1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 trace_zonefs_zone_mgmt(inode, op); 39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 41 if (ret) { 42 zonefs_err(inode->i_sb, 43 "Zone management operation %s at %llu failed %d\n", 44 blk_op_str(op), zi->i_zsector, ret); 45 return ret; 46 } 47 48 return 0; 49 } 50 51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 52 { 53 struct zonefs_inode_info *zi = ZONEFS_I(inode); 54 55 i_size_write(inode, isize); 56 /* 57 * A full zone is no longer open/active and does not need 58 * explicit closing. 59 */ 60 if (isize >= zi->i_max_size) 61 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 62 } 63 64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 65 unsigned int flags, struct iomap *iomap, 66 struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct super_block *sb = inode->i_sb; 70 loff_t isize; 71 72 /* All I/Os should always be within the file maximum size */ 73 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 74 return -EIO; 75 76 /* 77 * Sequential zones can only accept direct writes. This is already 78 * checked when writes are issued, so warn if we see a page writeback 79 * operation. 80 */ 81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 isize = i_size_read(inode); 92 if (offset >= isize) 93 iomap->type = IOMAP_UNWRITTEN; 94 else 95 iomap->type = IOMAP_MAPPED; 96 if (flags & IOMAP_WRITE) 97 length = zi->i_max_size - offset; 98 else 99 length = min(length, isize - offset); 100 mutex_unlock(&zi->i_truncate_mutex); 101 102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 104 iomap->bdev = inode->i_sb->s_bdev; 105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 106 107 trace_zonefs_iomap_begin(inode, iomap); 108 109 return 0; 110 } 111 112 static const struct iomap_ops zonefs_iomap_ops = { 113 .iomap_begin = zonefs_iomap_begin, 114 }; 115 116 static int zonefs_readpage(struct file *unused, struct page *page) 117 { 118 return iomap_readpage(page, &zonefs_iomap_ops); 119 } 120 121 static void zonefs_readahead(struct readahead_control *rac) 122 { 123 iomap_readahead(rac, &zonefs_iomap_ops); 124 } 125 126 /* 127 * Map blocks for page writeback. This is used only on conventional zone files, 128 * which implies that the page range can only be within the fixed inode size. 129 */ 130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 131 struct inode *inode, loff_t offset) 132 { 133 struct zonefs_inode_info *zi = ZONEFS_I(inode); 134 135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 136 return -EIO; 137 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 138 return -EIO; 139 140 /* If the mapping is already OK, nothing needs to be done */ 141 if (offset >= wpc->iomap.offset && 142 offset < wpc->iomap.offset + wpc->iomap.length) 143 return 0; 144 145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 146 IOMAP_WRITE, &wpc->iomap, NULL); 147 } 148 149 static const struct iomap_writeback_ops zonefs_writeback_ops = { 150 .map_blocks = zonefs_map_blocks, 151 }; 152 153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_writepages(struct address_space *mapping, 161 struct writeback_control *wbc) 162 { 163 struct iomap_writepage_ctx wpc = { }; 164 165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 166 } 167 168 static int zonefs_swap_activate(struct swap_info_struct *sis, 169 struct file *swap_file, sector_t *span) 170 { 171 struct inode *inode = file_inode(swap_file); 172 struct zonefs_inode_info *zi = ZONEFS_I(inode); 173 174 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 175 zonefs_err(inode->i_sb, 176 "swap file: not a conventional zone file\n"); 177 return -EINVAL; 178 } 179 180 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops); 181 } 182 183 static const struct address_space_operations zonefs_file_aops = { 184 .readpage = zonefs_readpage, 185 .readahead = zonefs_readahead, 186 .writepage = zonefs_writepage, 187 .writepages = zonefs_writepages, 188 .dirty_folio = filemap_dirty_folio, 189 .releasepage = iomap_releasepage, 190 .invalidate_folio = iomap_invalidate_folio, 191 .migratepage = iomap_migrate_page, 192 .is_partially_uptodate = iomap_is_partially_uptodate, 193 .error_remove_page = generic_error_remove_page, 194 .direct_IO = noop_direct_IO, 195 .swap_activate = zonefs_swap_activate, 196 }; 197 198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 199 { 200 struct super_block *sb = inode->i_sb; 201 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 202 loff_t old_isize = i_size_read(inode); 203 loff_t nr_blocks; 204 205 if (new_isize == old_isize) 206 return; 207 208 spin_lock(&sbi->s_lock); 209 210 /* 211 * This may be called for an update after an IO error. 212 * So beware of the values seen. 213 */ 214 if (new_isize < old_isize) { 215 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 216 if (sbi->s_used_blocks > nr_blocks) 217 sbi->s_used_blocks -= nr_blocks; 218 else 219 sbi->s_used_blocks = 0; 220 } else { 221 sbi->s_used_blocks += 222 (new_isize - old_isize) >> sb->s_blocksize_bits; 223 if (sbi->s_used_blocks > sbi->s_blocks) 224 sbi->s_used_blocks = sbi->s_blocks; 225 } 226 227 spin_unlock(&sbi->s_lock); 228 } 229 230 /* 231 * Check a zone condition and adjust its file inode access permissions for 232 * offline and readonly zones. Return the inode size corresponding to the 233 * amount of readable data in the zone. 234 */ 235 static loff_t zonefs_check_zone_condition(struct inode *inode, 236 struct blk_zone *zone, bool warn, 237 bool mount) 238 { 239 struct zonefs_inode_info *zi = ZONEFS_I(inode); 240 241 switch (zone->cond) { 242 case BLK_ZONE_COND_OFFLINE: 243 /* 244 * Dead zone: make the inode immutable, disable all accesses 245 * and set the file size to 0 (zone wp set to zone start). 246 */ 247 if (warn) 248 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 249 inode->i_ino); 250 inode->i_flags |= S_IMMUTABLE; 251 inode->i_mode &= ~0777; 252 zone->wp = zone->start; 253 return 0; 254 case BLK_ZONE_COND_READONLY: 255 /* 256 * The write pointer of read-only zones is invalid. If such a 257 * zone is found during mount, the file size cannot be retrieved 258 * so we treat the zone as offline (mount == true case). 