1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 24 #include "zonefs.h" 25 26 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 27 unsigned int flags, struct iomap *iomap, 28 struct iomap *srcmap) 29 { 30 struct zonefs_inode_info *zi = ZONEFS_I(inode); 31 struct super_block *sb = inode->i_sb; 32 loff_t isize; 33 34 /* All I/Os should always be within the file maximum size */ 35 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 36 return -EIO; 37 38 /* 39 * Sequential zones can only accept direct writes. This is already 40 * checked when writes are issued, so warn if we see a page writeback 41 * operation. 42 */ 43 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 44 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 45 return -EIO; 46 47 /* 48 * For conventional zones, all blocks are always mapped. For sequential 49 * zones, all blocks after always mapped below the inode size (zone 50 * write pointer) and unwriten beyond. 51 */ 52 mutex_lock(&zi->i_truncate_mutex); 53 isize = i_size_read(inode); 54 if (offset >= isize) 55 iomap->type = IOMAP_UNWRITTEN; 56 else 57 iomap->type = IOMAP_MAPPED; 58 if (flags & IOMAP_WRITE) 59 length = zi->i_max_size - offset; 60 else 61 length = min(length, isize - offset); 62 mutex_unlock(&zi->i_truncate_mutex); 63 64 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 65 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 66 iomap->bdev = inode->i_sb->s_bdev; 67 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 68 69 return 0; 70 } 71 72 static const struct iomap_ops zonefs_iomap_ops = { 73 .iomap_begin = zonefs_iomap_begin, 74 }; 75 76 static int zonefs_readpage(struct file *unused, struct page *page) 77 { 78 return iomap_readpage(page, &zonefs_iomap_ops); 79 } 80 81 static int zonefs_readpages(struct file *unused, struct address_space *mapping, 82 struct list_head *pages, unsigned int nr_pages) 83 { 84 return iomap_readpages(mapping, pages, nr_pages, &zonefs_iomap_ops); 85 } 86 87 /* 88 * Map blocks for page writeback. This is used only on conventional zone files, 89 * which implies that the page range can only be within the fixed inode size. 90 */ 91 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 92 struct inode *inode, loff_t offset) 93 { 94 struct zonefs_inode_info *zi = ZONEFS_I(inode); 95 96 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 97 return -EIO; 98 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 99 return -EIO; 100 101 /* If the mapping is already OK, nothing needs to be done */ 102 if (offset >= wpc->iomap.offset && 103 offset < wpc->iomap.offset + wpc->iomap.length) 104 return 0; 105 106 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 107 IOMAP_WRITE, &wpc->iomap, NULL); 108 } 109 110 static const struct iomap_writeback_ops zonefs_writeback_ops = { 111 .map_blocks = zonefs_map_blocks, 112 }; 113 114 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 115 { 116 struct iomap_writepage_ctx wpc = { }; 117 118 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 119 } 120 121 static int zonefs_writepages(struct address_space *mapping, 122 struct writeback_control *wbc) 123 { 124 struct iomap_writepage_ctx wpc = { }; 125 126 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 127 } 128 129 static const struct address_space_operations zonefs_file_aops = { 130 .readpage = zonefs_readpage, 131 .readpages = zonefs_readpages, 132 .writepage = zonefs_writepage, 133 .writepages = zonefs_writepages, 134 .set_page_dirty = iomap_set_page_dirty, 135 .releasepage = iomap_releasepage, 136 .invalidatepage = iomap_invalidatepage, 137 .migratepage = iomap_migrate_page, 138 .is_partially_uptodate = iomap_is_partially_uptodate, 139 .error_remove_page = generic_error_remove_page, 140 .direct_IO = noop_direct_IO, 141 }; 142 143 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 144 { 145 struct super_block *sb = inode->i_sb; 146 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 147 loff_t old_isize = i_size_read(inode); 148 loff_t nr_blocks; 149 150 if (new_isize == old_isize) 151 return; 152 153 spin_lock(&sbi->s_lock); 154 155 /* 156 * This may be called for an update after an IO error. 