 		default:
1240 			return -EINVAL;
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1248 {
1249 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1250 
1251 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1252 		seq_puts(seq, ",errors=remount-ro");
1253 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1254 		seq_puts(seq, ",errors=zone-ro");
1255 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1256 		seq_puts(seq, ",errors=zone-offline");
1257 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1258 		seq_puts(seq, ",errors=repair");
1259 
1260 	return 0;
1261 }
1262 
1263 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1264 {
1265 	sync_filesystem(sb);
1266 
1267 	return zonefs_parse_options(sb, data);
1268 }
1269 
1270 static const struct super_operations zonefs_sops = {
1271 	.alloc_inode	= zonefs_alloc_inode,
1272 	.free_inode	= zonefs_free_inode,
1273 	.statfs		= zonefs_statfs,
1274 	.remount_fs	= zonefs_remount,
1275 	.show_options	= zonefs_show_options,
1276 };
1277 
1278 static const struct inode_operations zonefs_dir_inode_operations = {
1279 	.lookup		= simple_lookup,
1280 	.setattr	= zonefs_inode_setattr,
1281 };
1282 
1283 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1284 				  enum zonefs_ztype type)
1285 {
1286 	struct super_block *sb = parent->i_sb;
1287 
1288 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1289 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1290 	inode->i_op = &zonefs_dir_inode_operations;
1291 	inode->i_fop = &simple_dir_operations;
1292 	set_nlink(inode, 2);
1293 	inc_nlink(parent);
1294 }
1295 
1296 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1297 				   enum zonefs_ztype type)
1298 {
1299 	struct super_block *sb = inode->i_sb;
1300 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1301 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1302 
1303 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1304 	inode->i_mode = S_IFREG | sbi->s_perm;
1305 
1306 	zi->i_ztype = type;
1307 	zi->i_zsector = zone->start;
1308 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1309 
1310 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1311 			       zone->capacity << SECTOR_SHIFT);
1312 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1313 
1314 	inode->i_uid = sbi->s_uid;
1315 	inode->i_gid = sbi->s_gid;
1316 	inode->i_size = zi->i_wpoffset;
1317 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1318 
1319 	inode->i_op = &zonefs_file_inode_operations;
1320 	inode->i_fop = &zonefs_file_operations;
1321 	inode->i_mapping->a_ops = &zonefs_file_aops;
1322 
1323 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1324 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1325 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1326 }
1327 
1328 static struct dentry *zonefs_create_inode(struct dentry *parent,
1329 					const char *name, struct blk_zone *zone,
1330 					enum zonefs_ztype type)
1331 {
1332 	struct inode *dir = d_inode(parent);
1333 	struct dentry *dentry;
1334 	struct inode *inode;
1335 
1336 	dentry = d_alloc_name(parent, name);
1337 	if (!dentry)
1338 		return NULL;
1339 
1340 	inode = new_inode(parent->d_sb);
1341 	if (!inode)
1342 		goto dput;
1343 
1344 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1345 	if (zone)
1346 		zonefs_init_file_inode(inode, zone, type);
1347 	else
1348 		zonefs_init_dir_inode(dir, inode, type);
1349 	d_add(dentry, inode);
1350 	dir->i_size++;
1351 
1352 	return dentry;
1353 
1354 dput:
1355 	dput(dentry);
1356 
1357 	return NULL;
1358 }
1359 
1360 struct zonefs_zone_data {
1361 	struct super_block	*sb;
1362 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1363 	struct blk_zone		*zones;
1364 };
1365 
1366 /*
1367  * Create a zone group and populate it with zone files.