259 * Otherwise, keep the file size as it was when last updated 260 * so that the user can recover data. In both cases, writes are 261 * always disabled for the zone. 262 */ 263 if (warn) 264 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 265 inode->i_ino); 266 inode->i_flags |= S_IMMUTABLE; 267 if (mount) { 268 zone->cond = BLK_ZONE_COND_OFFLINE; 269 inode->i_mode &= ~0777; 270 zone->wp = zone->start; 271 return 0; 272 } 273 inode->i_mode &= ~0222; 274 return i_size_read(inode); 275 case BLK_ZONE_COND_FULL: 276 /* The write pointer of full zones is invalid. */ 277 return zi->i_max_size; 278 default: 279 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 280 return zi->i_max_size; 281 return (zone->wp - zone->start) << SECTOR_SHIFT; 282 } 283 } 284 285 struct zonefs_ioerr_data { 286 struct inode *inode; 287 bool write; 288 }; 289 290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 291 void *data) 292 { 293 struct zonefs_ioerr_data *err = data; 294 struct inode *inode = err->inode; 295 struct zonefs_inode_info *zi = ZONEFS_I(inode); 296 struct super_block *sb = inode->i_sb; 297 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 298 loff_t isize, data_size; 299 300 /* 301 * Check the zone condition: if the zone is not "bad" (offline or 302 * read-only), read errors are simply signaled to the IO issuer as long 303 * as there is no inconsistency between the inode size and the amount of 304 * data writen in the zone (data_size). 305 */ 306 data_size = zonefs_check_zone_condition(inode, zone, true, false); 307 isize = i_size_read(inode); 308 if (zone->cond != BLK_ZONE_COND_OFFLINE && 309 zone->cond != BLK_ZONE_COND_READONLY && 310 !err->write && isize == data_size) 311 return 0; 312 313 /* 314 * At this point, we detected either a bad zone or an inconsistency 315 * between the inode size and the amount of data written in the zone. 316 * For the latter case, the cause may be a write IO error or an external 317 * action on the device. Two error patterns exist: 318 * 1) The inode size is lower than the amount of data in the zone: 319 * a write operation partially failed and data was writen at the end 320 * of the file. This can happen in the case of a large direct IO 321 * needing several BIOs and/or write requests to be processed. 322 * 2) The inode size is larger than the amount of data in the zone: 323 * this can happen with a deferred write error with the use of the 324 * device side write cache after getting successful write IO 325 * completions. Other possibilities are (a) an external corruption, 326 * e.g. an application reset the zone directly, or (b) the device 327 * has a serious problem (e.g. firmware bug). 328 * 329 * In all cases, warn about inode size inconsistency and handle the 330 * IO error according to the zone condition and to the mount options. 331 */ 332 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 333 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 334 inode->i_ino, isize, data_size); 335 336 /* 337 * First handle bad zones signaled by hardware. The mount options 338 * errors=zone-ro and errors=zone-offline result in changing the 339 * zone condition to read-only and offline respectively, as if the 340 * condition was signaled by the hardware. 341 */ 342 if (zone->cond == BLK_ZONE_COND_OFFLINE || 343 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 344 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 345 inode->i_ino); 346 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 347 zone->cond = BLK_ZONE_COND_OFFLINE; 348 data_size = zonefs_check_zone_condition(inode, zone, 349 false, false); 350 } 351 } else if (zone->cond == BLK_ZONE_COND_READONLY || 352 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 353 zonefs_warn(sb, "inode %lu: write access disabled\n", 354 inode->i_ino); 355 if (zone->cond != BLK_ZONE_COND_READONLY) { 356 zone->cond = BLK_ZONE_COND_READONLY; 357 data_size = zonefs_check_zone_condition(inode, zone, 358 false, false); 359 } 360 } 361 362 /* 363 * If the filesystem is mounted with the explicit-open mount option, we 364 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 365 * the read-only or offline condition, to avoid attempting an explicit 366 * close of the zone when the inode file is closed. 367 */ 368 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 369 (zone->cond == BLK_ZONE_COND_OFFLINE || 370 zone->cond == BLK_ZONE_COND_READONLY)) 371 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 372 373 /* 374 * If error=remount-ro was specified, any error result in remounting 375 * the volume as read-only. 376 */ 377 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 378 zonefs_warn(sb, "remounting filesystem read-only\n"); 379 sb->s_flags |= SB_RDONLY; 380 } 381 382 /* 383 * Update block usage stats and the inode size to prevent access to 384 * invalid data. 385 */ 386 zonefs_update_stats(inode, data_size); 387 zonefs_i_size_write(inode, data_size); 388 zi->i_wpoffset = data_size; 389 390 return 0; 391 } 392 393 /* 394 * When an file IO error occurs, check the file zone to see if there is a change 395 * in the zone condition (e.g. offline or read-only). For a failed write to a 396 * sequential zone, the zone write pointer position must also be checked to 397 * eventually correct the file size and zonefs inode write pointer offset 398 * (which can be out of sync with the drive due to partial write failures). 399 */ 400 static void __zonefs_io_error(struct inode *inode, bool write) 401 { 402 struct zonefs_inode_info *zi = ZONEFS_I(inode); 403 struct super_block *sb = inode->i_sb; 404 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 405 unsigned int noio_flag; 406 unsigned int nr_zones = 407 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 408 struct zonefs_ioerr_data err = { 409 .inode = inode, 410 .write = write, 411 }; 412 int ret; 413 414 /* 415 * Memory allocations in blkdev_report_zones() can trigger a memory 416 * reclaim which may in turn cause a recursion into zonefs as well as 417 * struct request allocations for the same device. The former case may 418 * end up in a deadlock on the inode truncate mutex, while the latter 419 * may prevent IO forward progress. Executing the report zones under 420 * the GFP_NOIO context avoids both problems. 