157 * So beware of the values seen. 158 */ 159 if (new_isize < old_isize) { 160 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 161 if (sbi->s_used_blocks > nr_blocks) 162 sbi->s_used_blocks -= nr_blocks; 163 else 164 sbi->s_used_blocks = 0; 165 } else { 166 sbi->s_used_blocks += 167 (new_isize - old_isize) >> sb->s_blocksize_bits; 168 if (sbi->s_used_blocks > sbi->s_blocks) 169 sbi->s_used_blocks = sbi->s_blocks; 170 } 171 172 spin_unlock(&sbi->s_lock); 173 } 174 175 /* 176 * Check a zone condition and adjust its file inode access permissions for 177 * offline and readonly zones. Return the inode size corresponding to the 178 * amount of readable data in the zone. 179 */ 180 static loff_t zonefs_check_zone_condition(struct inode *inode, 181 struct blk_zone *zone, bool warn, 182 bool mount) 183 { 184 struct zonefs_inode_info *zi = ZONEFS_I(inode); 185 186 switch (zone->cond) { 187 case BLK_ZONE_COND_OFFLINE: 188 /* 189 * Dead zone: make the inode immutable, disable all accesses 190 * and set the file size to 0 (zone wp set to zone start). 191 */ 192 if (warn) 193 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 194 inode->i_ino); 195 inode->i_flags |= S_IMMUTABLE; 196 inode->i_mode &= ~0777; 197 zone->wp = zone->start; 198 return 0; 199 case BLK_ZONE_COND_READONLY: 200 /* 201 * The write pointer of read-only zones is invalid. If such a 202 * zone is found during mount, the file size cannot be retrieved 203 * so we treat the zone as offline (mount == true case). 204 * Otherwise, keep the file size as it was when last updated 205 * so that the user can recover data. In both cases, writes are 206 * always disabled for the zone. 207 */ 208 if (warn) 209 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 210 inode->i_ino); 211 inode->i_flags |= S_IMMUTABLE; 212 if (mount) { 213 zone->cond = BLK_ZONE_COND_OFFLINE; 214 inode->i_mode &= ~0777; 215 zone->wp = zone->start; 216 return 0; 217 } 218 inode->i_mode &= ~0222; 219 return i_size_read(inode); 220 default: 221 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 222 return zi->i_max_size; 223 return (zone->wp - zone->start) << SECTOR_SHIFT; 224 } 225 } 226 227 struct zonefs_ioerr_data { 228 struct inode *inode; 229 bool write; 230 }; 231 232 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 233 void *data) 234 { 235 struct zonefs_ioerr_data *err = data; 236 struct inode *inode = err->inode; 237 struct zonefs_inode_info *zi = ZONEFS_I(inode); 238 struct super_block *sb = inode->i_sb; 239 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 240 loff_t isize, data_size; 241 242 /* 243 * Check the zone condition: if the zone is not "bad" (offline or 244 * read-only), read errors are simply signaled to the IO issuer as long 245 * as there is no inconsistency between the inode size and the amount of 246 * data writen in the zone (data_size). 247 */ 248 data_size = zonefs_check_zone_condition(inode, zone, true, false); 249 isize = i_size_read(inode); 250 if (zone->cond != BLK_ZONE_COND_OFFLINE && 251 zone->cond != BLK_ZONE_COND_READONLY && 252 !err->write && isize == data_size) 253 return 0; 254 255 /* 256 * At this point, we detected either a bad zone or an inconsistency 257 * between the inode size and the amount of data written in the zone. 258 * For the latter case, the cause may be a write IO error or an external 259 * action on the device. Two error patterns exist: 260 * 1) The inode size is lower than the amount of data in the zone: 261 * a write operation partially failed and data was writen at the end 262 * of the file. This can happen in the case of a large direct IO 263 * needing several BIOs and/or write requests to be processed. 264 * 2) The inode size is larger than the amount of data in the zone: 265 * this can happen with a deferred write error with the use of the 266 * device side write cache after getting successful write IO 267 * completions. Other possibilities are (a) an external corruption, 268 * e.g. an application reset the zone directly, or (b) the device 269 * has a serious problem (e.g. firmware bug). 270 * 271 * In all cases, warn about inode size inconsistency and handle the 272 * IO error according to the zone condition and to the mount options. 273 */ 274 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 275 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 276 inode->i_ino, isize, data_size); 277 278 /* 279 * First handle bad zones signaled by hardware. The mount options 280 * errors=zone-ro and errors=zone-offline result in changing the 281 * zone condition to read-only and offline respectively, as if the 282 * condition was signaled by the hardware. 