1368  */
1369 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1370 				enum zonefs_ztype type)
1371 {
1372 	struct super_block *sb = zd->sb;
1373 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1374 	struct blk_zone *zone, *next, *end;
1375 	const char *zgroup_name;
1376 	char *file_name;
1377 	struct dentry *dir;
1378 	unsigned int n = 0;
1379 	int ret;
1380 
1381 	/* If the group is empty, there is nothing to do */
1382 	if (!zd->nr_zones[type])
1383 		return 0;
1384 
1385 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1386 	if (!file_name)
1387 		return -ENOMEM;
1388 
1389 	if (type == ZONEFS_ZTYPE_CNV)
1390 		zgroup_name = "cnv";
1391 	else
1392 		zgroup_name = "seq";
1393 
1394 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1395 	if (!dir) {
1396 		ret = -ENOMEM;
1397 		goto free;
1398 	}
1399 
1400 	/*
1401 	 * The first zone contains the super block: skip it.
1402 	 */
1403 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1404 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1405 
1406 		next = zone + 1;
1407 		if (zonefs_zone_type(zone) != type)
1408 			continue;
1409 
1410 		/*
1411 		 * For conventional zones, contiguous zones can be aggregated
1412 		 * together to form larger files. Note that this overwrites the
1413 		 * length of the first zone of the set of contiguous zones
1414 		 * aggregated together. If one offline or read-only zone is
1415 		 * found, assume that all zones aggregated have the same
1416 		 * condition.
1417 		 */
1418 		if (type == ZONEFS_ZTYPE_CNV &&
1419 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1420 			for (; next < end; next++) {
1421 				if (zonefs_zone_type(next) != type)
1422 					break;
1423 				zone->len += next->len;
1424 				zone->capacity += next->capacity;
1425 				if (next->cond == BLK_ZONE_COND_READONLY &&
1426 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1427 					zone->cond = BLK_ZONE_COND_READONLY;
1428 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1429 					zone->cond = BLK_ZONE_COND_OFFLINE;
1430 			}
1431 			if (zone->capacity != zone->len) {
1432 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1433 				ret = -EINVAL;
1434 				goto free;
1435 			}
1436 		}
1437 
1438 		/*
1439 		 * Use the file number within its group as file name.
1440 		 */
1441 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1442 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1443 			ret = -ENOMEM;
1444 			goto free;
1445 		}
1446 
1447 		n++;
1448 	}
1449 
1450 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1451 		    zgroup_name, n, n > 1 ? "s" : "");
1452 
1453 	sbi->s_nr_files[type] = n;
1454 	ret = 0;
1455 
1456 free:
1457 	kfree(file_name);
1458 
1459 	return ret;
1460 }
1461 
1462 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1463 				   void *data)
1464 {
1465 	struct zonefs_zone_data *zd = data;
1466 
1467 	/*
1468 	 * Count the number of usable zones: the first zone at index 0 contains
1469 	 * the super block and is ignored.
1470 	 */
1471 	switch (zone->type) {
1472 	case BLK_ZONE_TYPE_CONVENTIONAL:
1473 		zone->wp = zone->start + zone->len;
1474 		if (idx)
1475 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1476 		break;
1477 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1478 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1479 		if (idx)
1480 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1481 		break;
1482 	default:
1483 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1484 			   zone->type);
1485 		return -EIO;
1486 	}
1487 
1488 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1489 
1490 	return 0;
1491 }
1492 
1493 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1494 {
1495 	struct block_device *bdev = zd->sb->s_bdev;
1496 	int ret;
1497 
1498 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1499 			     sizeof(struct blk_zone), GFP_KERNEL);
1500 	if (!zd->zones)
1501 		return -ENOMEM;
1502 
1503 	/* Get zones information from the device */
1504 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1505 				  zonefs_get_zone_info_cb, zd);
1506 	if (ret < 0) {
1507 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1508 		return ret;
1509 	}
1510 
1511 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1512 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1513 			   ret, blkdev_nr_zones(bdev->bd_disk));
1514 		return -EIO;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1521 {
1522 	kvfree(zd->zones);
1523 }
1524 
1525 /*
1526  * Read super block information from the device.