421 */ 422 noio_flag = memalloc_noio_save(); 423 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 424 zonefs_io_error_cb, &err); 425 if (ret != nr_zones) 426 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 427 inode->i_ino, ret); 428 memalloc_noio_restore(noio_flag); 429 } 430 431 static void zonefs_io_error(struct inode *inode, bool write) 432 { 433 struct zonefs_inode_info *zi = ZONEFS_I(inode); 434 435 mutex_lock(&zi->i_truncate_mutex); 436 __zonefs_io_error(inode, write); 437 mutex_unlock(&zi->i_truncate_mutex); 438 } 439 440 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 441 { 442 struct zonefs_inode_info *zi = ZONEFS_I(inode); 443 loff_t old_isize; 444 enum req_opf op; 445 int ret = 0; 446 447 /* 448 * Only sequential zone files can be truncated and truncation is allowed 449 * only down to a 0 size, which is equivalent to a zone reset, and to 450 * the maximum file size, which is equivalent to a zone finish. 451 */ 452 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 453 return -EPERM; 454 455 if (!isize) 456 op = REQ_OP_ZONE_RESET; 457 else if (isize == zi->i_max_size) 458 op = REQ_OP_ZONE_FINISH; 459 else 460 return -EPERM; 461 462 inode_dio_wait(inode); 463 464 /* Serialize against page faults */ 465 filemap_invalidate_lock(inode->i_mapping); 466 467 /* Serialize against zonefs_iomap_begin() */ 468 mutex_lock(&zi->i_truncate_mutex); 469 470 old_isize = i_size_read(inode); 471 if (isize == old_isize) 472 goto unlock; 473 474 ret = zonefs_zone_mgmt(inode, op); 475 if (ret) 476 goto unlock; 477 478 /* 479 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 480 * take care of open zones. 481 */ 482 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 483 /* 484 * Truncating a zone to EMPTY or FULL is the equivalent of 485 * closing the zone. For a truncation to 0, we need to 486 * re-open the zone to ensure new writes can be processed. 487 * For a truncation to the maximum file size, the zone is 488 * closed and writes cannot be accepted anymore, so clear 489 * the open flag. 490 */ 491 if (!isize) 492 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 493 else 494 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 495 } 496 497 zonefs_update_stats(inode, isize); 498 truncate_setsize(inode, isize); 499 zi->i_wpoffset = isize; 500 501 unlock: 502 mutex_unlock(&zi->i_truncate_mutex); 503 filemap_invalidate_unlock(inode->i_mapping); 504 505 return ret; 506 } 507 508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 509 struct dentry *dentry, struct iattr *iattr) 510 { 511 struct inode *inode = d_inode(dentry); 512 int ret; 513 514 if (unlikely(IS_IMMUTABLE(inode))) 515 return -EPERM; 516 517 ret = setattr_prepare(&init_user_ns, dentry, iattr); 518 if (ret) 519 return ret; 520 521 /* 522 * Since files and directories cannot be created nor deleted, do not 523 * allow setting any write attributes on the sub-directories grouping 524 * files by zone type. 525 */ 526 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 527 (iattr->ia_mode & 0222)) 528 return -EPERM; 529 530 if (((iattr->ia_valid & ATTR_UID) && 531 !uid_eq(iattr->ia_uid, inode->i_uid)) || 532 ((iattr->ia_valid & ATTR_GID) && 533 !gid_eq(iattr->ia_gid, inode->i_gid))) { 534 ret = dquot_transfer(inode, iattr); 535 if (ret) 536 return ret; 537 } 538 539 if (iattr->ia_valid & ATTR_SIZE) { 540 ret = zonefs_file_truncate(inode, iattr->ia_size); 541 if (ret) 542 return ret; 543 } 544 545 setattr_copy(&init_user_ns, inode, iattr); 546 547 return 0; 548 } 549 550 static const struct inode_operations zonefs_file_inode_operations = { 551 .setattr = zonefs_inode_setattr, 552 }; 553 554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 555 int datasync) 556 { 557 struct inode *inode = file_inode(file); 558 int ret = 0; 559 560 if (unlikely(IS_IMMUTABLE(inode))) 561 return -EPERM; 562 563 /* 564 * Since only direct writes are allowed in sequential files, page cache 565 * flush is needed only for conventional zone files. 566 */ 567 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 568 ret = file_write_and_wait_range(file, start, end); 569 if (!ret) 570 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 571 572 if (ret) 573 zonefs_io_error(inode, true); 574 575 return ret; 576 } 577 578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 579 { 580 struct inode *inode = file_inode(vmf->vma->vm_file); 581 struct zonefs_inode_info *zi = ZONEFS_I(inode); 582 vm_fault_t ret; 583 584 if (unlikely(IS_IMMUTABLE(inode))) 585 return VM_FAULT_SIGBUS; 586 587 /* 588 * Sanity check: only conventional zone files can have shared 589 * writeable mappings. 590 */ 591 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 592 return VM_FAULT_NOPAGE; 593 594 sb_start_pagefault(inode->i_sb); 595 file_update_time(vmf->vma->vm_file); 596 597 /* Serialize against truncates */ 598 filemap_invalidate_lock_shared(inode->i_mapping); 599 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 600 filemap_invalidate_unlock_shared(inode->i_mapping); 601 602 sb_end_pagefault(inode->i_sb); 603 return ret; 604 } 605 606 static const struct vm_operations_struct zonefs_file_vm_ops = { 607 .fault = filemap_fault, 608 .map_pages = filemap_map_pages, 609 .page_mkwrite = zonefs_filemap_page_mkwrite, 610 }; 611 612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 613 { 614 /* 615 * Conventional zones accept random writes, so their files can support 616 * shared writable mappings. For sequential zone files, only read 617 * mappings are possible since there are no guarantees for write 618 * ordering between msync() and page cache writeback. 619 */ 620 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 621 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 622 return -EINVAL; 623 624 file_accessed(file); 625 vma->vm_ops = &zonefs_file_vm_ops; 626 627 return 0; 628 } 629 630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 631 { 632 loff_t isize = i_size_read(file_inode(file)); 633 634 /* 635 * Seeks are limited to below the zone size for conventional zones 636 * and below the zone write pointer for sequential zones. In both 637 * cases, this limit is the inode size. 638 */ 639 return generic_file_llseek_size(file, offset, whence, isize, isize); 640 } 641 642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 643 int error, unsigned int flags) 644 { 645 struct inode *inode = file_inode(iocb->ki_filp); 646 struct zonefs_inode_info *zi = ZONEFS_I(inode); 647 648 if (error) { 649 zonefs_io_error(inode, true); 650 return error; 651 } 652 653 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 654 /* 655 * Note that we may be seeing completions out of order, 656 * but that is not a problem since a write completed 657 * successfully necessarily means that all preceding writes 658 * were also successful. So we can safely increase the inode 659 * size to the write end location. 