283 */ 284 if (zone->cond == BLK_ZONE_COND_OFFLINE || 285 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 286 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 287 inode->i_ino); 288 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 289 zone->cond = BLK_ZONE_COND_OFFLINE; 290 data_size = zonefs_check_zone_condition(inode, zone, 291 false, false); 292 } 293 } else if (zone->cond == BLK_ZONE_COND_READONLY || 294 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 295 zonefs_warn(sb, "inode %lu: write access disabled\n", 296 inode->i_ino); 297 if (zone->cond != BLK_ZONE_COND_READONLY) { 298 zone->cond = BLK_ZONE_COND_READONLY; 299 data_size = zonefs_check_zone_condition(inode, zone, 300 false, false); 301 } 302 } 303 304 /* 305 * If error=remount-ro was specified, any error result in remounting 306 * the volume as read-only. 307 */ 308 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 309 zonefs_warn(sb, "remounting filesystem read-only\n"); 310 sb->s_flags |= SB_RDONLY; 311 } 312 313 /* 314 * Update block usage stats and the inode size to prevent access to 315 * invalid data. 316 */ 317 zonefs_update_stats(inode, data_size); 318 i_size_write(inode, data_size); 319 zi->i_wpoffset = data_size; 320 321 return 0; 322 } 323 324 /* 325 * When an file IO error occurs, check the file zone to see if there is a change 326 * in the zone condition (e.g. offline or read-only). For a failed write to a 327 * sequential zone, the zone write pointer position must also be checked to 328 * eventually correct the file size and zonefs inode write pointer offset 329 * (which can be out of sync with the drive due to partial write failures). 330 */ 331 static void zonefs_io_error(struct inode *inode, bool write) 332 { 333 struct zonefs_inode_info *zi = ZONEFS_I(inode); 334 struct super_block *sb = inode->i_sb; 335 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 336 unsigned int noio_flag; 337 unsigned int nr_zones = 338 zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 339 struct zonefs_ioerr_data err = { 340 .inode = inode, 341 .write = write, 342 }; 343 int ret; 344 345 mutex_lock(&zi->i_truncate_mutex); 346 347 /* 348 * Memory allocations in blkdev_report_zones() can trigger a memory 349 * reclaim which may in turn cause a recursion into zonefs as well as 350 * struct request allocations for the same device. The former case may 351 * end up in a deadlock on the inode truncate mutex, while the latter 352 * may prevent IO forward progress. Executing the report zones under 353 * the GFP_NOIO context avoids both problems. 354 */ 355 noio_flag = memalloc_noio_save(); 356 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 357 zonefs_io_error_cb, &err); 358 if (ret != nr_zones) 359 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 360 inode->i_ino, ret); 361 memalloc_noio_restore(noio_flag); 362 363 mutex_unlock(&zi->i_truncate_mutex); 364 } 365 366 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 367 { 368 struct zonefs_inode_info *zi = ZONEFS_I(inode); 369 loff_t old_isize; 370 enum req_opf op; 371 int ret = 0; 372 373 /* 374 * Only sequential zone files can be truncated and truncation is allowed 375 * only down to a 0 size, which is equivalent to a zone reset, and to 376 * the maximum file size, which is equivalent to a zone finish. 377 */ 378 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 379 return -EPERM; 380 381 if (!isize) 382 op = REQ_OP_ZONE_RESET; 383 else if (isize == zi->i_max_size) 384 op = REQ_OP_ZONE_FINISH; 385 else 386 return -EPERM; 387 388 inode_dio_wait(inode); 389 390 /* Serialize against page faults */ 391 down_write(&zi->i_mmap_sem); 392 393 /* Serialize against zonefs_iomap_begin() */ 394 mutex_lock(&zi->i_truncate_mutex); 395 396 old_isize = i_size_read(inode); 397 if (isize == old_isize) 398 goto unlock; 399 400 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 401 zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS); 402 if (ret) { 403 zonefs_err(inode->i_sb, 404 "Zone management operation at %llu failed %d", 405 zi->i_zsector, ret); 406 goto unlock; 407 } 408 409 zonefs_update_stats(inode, isize); 410 truncate_setsize(inode, isize); 411 zi->i_wpoffset = isize; 412 413 unlock: 414 mutex_unlock(&zi->i_truncate_mutex); 415 up_write(&zi->i_mmap_sem); 416 417 return ret; 418 } 419 420 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr) 421 { 422 struct inode *inode = d_inode(dentry); 423 int ret; 424 425 if (unlikely(IS_IMMUTABLE(inode))) 426 return -EPERM; 427 428 ret = setattr_prepare(dentry, iattr); 429 if (ret) 430 return ret; 431 432 /* 433 * Since files and directories cannot be created nor deleted, do not 434 * allow setting any write attributes on the sub-directories grouping 435 * files by zone type. 436 */ 437 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 438 (iattr->ia_mode & 0222)) 439 return -EPERM; 440 441 if (((iattr->ia_valid & ATTR_UID) && 442 !uid_eq(iattr->ia_uid, inode->i_uid)) || 443 ((iattr->ia_valid & ATTR_GID) && 444 !gid_eq(iattr->ia_gid, inode->i_gid))) { 445 ret = dquot_transfer(inode, iattr); 446 if (ret) 447 return ret; 448 } 449 450 if (iattr->ia_valid & ATTR_SIZE) { 451 ret = zonefs_file_truncate(inode, iattr->ia_size); 452 if (ret) 453 return ret; 454 } 455 456 setattr_copy(inode, iattr); 457 458 return 0; 459 } 460 461 static const struct inode_operations zonefs_file_inode_operations = { 462 .setattr = zonefs_inode_setattr, 463 }; 464 465 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 466 int datasync) 467 { 468 struct inode *inode = file_inode(file); 469 int ret = 0; 470 471 if (unlikely(IS_IMMUTABLE(inode))) 472 return -EPERM; 473 474 /* 475 * Since only direct writes are allowed in sequential files, page cache 476 * flush is needed only for conventional zone files. 477 */ 478 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 479 ret = file_write_and_wait_range(file, start, end); 480 if (!ret) 481 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 482 483 if (ret) 484 zonefs_io_error(inode, true); 485 486 return ret; 487 } 488 489 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 490 { 491 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 492 vm_fault_t ret; 493 494 down_read(&zi->i_mmap_sem); 495 ret = filemap_fault(vmf); 496 up_read(&zi->i_mmap_sem); 497 498 return ret; 499 } 500 501 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 502 { 503 struct inode *inode = file_inode(vmf->vma->vm_file); 504 struct zonefs_inode_info *zi = ZONEFS_I(inode); 505 vm_fault_t ret; 506 507 if (unlikely(IS_IMMUTABLE(inode))) 508 return VM_FAULT_SIGBUS; 509 510 /* 511 * Sanity check: only conventional zone files can have shared 512 * writeable mappings. 513 */ 514 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 515 return VM_FAULT_NOPAGE; 516 517 sb_start_pagefault(inode->i_sb); 518 file_update_time(vmf->vma->vm_file); 519 520 /* Serialize against truncates */ 521 down_read(&zi->i_mmap_sem); 522 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 523 up_read(&zi->i_mmap_sem); 524 525 sb_end_pagefault(inode->i_sb); 526 return ret; 527 } 528 529 static const struct vm_operations_struct zonefs_file_vm_ops = { 530 .fault = zonefs_filemap_fault, 531 .map_pages = filemap_map_pages, 532 .page_mkwrite = zonefs_filemap_page_mkwrite, 533 }; 534 535 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 536 { 537 /* 538 * Conventional zones accept random writes, so their files can support 539 * shared writable mappings. For sequential zone files, only read 540 * mappings are possible since there are no guarantees for write 541 * ordering between msync() and page cache writeback. 542 */ 543 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 544 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 545 return -EINVAL; 546 547 file_accessed(file); 548 vma->vm_ops = &zonefs_file_vm_ops; 549 550 return 0; 551 } 552 553 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 554 { 555 loff_t isize = i_size_read(file_inode(file)); 556 557 /* 558 * Seeks are limited to below the zone size for conventional zones 559 * and below the zone write pointer for sequential zones. In both 560 * cases, this limit is the inode size. 561 */ 562 return generic_file_llseek_size(file, offset, whence, isize, isize); 563 } 564 565 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 566 int error, unsigned int flags) 567 { 568 struct inode *inode = file_inode(iocb->ki_filp); 569 struct zonefs_inode_info *zi = ZONEFS_I(inode); 570 571 if (error) { 572 zonefs_io_error(inode, true); 573 return error; 574 } 575 576 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 577 /* 578 * Note that we may be seeing completions out of order, 579 * but that is not a problem since a write completed 580 * successfully necessarily means that all preceding writes 581 * were also successful. So we can safely increase the inode 582 * size to the write end location. 