1527  */
1528 static int zonefs_read_super(struct super_block *sb)
1529 {
1530 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1531 	struct zonefs_super *super;
1532 	u32 crc, stored_crc;
1533 	struct page *page;
1534 	struct bio_vec bio_vec;
1535 	struct bio bio;
1536 	int ret;
1537 
1538 	page = alloc_page(GFP_KERNEL);
1539 	if (!page)
1540 		return -ENOMEM;
1541 
1542 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1543 	bio.bi_iter.bi_sector = 0;
1544 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1545 
1546 	ret = submit_bio_wait(&bio);
1547 	if (ret)
1548 		goto free_page;
1549 
1550 	super = kmap(page);
1551 
1552 	ret = -EINVAL;
1553 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1554 		goto unmap;
1555 
1556 	stored_crc = le32_to_cpu(super->s_crc);
1557 	super->s_crc = 0;
1558 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1559 	if (crc != stored_crc) {
1560 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1561 			   crc, stored_crc);
1562 		goto unmap;
1563 	}
1564 
1565 	sbi->s_features = le64_to_cpu(super->s_features);
1566 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1567 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1568 			   sbi->s_features);
1569 		goto unmap;
1570 	}
1571 
1572 	if (sbi->s_features & ZONEFS_F_UID) {
1573 		sbi->s_uid = make_kuid(current_user_ns(),
1574 				       le32_to_cpu(super->s_uid));
1575 		if (!uid_valid(sbi->s_uid)) {
1576 			zonefs_err(sb, "Invalid UID feature\n");
1577 			goto unmap;
1578 		}
1579 	}
1580 
1581 	if (sbi->s_features & ZONEFS_F_GID) {
1582 		sbi->s_gid = make_kgid(current_user_ns(),
1583 				       le32_to_cpu(super->s_gid));
1584 		if (!gid_valid(sbi->s_gid)) {
1585 			zonefs_err(sb, "Invalid GID feature\n");
1586 			goto unmap;
1587 		}
1588 	}
1589 
1590 	if (sbi->s_features & ZONEFS_F_PERM)
1591 		sbi->s_perm = le32_to_cpu(super->s_perm);
1592 
1593 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1594 		zonefs_err(sb, "Reserved area is being used\n");
1595 		goto unmap;
1596 	}
1597 
1598 	import_uuid(&sbi->s_uuid, super->s_uuid);
1599 	ret = 0;
1600 
1601 unmap:
1602 	kunmap(page);
1603 free_page:
1604 	__free_page(page);
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Check that the device is zoned. If it is, get the list of zones and create
1611  * sub-directories and files according to the device zone configuration and
1612  * format options.
1613  */
1614 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1615 {
1616 	struct zonefs_zone_data zd;
1617 	struct zonefs_sb_info *sbi;
1618 	struct inode *inode;
1619 	enum zonefs_ztype t;
1620 	int ret;
1621 
1622 	if (!bdev_is_zoned(sb->s_bdev)) {
1623 		zonefs_err(sb, "Not a zoned block device\n");
1624 		return -EINVAL;
1625 	}
1626 
1627 	/*
1628 	 * Initialize super block information: the maximum file size is updated
1629 	 * when the zone files are created so that the format option
1630 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1631 	 * beyond the zone size is taken into account.
1632 	 */
1633 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1634 	if (!sbi)
1635 		return -ENOMEM;
1636 
1637 	spin_lock_init(&sbi->s_lock);
1638 	sb->s_fs_info = sbi;
1639 	sb->s_magic = ZONEFS_MAGIC;
1640 	sb->s_maxbytes = 0;
1641 	sb->s_op = &zonefs_sops;
1642 	sb->s_time_gran	= 1;
1643 
1644 	/*
1645 	 * The block size is set to the device zone write granularity to ensure
1646 	 * that write operations are always aligned according to the device
1647 	 * interface constraints.