660 */ 661 mutex_lock(&zi->i_truncate_mutex); 662 if (i_size_read(inode) < iocb->ki_pos + size) { 663 zonefs_update_stats(inode, iocb->ki_pos + size); 664 zonefs_i_size_write(inode, iocb->ki_pos + size); 665 } 666 mutex_unlock(&zi->i_truncate_mutex); 667 } 668 669 return 0; 670 } 671 672 static const struct iomap_dio_ops zonefs_write_dio_ops = { 673 .end_io = zonefs_file_write_dio_end_io, 674 }; 675 676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 677 { 678 struct inode *inode = file_inode(iocb->ki_filp); 679 struct zonefs_inode_info *zi = ZONEFS_I(inode); 680 struct block_device *bdev = inode->i_sb->s_bdev; 681 unsigned int max; 682 struct bio *bio; 683 ssize_t size; 684 int nr_pages; 685 ssize_t ret; 686 687 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 688 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 689 iov_iter_truncate(from, max); 690 691 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 692 if (!nr_pages) 693 return 0; 694 695 bio = bio_alloc(bdev, nr_pages, 696 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 697 bio->bi_iter.bi_sector = zi->i_zsector; 698 bio->bi_ioprio = iocb->ki_ioprio; 699 if (iocb->ki_flags & IOCB_DSYNC) 700 bio->bi_opf |= REQ_FUA; 701 702 ret = bio_iov_iter_get_pages(bio, from); 703 if (unlikely(ret)) 704 goto out_release; 705 706 size = bio->bi_iter.bi_size; 707 task_io_account_write(size); 708 709 if (iocb->ki_flags & IOCB_HIPRI) 710 bio_set_polled(bio, iocb); 711 712 ret = submit_bio_wait(bio); 713 714 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 715 trace_zonefs_file_dio_append(inode, size, ret); 716 717 out_release: 718 bio_release_pages(bio, false); 719 bio_put(bio); 720 721 if (ret >= 0) { 722 iocb->ki_pos += size; 723 return size; 724 } 725 726 return ret; 727 } 728 729 /* 730 * Do not exceed the LFS limits nor the file zone size. If pos is under the 731 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 732 */ 733 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 734 loff_t count) 735 { 736 struct inode *inode = file_inode(file); 737 struct zonefs_inode_info *zi = ZONEFS_I(inode); 738 loff_t limit = rlimit(RLIMIT_FSIZE); 739 loff_t max_size = zi->i_max_size; 740 741 if (limit != RLIM_INFINITY) { 742 if (pos >= limit) { 743 send_sig(SIGXFSZ, current, 0); 744 return -EFBIG; 745 } 746 count = min(count, limit - pos); 747 } 748 749 if (!(file->f_flags & O_LARGEFILE)) 750 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 751 752 if (unlikely(pos >= max_size)) 753 return -EFBIG; 754 755 return min(count, max_size - pos); 756 } 757 758 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 759 { 760 struct file *file = iocb->ki_filp; 761 struct inode *inode = file_inode(file); 762 struct zonefs_inode_info *zi = ZONEFS_I(inode); 763 loff_t count; 764 765 if (IS_SWAPFILE(inode)) 766 return -ETXTBSY; 767 768 if (!iov_iter_count(from)) 769 return 0; 770 771 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 772 return -EINVAL; 773 774 if (iocb->ki_flags & IOCB_APPEND) { 775 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 776 return -EINVAL; 777 mutex_lock(&zi->i_truncate_mutex); 778 iocb->ki_pos = zi->i_wpoffset; 779 mutex_unlock(&zi->i_truncate_mutex); 780 } 781 782 count = zonefs_write_check_limits(file, iocb->ki_pos, 783 iov_iter_count(from)); 784 if (count < 0) 785 return count; 786 787 iov_iter_truncate(from, count); 788 return iov_iter_count(from); 789 } 790 791 /* 792 * Handle direct writes. For sequential zone files, this is the only possible 793 * write path. For these files, check that the user is issuing writes 794 * sequentially from the end of the file. This code assumes that the block layer 795 * delivers write requests to the device in sequential order. This is always the 796 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 797 * elevator feature is being used (e.g. mq-deadline). The block layer always 798 * automatically select such an elevator for zoned block devices during the 799 * device initialization. 800 */ 801 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 802 { 803 struct inode *inode = file_inode(iocb->ki_filp); 804 struct zonefs_inode_info *zi = ZONEFS_I(inode); 805 struct super_block *sb = inode->i_sb; 806 bool sync = is_sync_kiocb(iocb); 807 bool append = false; 808 ssize_t ret, count; 809 810 /* 811 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 812 * as this can cause write reordering (e.g. the first aio gets EAGAIN 813 * on the inode lock but the second goes through but is now unaligned). 814 */ 815 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 816 (iocb->ki_flags & IOCB_NOWAIT)) 817 return -EOPNOTSUPP; 818 819 if (iocb->ki_flags & IOCB_NOWAIT) { 820 if (!inode_trylock(inode)) 821 return -EAGAIN; 822 } else { 823 inode_lock(inode); 824 } 825 826 count = zonefs_write_checks(iocb, from); 827 if (count <= 0) { 828 ret = count; 829 goto inode_unlock; 830 } 831 832 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 833 ret = -EINVAL; 834 goto inode_unlock; 835 } 836 837 /* Enforce sequential writes (append only) in sequential zones */ 838 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 839 mutex_lock(&zi->i_truncate_mutex); 840 if (iocb->ki_pos != zi->i_wpoffset) { 841 mutex_unlock(&zi->i_truncate_mutex); 842 ret = -EINVAL; 843 goto inode_unlock; 844 } 845 mutex_unlock(&zi->i_truncate_mutex); 846 append = sync; 847 } 848 849 if (append) 850 ret = zonefs_file_dio_append(iocb, from); 851 else 852 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 853 &zonefs_write_dio_ops, 0, 0); 854 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 855 (ret > 0 || ret == -EIOCBQUEUED)) { 856 if (ret > 0) 857 count = ret; 858 mutex_lock(&zi->i_truncate_mutex); 859 zi->i_wpoffset += count; 860 mutex_unlock(&zi->i_truncate_mutex); 861 } 862 863 inode_unlock: 864 inode_unlock(inode); 865 866 return ret; 867 } 868 869 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 870 struct iov_iter *from) 871 { 872 struct inode *inode = file_inode(iocb->ki_filp); 873 struct zonefs_inode_info *zi = ZONEFS_I(inode); 874 ssize_t ret; 875 876 /* 877 * Direct IO writes are mandatory for sequential zone files so that the 878 * write IO issuing order is preserved. 