583 */ 584 mutex_lock(&zi->i_truncate_mutex); 585 if (i_size_read(inode) < iocb->ki_pos + size) { 586 zonefs_update_stats(inode, iocb->ki_pos + size); 587 i_size_write(inode, iocb->ki_pos + size); 588 } 589 mutex_unlock(&zi->i_truncate_mutex); 590 } 591 592 return 0; 593 } 594 595 static const struct iomap_dio_ops zonefs_write_dio_ops = { 596 .end_io = zonefs_file_write_dio_end_io, 597 }; 598 599 /* 600 * Handle direct writes. For sequential zone files, this is the only possible 601 * write path. For these files, check that the user is issuing writes 602 * sequentially from the end of the file. This code assumes that the block layer 603 * delivers write requests to the device in sequential order. This is always the 604 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 605 * elevator feature is being used (e.g. mq-deadline). The block layer always 606 * automatically select such an elevator for zoned block devices during the 607 * device initialization. 608 */ 609 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 610 { 611 struct inode *inode = file_inode(iocb->ki_filp); 612 struct zonefs_inode_info *zi = ZONEFS_I(inode); 613 struct super_block *sb = inode->i_sb; 614 size_t count; 615 ssize_t ret; 616 617 /* 618 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 619 * as this can cause write reordering (e.g. the first aio gets EAGAIN 620 * on the inode lock but the second goes through but is now unaligned). 621 */ 622 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !is_sync_kiocb(iocb) && 623 (iocb->ki_flags & IOCB_NOWAIT)) 624 return -EOPNOTSUPP; 625 626 if (iocb->ki_flags & IOCB_NOWAIT) { 627 if (!inode_trylock(inode)) 628 return -EAGAIN; 629 } else { 630 inode_lock(inode); 631 } 632 633 ret = generic_write_checks(iocb, from); 634 if (ret <= 0) 635 goto inode_unlock; 636 637 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 638 count = iov_iter_count(from); 639 640 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 641 ret = -EINVAL; 642 goto inode_unlock; 643 } 644 645 /* Enforce sequential writes (append only) in sequential zones */ 646 mutex_lock(&zi->i_truncate_mutex); 647 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && iocb->ki_pos != zi->i_wpoffset) { 648 mutex_unlock(&zi->i_truncate_mutex); 649 ret = -EINVAL; 650 goto inode_unlock; 651 } 652 mutex_unlock(&zi->i_truncate_mutex); 653 654 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 655 &zonefs_write_dio_ops, is_sync_kiocb(iocb)); 656 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 657 (ret > 0 || ret == -EIOCBQUEUED)) { 658 if (ret > 0) 659 count = ret; 660 mutex_lock(&zi->i_truncate_mutex); 661 zi->i_wpoffset += count; 662 mutex_unlock(&zi->i_truncate_mutex); 663 } 664 665 inode_unlock: 666 inode_unlock(inode); 667 668 return ret; 669 } 670 671 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 672 struct iov_iter *from) 673 { 674 struct inode *inode = file_inode(iocb->ki_filp); 675 struct zonefs_inode_info *zi = ZONEFS_I(inode); 676 ssize_t ret; 677 678 /* 679 * Direct IO writes are mandatory for sequential zone files so that the 680 * write IO issuing order is preserved. 681 */ 682 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 683 return -EIO; 684 685 if (iocb->ki_flags & IOCB_NOWAIT) { 686 if (!inode_trylock(inode)) 687 return -EAGAIN; 688 } else { 689 inode_lock(inode); 690 } 691 692 ret = generic_write_checks(iocb, from); 693 if (ret <= 0) 694 goto inode_unlock; 695 696 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 697 698 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 699 if (ret > 0) 700 iocb->ki_pos += ret; 701 else if (ret == -EIO) 702 zonefs_io_error(inode, true); 703 704 inode_unlock: 705 inode_unlock(inode); 706 if (ret > 0) 707 ret = generic_write_sync(iocb, ret); 708 709 return ret; 710 } 711 712 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 713 { 714 struct inode *inode = file_inode(iocb->ki_filp); 715 716 if (unlikely(IS_IMMUTABLE(inode))) 717 return -EPERM; 718 719 if (sb_rdonly(inode->i_sb)) 720 return -EROFS; 721 722 /* Write operations beyond the zone size are not allowed */ 723 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 724 return -EFBIG; 725 726 if (iocb->ki_flags & IOCB_DIRECT) 727 return zonefs_file_dio_write(iocb, from); 728 729 return zonefs_file_buffered_write(iocb, from); 730 } 731 732 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 