1648 	 */
1649 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1650 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1651 	sbi->s_uid = GLOBAL_ROOT_UID;
1652 	sbi->s_gid = GLOBAL_ROOT_GID;
1653 	sbi->s_perm = 0640;
1654 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1655 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1656 	atomic_set(&sbi->s_open_zones, 0);
1657 	if (!sbi->s_max_open_zones &&
1658 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1659 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1660 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1661 	}
1662 
1663 	ret = zonefs_read_super(sb);
1664 	if (ret)
1665 		return ret;
1666 
1667 	ret = zonefs_parse_options(sb, data);
1668 	if (ret)
1669 		return ret;
1670 
1671 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1672 	zd.sb = sb;
1673 	ret = zonefs_get_zone_info(&zd);
1674 	if (ret)
1675 		goto cleanup;
1676 
1677 	zonefs_info(sb, "Mounting %u zones",
1678 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1679 
1680 	/* Create root directory inode */
1681 	ret = -ENOMEM;
1682 	inode = new_inode(sb);
1683 	if (!inode)
1684 		goto cleanup;
1685 
1686 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1687 	inode->i_mode = S_IFDIR | 0555;
1688 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1689 	inode->i_op = &zonefs_dir_inode_operations;
1690 	inode->i_fop = &simple_dir_operations;
1691 	set_nlink(inode, 2);
1692 
1693 	sb->s_root = d_make_root(inode);
1694 	if (!sb->s_root)
1695 		goto cleanup;
1696 
1697 	/* Create and populate files in zone groups directories */
1698 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1699 		ret = zonefs_create_zgroup(&zd, t);
1700 		if (ret)
1701 			break;
1702 	}
1703 
1704 cleanup:
1705 	zonefs_cleanup_zone_info(&zd);
1706 
1707 	return ret;
1708 }
1709 
1710 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1711 				   int flags, const char *dev_name, void *data)
1712 {
1713 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1714 }
1715 
1716 static void zonefs_kill_super(struct super_block *sb)
1717 {
1718 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1719 
1720 	if (sb->s_root)
1721 		d_genocide(sb->s_root);
1722 	kill_block_super(sb);
1723 	kfree(sbi);
1724 }
1725 
1726 /*
1727  * File system definition and registration.
1728  */
1729 static struct file_system_type zonefs_type = {
1730 	.owner		= THIS_MODULE,
1731 	.name		= "zonefs",
1732 	.mount		= zonefs_mount,
1733 	.kill_sb	= zonefs_kill_super,
1734 	.fs_flags	= FS_REQUIRES_DEV,
1735 };
1736 
1737 static int __init zonefs_init_inodecache(void)
1738 {
1739 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1740 			sizeof(struct zonefs_inode_info), 0,
1741 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1742 			NULL);
1743 	if (zonefs_inode_cachep == NULL)
1744 		return -ENOMEM;
1745 	return 0;
1746 }
1747 
1748 static void zonefs_destroy_inodecache(void)
1749 {
1750 	/*
1751 	 * Make sure all delayed rcu free inodes are flushed before we
1752 	 * destroy the inode cache.
1753 	 */
1754 	rcu_barrier();
1755 	kmem_cache_destroy(zonefs_inode_cachep);
1756 }
1757 
1758 static int __init zonefs_init(void)
1759 {
1760 	int ret;
1761 
1762 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1763 
1764 	ret = zonefs_init_inodecache();
1765 	if (ret)
1766 		return ret;
1767 
1768 	ret = register_filesystem(&zonefs_type);
1769 	if (ret) {
1770 		zonefs_destroy_inodecache();
1771 		return ret;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static void __exit zonefs_exit(void)
1778 {
1779 	zonefs_destroy_inodecache();
1780 	unregister_filesystem(&zonefs_type);
1781 }
1782 
1783 MODULE_AUTHOR("Damien Le Moal");
1784 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1785 MODULE_LICENSE("GPL");
1786 MODULE_ALIAS_FS("zonefs");
1787 module_init(zonefs_init);
1788 module_exit(zonefs_exit);
1789