879 */ 880 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 881 return -EIO; 882 883 if (iocb->ki_flags & IOCB_NOWAIT) { 884 if (!inode_trylock(inode)) 885 return -EAGAIN; 886 } else { 887 inode_lock(inode); 888 } 889 890 ret = zonefs_write_checks(iocb, from); 891 if (ret <= 0) 892 goto inode_unlock; 893 894 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 895 if (ret > 0) 896 iocb->ki_pos += ret; 897 else if (ret == -EIO) 898 zonefs_io_error(inode, true); 899 900 inode_unlock: 901 inode_unlock(inode); 902 if (ret > 0) 903 ret = generic_write_sync(iocb, ret); 904 905 return ret; 906 } 907 908 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 909 { 910 struct inode *inode = file_inode(iocb->ki_filp); 911 912 if (unlikely(IS_IMMUTABLE(inode))) 913 return -EPERM; 914 915 if (sb_rdonly(inode->i_sb)) 916 return -EROFS; 917 918 /* Write operations beyond the zone size are not allowed */ 919 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 920 return -EFBIG; 921 922 if (iocb->ki_flags & IOCB_DIRECT) { 923 ssize_t ret = zonefs_file_dio_write(iocb, from); 924 if (ret != -ENOTBLK) 925 return ret; 926 } 927 928 return zonefs_file_buffered_write(iocb, from); 929 } 930 931 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 932 int error, unsigned int flags) 933 { 934 if (error) { 935 zonefs_io_error(file_inode(iocb->ki_filp), false); 936 return error; 937 } 938 939 return 0; 940 } 941 942 static const struct iomap_dio_ops zonefs_read_dio_ops = { 943 .end_io = zonefs_file_read_dio_end_io, 944 }; 945 946 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 947 { 948 struct inode *inode = file_inode(iocb->ki_filp); 949 struct zonefs_inode_info *zi = ZONEFS_I(inode); 950 struct super_block *sb = inode->i_sb; 951 loff_t isize; 952 ssize_t ret; 953 954 /* Offline zones cannot be read */ 955 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 956 return -EPERM; 957 958 if (iocb->ki_pos >= zi->i_max_size) 959 return 0; 960 961 if (iocb->ki_flags & IOCB_NOWAIT) { 962 if (!inode_trylock_shared(inode)) 963 return -EAGAIN; 964 } else { 965 inode_lock_shared(inode); 966 } 967 968 /* Limit read operations to written data */ 969 mutex_lock(&zi->i_truncate_mutex); 970 isize = i_size_read(inode); 971 if (iocb->ki_pos >= isize) { 972 mutex_unlock(&zi->i_truncate_mutex); 973 ret = 0; 974 goto inode_unlock; 975 } 976 iov_iter_truncate(to, isize - iocb->ki_pos); 977 mutex_unlock(&zi->i_truncate_mutex); 978 979 if (iocb->ki_flags & IOCB_DIRECT) { 980 size_t count = iov_iter_count(to); 981 982 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 983 ret = -EINVAL; 984 goto inode_unlock; 985 } 986 file_accessed(iocb->ki_filp); 987 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 988 &zonefs_read_dio_ops, 0, 0); 989 } else { 990 ret = generic_file_read_iter(iocb, to); 991 if (ret == -EIO) 992 zonefs_io_error(inode, false); 993 } 994 995 inode_unlock: 996 inode_unlock_shared(inode); 997 998 return ret; 999 } 1000 1001 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 1002 { 1003 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1004 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1005 1006 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 1007 return false; 1008 1009 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1010 return false; 1011 1012 if (!(file->f_mode & FMODE_WRITE)) 1013 return false; 1014 1015 return true; 1016 } 1017 1018 static int zonefs_open_zone(struct inode *inode) 1019 { 1020 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1021 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1022 int ret = 0; 1023 1024 mutex_lock(&zi->i_truncate_mutex); 1025 1026 if (!zi->i_wr_refcnt) { 1027 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 1028 atomic_dec(&sbi->s_open_zones); 1029 ret = -EBUSY; 1030 goto unlock; 1031 } 1032 1033 if (i_size_read(inode) < zi->i_max_size) { 1034 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1035 if (ret) { 1036 atomic_dec(&sbi->s_open_zones); 1037 goto unlock; 1038 } 1039 zi->i_flags |= ZONEFS_ZONE_OPEN; 1040 } 1041 } 1042 1043 zi->i_wr_refcnt++; 1044 1045 unlock: 1046 mutex_unlock(&zi->i_truncate_mutex); 1047 1048 return ret; 1049 } 1050 1051 static int zonefs_file_open(struct inode *inode, struct file *file) 1052 { 1053 int ret; 1054 1055 ret = generic_file_open(inode, file); 1056 if (ret) 1057 return ret; 1058 1059 if (zonefs_file_use_exp_open(inode, file)) 1060 return zonefs_open_zone(inode); 1061 1062 return 0; 1063 } 1064 1065 static void zonefs_close_zone(struct inode *inode) 1066 { 1067 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1068 int ret = 0; 1069 1070 mutex_lock(&zi->i_truncate_mutex); 1071 zi->i_wr_refcnt--; 1072 if (!zi->i_wr_refcnt) { 1073 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1074 struct super_block *sb = inode->i_sb; 1075 1076 /* 1077 * If the file zone is full, it is not open anymore and we only 1078 * need to decrement the open count. 1079 */ 1080 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1081 goto dec; 1082 1083 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1084 if (ret) { 1085 __zonefs_io_error(inode, false); 1086 /* 1087 * Leaving zones explicitly open may lead to a state 1088 * where most zones cannot be written (zone resources 1089 * exhausted). So take preventive action by remounting 1090 * read-only. 1091 */ 1092 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1093 !(sb->s_flags & SB_RDONLY)) { 1094 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1095 sb->s_flags |= SB_RDONLY; 1096 } 1097 } 1098 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1099 dec: 1100 atomic_dec(&sbi->s_open_zones); 1101 } 1102 mutex_unlock(&zi->i_truncate_mutex); 1103 } 1104 1105 static int zonefs_file_release(struct inode *inode, struct file *file) 1106 { 1107 /* 1108 * If we explicitly open a zone we must close it again as well, but the 1109 * zone management operation can fail (either due to an IO error or as 1110 * the zone has gone offline or read-only). Make sure we don't fail the 1111 * close(2) for user-space. 