733 int error, unsigned int flags) 734 { 735 if (error) { 736 zonefs_io_error(file_inode(iocb->ki_filp), false); 737 return error; 738 } 739 740 return 0; 741 } 742 743 static const struct iomap_dio_ops zonefs_read_dio_ops = { 744 .end_io = zonefs_file_read_dio_end_io, 745 }; 746 747 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 748 { 749 struct inode *inode = file_inode(iocb->ki_filp); 750 struct zonefs_inode_info *zi = ZONEFS_I(inode); 751 struct super_block *sb = inode->i_sb; 752 loff_t isize; 753 ssize_t ret; 754 755 /* Offline zones cannot be read */ 756 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 757 return -EPERM; 758 759 if (iocb->ki_pos >= zi->i_max_size) 760 return 0; 761 762 if (iocb->ki_flags & IOCB_NOWAIT) { 763 if (!inode_trylock_shared(inode)) 764 return -EAGAIN; 765 } else { 766 inode_lock_shared(inode); 767 } 768 769 /* Limit read operations to written data */ 770 mutex_lock(&zi->i_truncate_mutex); 771 isize = i_size_read(inode); 772 if (iocb->ki_pos >= isize) { 773 mutex_unlock(&zi->i_truncate_mutex); 774 ret = 0; 775 goto inode_unlock; 776 } 777 iov_iter_truncate(to, isize - iocb->ki_pos); 778 mutex_unlock(&zi->i_truncate_mutex); 779 780 if (iocb->ki_flags & IOCB_DIRECT) { 781 size_t count = iov_iter_count(to); 782 783 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 784 ret = -EINVAL; 785 goto inode_unlock; 786 } 787 file_accessed(iocb->ki_filp); 788 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 789 &zonefs_read_dio_ops, is_sync_kiocb(iocb)); 790 } else { 791 ret = generic_file_read_iter(iocb, to); 792 if (ret == -EIO) 793 zonefs_io_error(inode, false); 794 } 795 796 inode_unlock: 797 inode_unlock_shared(inode); 798 799 return ret; 800 } 801 802 static const struct file_operations zonefs_file_operations = { 803 .open = generic_file_open, 804 .fsync = zonefs_file_fsync, 805 .mmap = zonefs_file_mmap, 806 .llseek = zonefs_file_llseek, 807 .read_iter = zonefs_file_read_iter, 808 .write_iter = zonefs_file_write_iter, 809 .splice_read = generic_file_splice_read, 810 .splice_write = iter_file_splice_write, 811 .iopoll = iomap_dio_iopoll, 812 }; 813 814 static struct kmem_cache *zonefs_inode_cachep; 815 816 static struct inode *zonefs_alloc_inode(struct super_block *sb) 817 { 818 struct zonefs_inode_info *zi; 819 820 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 821 if (!zi) 822 return NULL; 823 824 inode_init_once(&zi->i_vnode); 825 mutex_init(&zi->i_truncate_mutex); 826 init_rwsem(&zi->i_mmap_sem); 827 828 return &zi->i_vnode; 829 } 830 831 static void zonefs_free_inode(struct inode *inode) 832 { 833 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 834 } 835 836 /* 837 * File system stat. 838 */ 839 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 840 { 841 struct super_block *sb = dentry->d_sb; 842 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 843 enum zonefs_ztype t; 844 u64 fsid; 845 846 buf->f_type = ZONEFS_MAGIC; 847 buf->f_bsize = sb->s_blocksize; 848 buf->f_namelen = ZONEFS_NAME_MAX; 849 850 spin_lock(&sbi->s_lock); 851 852 buf->f_blocks = sbi->s_blocks; 853 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 854 buf->f_bfree = 0; 855 else 856 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 857 buf->f_bavail = buf->f_bfree; 858 859 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 860 if (sbi->s_nr_files[t]) 861 buf->f_files += sbi->s_nr_files[t] + 1; 862 } 863 buf->f_ffree = 0; 864 865 spin_unlock(&sbi->s_lock); 866 867 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 868 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 869 buf->f_fsid.val[0] = (u32)fsid; 870 buf->f_fsid.val[1] = (u32)(fsid >> 32); 871 872 return 0; 873 } 874 875 enum { 876 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 877 Opt_err, 878 }; 879 880 static const match_table_t tokens = { 881 { Opt_errors_ro, "errors=remount-ro"}, 882 { Opt_errors_zro, "errors=zone-ro"}, 883 { Opt_errors_zol, "errors=zone-offline"}, 884 { Opt_errors_repair, "errors=repair"}, 885 { Opt_err, NULL} 886 }; 887 888 static int zonefs_parse_options(struct super_block *sb, char *options) 889 { 890 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 891 substring_t args[MAX_OPT_ARGS]; 892 char *p; 893 894 if (!options) 895 return 0; 896 897 while ((p = strsep(&options, ",")) != NULL) { 898 int token; 899 900 if (!*p) 901 continue; 902 903 token = match_token(p, tokens, args); 904 switch (token) { 905 case Opt_errors_ro: 906 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 907 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 908 break; 909 case Opt_errors_zro: 910 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 911 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 912 break; 913 case Opt_errors_zol: 914 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 915 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 916 break; 917 case Opt_errors_repair: 918 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 919 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 920 break; 921 default: 922 return -EINVAL; 923 } 924 } 925 926 return 0; 927 } 928 929 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 930 { 931 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 932 933 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 934 seq_puts(seq, ",errors=remount-ro"); 935 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 936 seq_puts(seq, ",errors=zone-ro"); 937 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 938 seq_puts(seq, ",errors=zone-offline"); 939 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 940 seq_puts(seq, ",errors=repair"); 941 942 return 0; 943 } 944 945 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 946 { 947 sync_filesystem(sb); 948 949 return zonefs_parse_options(sb, data); 950 } 951 952 static const struct super_operations zonefs_sops = { 953 .alloc_inode = zonefs_alloc_inode, 954 .free_inode = zonefs_free_inode, 955 .statfs = zonefs_statfs, 956 .remount_fs = zonefs_remount, 957 .show_options = zonefs_show_options, 958 }; 959 960 static const struct inode_operations zonefs_dir_inode_operations = { 961 .lookup = simple_lookup, 962 .setattr = zonefs_inode_setattr, 963 }; 964 965 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 966 enum zonefs_ztype type) 967 { 968 struct super_block *sb = parent->i_sb; 969 970 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 971 inode_init_owner(inode, parent, S_IFDIR | 0555); 972 inode->i_op = &zonefs_dir_inode_operations; 973 inode->i_fop = &simple_dir_operations; 974 set_nlink(inode, 2); 975 inc_nlink(parent); 976 } 977 978 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 979 enum zonefs_ztype type) 980 { 981 struct super_block *sb = inode->i_sb; 982 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 983 struct zonefs_inode_info *zi = ZONEFS_I(inode); 984 985 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 986 inode->i_mode = S_IFREG | sbi->s_perm; 987 988 zi->i_ztype = type; 989 zi->i_zsector = zone->start; 990 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 991 zone->len << SECTOR_SHIFT); 992 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 993 994 inode->i_uid = sbi->s_uid; 995 inode->i_gid = sbi->s_gid; 996 inode->i_size = zi->i_wpoffset; 997 inode->i_blocks = zone->len; 998 999 inode->i_op = &zonefs_file_inode_operations; 1000 inode->i_fop = &zonefs_file_operations; 1001 inode->i_mapping->a_ops = &zonefs_file_aops; 1002 1003 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1004 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1005 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1006 } 1007 1008 static struct dentry *zonefs_create_inode(struct dentry *parent, 1009 const char *name, struct blk_zone *zone, 1010 enum zonefs_ztype type) 1011 { 1012 struct inode *dir = d_inode(parent); 1013 struct dentry *dentry; 1014 struct inode *inode; 1015 1016 dentry = d_alloc_name(parent, name); 1017 if (!dentry) 1018 return NULL; 1019 1020 inode = new_inode(parent->d_sb); 1021 if (!inode) 1022 goto dput; 1023 1024 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1025 if (zone) 1026 zonefs_init_file_inode(inode, zone, type); 1027 else 1028 zonefs_init_dir_inode(dir, inode, type); 1029 d_add(dentry, inode); 1030 dir->i_size++; 1031 1032 return dentry; 1033 1034 dput: 1035 dput(dentry); 1036 1037 return NULL; 1038 } 1039 1040 struct zonefs_zone_data { 1041 struct super_block *sb; 1042 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1043 struct blk_zone *zones; 1044 }; 1045 1046 /* 1047 * Create a zone group and populate it with zone files. 