1112 */ 1113 if (zonefs_file_use_exp_open(inode, file)) 1114 zonefs_close_zone(inode); 1115 1116 return 0; 1117 } 1118 1119 static const struct file_operations zonefs_file_operations = { 1120 .open = zonefs_file_open, 1121 .release = zonefs_file_release, 1122 .fsync = zonefs_file_fsync, 1123 .mmap = zonefs_file_mmap, 1124 .llseek = zonefs_file_llseek, 1125 .read_iter = zonefs_file_read_iter, 1126 .write_iter = zonefs_file_write_iter, 1127 .splice_read = generic_file_splice_read, 1128 .splice_write = iter_file_splice_write, 1129 .iopoll = iocb_bio_iopoll, 1130 }; 1131 1132 static struct kmem_cache *zonefs_inode_cachep; 1133 1134 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1135 { 1136 struct zonefs_inode_info *zi; 1137 1138 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1139 if (!zi) 1140 return NULL; 1141 1142 inode_init_once(&zi->i_vnode); 1143 mutex_init(&zi->i_truncate_mutex); 1144 zi->i_wr_refcnt = 0; 1145 1146 return &zi->i_vnode; 1147 } 1148 1149 static void zonefs_free_inode(struct inode *inode) 1150 { 1151 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1152 } 1153 1154 /* 1155 * File system stat. 1156 */ 1157 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1158 { 1159 struct super_block *sb = dentry->d_sb; 1160 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1161 enum zonefs_ztype t; 1162 1163 buf->f_type = ZONEFS_MAGIC; 1164 buf->f_bsize = sb->s_blocksize; 1165 buf->f_namelen = ZONEFS_NAME_MAX; 1166 1167 spin_lock(&sbi->s_lock); 1168 1169 buf->f_blocks = sbi->s_blocks; 1170 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1171 buf->f_bfree = 0; 1172 else 1173 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1174 buf->f_bavail = buf->f_bfree; 1175 1176 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1177 if (sbi->s_nr_files[t]) 1178 buf->f_files += sbi->s_nr_files[t] + 1; 1179 } 1180 buf->f_ffree = 0; 1181 1182 spin_unlock(&sbi->s_lock); 1183 1184 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1185 1186 return 0; 1187 } 1188 1189 enum { 1190 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1191 Opt_explicit_open, Opt_err, 1192 }; 1193 1194 static const match_table_t tokens = { 1195 { Opt_errors_ro, "errors=remount-ro"}, 1196 { Opt_errors_zro, "errors=zone-ro"}, 1197 { Opt_errors_zol, "errors=zone-offline"}, 1198 { Opt_errors_repair, "errors=repair"}, 1199 { Opt_explicit_open, "explicit-open" }, 1200 { Opt_err, NULL} 1201 }; 1202 1203 static int zonefs_parse_options(struct super_block *sb, char *options) 1204 { 1205 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1206 substring_t args[MAX_OPT_ARGS]; 1207 char *p; 1208 1209 if (!options) 1210 return 0; 1211 1212 while ((p = strsep(&options, ",")) != NULL) { 1213 int token; 1214 1215 if (!*p) 1216 continue; 1217 1218 token = match_token(p, tokens, args); 1219 switch (token) { 1220 case Opt_errors_ro: 1221 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1222 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1223 break; 1224 case Opt_errors_zro: 1225 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1226 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1227 break; 1228 case Opt_errors_zol: 1229 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1230 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1231 break; 1232 case Opt_errors_repair: 1233 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1234 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1235 break; 1236 case Opt_explicit_open: 1237 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1238 break; 1239 default: 1240 return -EINVAL; 1241 } 1242 } 1243 1244 return 0; 1245 } 1246 1247 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1248 { 1249 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1250 1251 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1252 seq_puts(seq, ",errors=remount-ro"); 1253 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1254 seq_puts(seq, ",errors=zone-ro"); 1255 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1256 seq_puts(seq, ",errors=zone-offline"); 1257 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1258 seq_puts(seq, ",errors=repair"); 1259 1260 return 0; 1261 } 1262 1263 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1264 { 1265 sync_filesystem(sb); 1266 1267 return zonefs_parse_options(sb, data); 1268 } 1269 1270 static const struct super_operations zonefs_sops = { 1271 .alloc_inode = zonefs_alloc_inode, 1272 .free_inode = zonefs_free_inode, 1273 .statfs = zonefs_statfs, 1274 .remount_fs = zonefs_remount, 1275 .show_options = zonefs_show_options, 1276 }; 1277 1278 static const struct inode_operations zonefs_dir_inode_operations = { 1279 .lookup = simple_lookup, 1280 .setattr = zonefs_inode_setattr, 1281 }; 1282 1283 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1284 enum zonefs_ztype type) 1285 { 1286 struct super_block *sb = parent->i_sb; 1287 1288 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1289 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1290 inode->i_op = &zonefs_dir_inode_operations; 1291 inode->i_fop = &simple_dir_operations; 1292 set_nlink(inode, 2); 1293 inc_nlink(parent); 1294 } 1295 1296 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1297 enum zonefs_ztype type) 1298 { 1299 struct super_block *sb = inode->i_sb; 1300 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1301 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1302 1303 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1304 inode->i_mode = S_IFREG | sbi->s_perm; 1305 1306 zi->i_ztype = type; 1307 zi->i_zsector = zone->start; 1308 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1309 1310 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1311 zone->capacity << SECTOR_SHIFT); 1312 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1313 1314 inode->i_uid = sbi->s_uid; 1315 inode->i_gid = sbi->s_gid; 1316 inode->i_size = zi->i_wpoffset; 1317 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1318 1319 inode->i_op = &zonefs_file_inode_operations; 1320 inode->i_fop = &zonefs_file_operations; 1321 inode->i_mapping->a_ops = &zonefs_file_aops; 1322 1323 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1324 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1325 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1326 } 1327 1328 static struct dentry *zonefs_create_inode(struct dentry *parent, 1329 const char *name, struct blk_zone *zone, 1330 enum zonefs_ztype type) 1331 { 1332 struct inode *dir = d_inode(parent); 1333 struct dentry *dentry; 1334 struct inode *inode; 1335 1336 dentry = d_alloc_name(parent, name); 1337 if (!dentry) 1338 return NULL; 1339 1340 inode = new_inode(parent->d_sb); 1341 if (!inode) 1342 goto dput; 1343 1344 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1345 if (zone) 1346 zonefs_init_file_inode(inode, zone, type); 1347 else 1348 zonefs_init_dir_inode(dir, inode, type); 1349 d_add(dentry, inode); 1350 dir->i_size++; 1351 1352 return dentry; 1353 1354 dput: 1355 dput(dentry); 1356 1357 return NULL; 1358 } 1359 1360 struct zonefs_zone_data { 1361 struct super_block *sb; 1362 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1363 struct blk_zone *zones; 1364 }; 1365 1366 /* 1367 * Create a zone group and populate it with zone files. 1368 */ 1369 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1370 enum zonefs_ztype type) 1371 { 1372 struct super_block *sb = zd->sb; 1373 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1374 struct blk_zone *zone, *next, *end; 1375 const char *zgroup_name; 1376 char *file_name; 1377 struct dentry *dir; 1378 unsigned int n = 0; 1379 int ret; 1380 1381 /* If the group is empty, there is nothing to do */ 1382 if (!zd->nr_zones[type]) 1383 return 0; 1384 1385 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1386 if (!file_name) 1387 return -ENOMEM; 1388 1389 if (type == ZONEFS_ZTYPE_CNV) 1390 zgroup_name = "cnv"; 1391 else 1392 zgroup_name = "seq"; 1393 1394 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1395 if (!dir) { 1396 ret = -ENOMEM; 1397 goto free; 1398 } 1399 1400 /* 1401 * The first zone contains the super block: skip it. 1402 */ 1403 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1404 for (zone = &zd->zones[1]; zone < end; zone = next) { 1405 1406 next = zone + 1; 1407 if (zonefs_zone_type(zone) != type) 1408 continue; 1409 1410 /* 1411 * For conventional zones, contiguous zones can be aggregated 1412 * together to form larger files. Note that this overwrites the 1413 * length of the first zone of the set of contiguous zones 1414 * aggregated together. If one offline or read-only zone is 1415 * found, assume that all zones aggregated have the same 1416 * condition. 1417 */ 1418 if (type == ZONEFS_ZTYPE_CNV && 1419 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1420 for (; next < end; next++) { 1421 if (zonefs_zone_type(next) != type) 1422 break; 1423 zone->len += next->len; 1424 zone->capacity += next->capacity; 1425 if (next->cond == BLK_ZONE_COND_READONLY && 1426 zone->cond != BLK_ZONE_COND_OFFLINE) 1427 zone->cond = BLK_ZONE_COND_READONLY; 1428 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1429 zone->cond = BLK_ZONE_COND_OFFLINE; 1430 } 1431 if (zone->capacity != zone->len) { 1432 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1433 ret = -EINVAL; 1434 goto free; 1435 } 1436 } 1437 1438 /* 1439 * Use the file number within its group as file name. 1440 */ 1441 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1442 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1443 ret = -ENOMEM; 1444 goto free; 1445 } 1446 1447 n++; 1448 } 1449 1450 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1451 zgroup_name, n, n > 1 ? "s" : ""); 1452 1453 sbi->s_nr_files[type] = n; 1454 ret = 0; 1455 1456 free: 1457 kfree(file_name); 1458 1459 return ret; 1460 } 1461 1462 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1463 void *data) 1464 { 1465 struct zonefs_zone_data *zd = data; 1466 1467 /* 1468 * Count the number of usable zones: the first zone at index 0 contains 1469 * the super block and is ignored. 1470 */ 1471 switch (zone->type) { 1472 case BLK_ZONE_TYPE_CONVENTIONAL: 1473 zone->wp = zone->start + zone->len; 1474 if (idx) 1475 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1476 break; 1477 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1478 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1479 if (idx) 1480 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1481 break; 1482 default: 1483 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1484 zone->type); 1485 return -EIO; 1486 } 1487 1488 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1489 1490 return 0; 1491 } 1492 1493 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1494 { 1495 struct block_device *bdev = zd->sb->s_bdev; 1496 int ret; 1497 1498 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1499 sizeof(struct blk_zone), GFP_KERNEL); 1500 if (!zd->zones) 1501 return -ENOMEM; 1502 1503 /* Get zones information from the device */ 1504 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1505 zonefs_get_zone_info_cb, zd); 1506 if (ret < 0) { 1507 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1508 return ret; 1509 } 1510 1511 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1512 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1513 ret, blkdev_nr_zones(bdev->bd_disk)); 1514 return -EIO; 1515 } 1516 1517 return 0; 1518 } 1519 1520 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1521 { 1522 kvfree(zd->zones); 1523 } 1524 1525 /* 1526 * Read super block information from the device. 1527 */ 1528 static int zonefs_read_super(struct super_block *sb) 1529 { 1530 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1531 struct zonefs_super *super; 1532 u32 crc, stored_crc; 1533 struct page *page; 1534 struct bio_vec bio_vec; 1535 struct bio bio; 1536 int ret; 1537 1538 page = alloc_page(GFP_KERNEL); 1539 if (!page) 1540 return -ENOMEM; 1541 1542 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1543 bio.bi_iter.bi_sector = 0; 1544 bio_add_page(&bio, page, PAGE_SIZE, 0); 1545 1546 ret = submit_bio_wait(&bio); 1547 if (ret) 1548 goto free_page; 1549 1550 super = kmap(page); 1551 1552 ret = -EINVAL; 1553 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1554 goto unmap; 1555 1556 stored_crc = le32_to_cpu(super->s_crc); 1557 super->s_crc = 0; 1558 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1559 if (crc != stored_crc) { 1560 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1561 crc, stored_crc); 1562 goto unmap; 1563 } 1564 1565 sbi->s_features = le64_to_cpu(super->s_features); 1566 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1567 zonefs_err(sb, "Unknown features set 0x%llx\n", 1568 sbi->s_features); 1569 goto unmap; 1570 } 1571 1572 if (sbi->s_features & ZONEFS_F_UID) { 1573 sbi->s_uid = make_kuid(current_user_ns(), 1574 le32_to_cpu(super->s_uid)); 1575 if (!uid_valid(sbi->s_uid)) { 1576 zonefs_err(sb, "Invalid UID feature\n"); 1577 goto unmap; 1578 } 1579 } 1580 1581 if (sbi->s_features & ZONEFS_F_GID) { 1582 sbi->s_gid = make_kgid(current_user_ns(), 1583 le32_to_cpu(super->s_gid)); 1584 if (!gid_valid(sbi->s_gid)) { 1585 zonefs_err(sb, "Invalid GID feature\n"); 1586 goto unmap; 1587 } 1588 } 1589 1590 if (sbi->s_features & ZONEFS_F_PERM) 1591 sbi->s_perm = le32_to_cpu(super->s_perm); 1592 1593 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1594 zonefs_err(sb, "Reserved area is being used\n"); 1595 goto unmap; 1596 } 1597 1598 import_uuid(&sbi->s_uuid, super->s_uuid); 1599 ret = 0; 1600 1601 unmap: 1602 kunmap(page); 1603 free_page: 1604 __free_page(page); 1605 1606 return ret; 1607 } 1608 1609 /* 1610 * Check that the device is zoned. If it is, get the list of zones and create 1611 * sub-directories and files according to the device zone configuration and 1612 * format options. 1613 */ 1614 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1615 { 1616 struct zonefs_zone_data zd; 1617 struct zonefs_sb_info *sbi; 1618 struct inode *inode; 1619 enum zonefs_ztype t; 1620 int ret; 1621 1622 if (!bdev_is_zoned(sb->s_bdev)) { 1623 zonefs_err(sb, "Not a zoned block device\n"); 1624 return -EINVAL; 1625 } 1626 1627 /* 1628 * Initialize super block information: the maximum file size is updated 1629 * when the zone files are created so that the format option 1630 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1631 * beyond the zone size is taken into account. 1632 */ 1633 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1634 if (!sbi) 1635 return -ENOMEM; 1636 1637 spin_lock_init(&sbi->s_lock); 1638 sb->s_fs_info = sbi; 1639 sb->s_magic = ZONEFS_MAGIC; 1640 sb->s_maxbytes = 0; 1641 sb->s_op = &zonefs_sops; 1642 sb->s_time_gran = 1; 1643 1644 /* 1645 * The block size is set to the device zone write granularity to ensure 1646 * that write operations are always aligned according to the device 1647 * interface constraints. 1648 */ 1649 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1650 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1651 sbi->s_uid = GLOBAL_ROOT_UID; 1652 sbi->s_gid = GLOBAL_ROOT_GID; 1653 sbi->s_perm = 0640; 1654 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1655 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1656 atomic_set(&sbi->s_open_zones, 0); 1657 if (!sbi->s_max_open_zones && 1658 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1659 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1660 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1661 } 1662 1663 ret = zonefs_read_super(sb); 1664 if (ret) 1665 return ret; 1666 1667 ret = zonefs_parse_options(sb, data); 1668 if (ret) 1669 return ret; 1670 1671 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1672 zd.sb = sb; 1673 ret = zonefs_get_zone_info(&zd); 1674 if (ret) 1675 goto cleanup; 1676 1677 zonefs_info(sb, "Mounting %u zones", 1678 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1679 1680 /* Create root directory inode */ 1681 ret = -ENOMEM; 1682 inode = new_inode(sb); 1683 if (!inode) 1684 goto cleanup; 1685 1686 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1687 inode->i_mode = S_IFDIR | 0555; 1688 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1689 inode->i_op = &zonefs_dir_inode_operations; 1690 inode->i_fop = &simple_dir_operations; 1691 set_nlink(inode, 2); 1692 1693 sb->s_root = d_make_root(inode); 1694 if (!sb->s_root) 1695 goto cleanup; 1696 1697 /* Create and populate files in zone groups directories */ 1698 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1699 ret = zonefs_create_zgroup(&zd, t); 1700 if (ret) 1701 break; 1702 } 1703 1704 cleanup: 1705 zonefs_cleanup_zone_info(&zd); 1706 1707 return ret; 1708 } 1709 1710 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1711 int flags, const char *dev_name, void *data) 1712 { 1713 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1714 } 1715 1716 static void zonefs_kill_super(struct super_block *sb) 1717 { 1718 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1719 1720 if (sb->s_root) 1721 d_genocide(sb->s_root); 1722 kill_block_super(sb); 1723 kfree(sbi); 1724 } 1725 1726 /* 1727 * File system definition and registration. 1728 */ 1729 static struct file_system_type zonefs_type = { 1730 .owner = THIS_MODULE, 1731 .name = "zonefs", 1732 .mount = zonefs_mount, 1733 .kill_sb = zonefs_kill_super, 1734 .fs_flags = FS_REQUIRES_DEV, 1735 }; 1736 1737 static int __init zonefs_init_inodecache(void) 1738 { 1739 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1740 sizeof(struct zonefs_inode_info), 0, 1741 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1742 NULL); 1743 if (zonefs_inode_cachep == NULL) 1744 return -ENOMEM; 1745 return 0; 1746 } 1747 1748 static void zonefs_destroy_inodecache(void) 1749 { 1750 /* 1751 * Make sure all delayed rcu free inodes are flushed before we 1752 * destroy the inode cache. 1753 */ 1754 rcu_barrier(); 1755 kmem_cache_destroy(zonefs_inode_cachep); 1756 } 1757 1758 static int __init zonefs_init(void) 1759 { 1760 int ret; 1761 1762 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1763 1764 ret = zonefs_init_inodecache(); 1765 if (ret) 1766 return ret; 1767 1768 ret = register_filesystem(&zonefs_type); 1769 if (ret) { 1770 zonefs_destroy_inodecache(); 1771 return ret; 1772 } 1773 1774 return 0; 1775 } 1776 1777 static void __exit zonefs_exit(void) 1778 { 1779 zonefs_destroy_inodecache(); 1780 unregister_filesystem(&zonefs_type); 1781 } 1782 1783 MODULE_AUTHOR("Damien Le Moal"); 1784 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1785 MODULE_LICENSE("GPL"); 1786 MODULE_ALIAS_FS("zonefs"); 1787 module_init(zonefs_init); 1788 module_exit(zonefs_exit); 1789