1048 */ 1049 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1050 enum zonefs_ztype type) 1051 { 1052 struct super_block *sb = zd->sb; 1053 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1054 struct blk_zone *zone, *next, *end; 1055 const char *zgroup_name; 1056 char *file_name; 1057 struct dentry *dir; 1058 unsigned int n = 0; 1059 int ret = -ENOMEM; 1060 1061 /* If the group is empty, there is nothing to do */ 1062 if (!zd->nr_zones[type]) 1063 return 0; 1064 1065 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1066 if (!file_name) 1067 return -ENOMEM; 1068 1069 if (type == ZONEFS_ZTYPE_CNV) 1070 zgroup_name = "cnv"; 1071 else 1072 zgroup_name = "seq"; 1073 1074 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1075 if (!dir) 1076 goto free; 1077 1078 /* 1079 * The first zone contains the super block: skip it. 1080 */ 1081 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1082 for (zone = &zd->zones[1]; zone < end; zone = next) { 1083 1084 next = zone + 1; 1085 if (zonefs_zone_type(zone) != type) 1086 continue; 1087 1088 /* 1089 * For conventional zones, contiguous zones can be aggregated 1090 * together to form larger files. Note that this overwrites the 1091 * length of the first zone of the set of contiguous zones 1092 * aggregated together. If one offline or read-only zone is 1093 * found, assume that all zones aggregated have the same 1094 * condition. 1095 */ 1096 if (type == ZONEFS_ZTYPE_CNV && 1097 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1098 for (; next < end; next++) { 1099 if (zonefs_zone_type(next) != type) 1100 break; 1101 zone->len += next->len; 1102 if (next->cond == BLK_ZONE_COND_READONLY && 1103 zone->cond != BLK_ZONE_COND_OFFLINE) 1104 zone->cond = BLK_ZONE_COND_READONLY; 1105 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1106 zone->cond = BLK_ZONE_COND_OFFLINE; 1107 } 1108 } 1109 1110 /* 1111 * Use the file number within its group as file name. 1112 */ 1113 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1114 if (!zonefs_create_inode(dir, file_name, zone, type)) 1115 goto free; 1116 1117 n++; 1118 } 1119 1120 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1121 zgroup_name, n, n > 1 ? "s" : ""); 1122 1123 sbi->s_nr_files[type] = n; 1124 ret = 0; 1125 1126 free: 1127 kfree(file_name); 1128 1129 return ret; 1130 } 1131 1132 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1133 void *data) 1134 { 1135 struct zonefs_zone_data *zd = data; 1136 1137 /* 1138 * Count the number of usable zones: the first zone at index 0 contains 1139 * the super block and is ignored. 1140 */ 1141 switch (zone->type) { 1142 case BLK_ZONE_TYPE_CONVENTIONAL: 1143 zone->wp = zone->start + zone->len; 1144 if (idx) 1145 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1146 break; 1147 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1148 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1149 if (idx) 1150 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1151 break; 1152 default: 1153 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1154 zone->type); 1155 return -EIO; 1156 } 1157 1158 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1159 1160 return 0; 1161 } 1162 1163 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1164 { 1165 struct block_device *bdev = zd->sb->s_bdev; 1166 int ret; 1167 1168 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1169 sizeof(struct blk_zone), GFP_KERNEL); 1170 if (!zd->zones) 1171 return -ENOMEM; 1172 1173 /* Get zones information from the device */ 1174 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1175 zonefs_get_zone_info_cb, zd); 1176 if (ret < 0) { 1177 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1178 return ret; 1179 } 1180 1181 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1182 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1183 ret, blkdev_nr_zones(bdev->bd_disk)); 1184 return -EIO; 1185 } 1186 1187 return 0; 1188 } 1189 1190 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1191 { 1192 kvfree(zd->zones); 1193 } 1194 1195 /* 1196 * Read super block information from the device. 1197 */ 1198 static int zonefs_read_super(struct super_block *sb) 1199 { 1200 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1201 struct zonefs_super *super; 1202 u32 crc, stored_crc; 1203 struct page *page; 1204 struct bio_vec bio_vec; 1205 struct bio bio; 1206 int ret; 1207 1208 page = alloc_page(GFP_KERNEL); 1209 if (!page) 1210 return -ENOMEM; 1211 1212 bio_init(&bio, &bio_vec, 1); 1213 bio.bi_iter.bi_sector = 0; 1214 bio.bi_opf = REQ_OP_READ; 1215 bio_set_dev(&bio, sb->s_bdev); 1216 bio_add_page(&bio, page, PAGE_SIZE, 0); 1217 1218 ret = submit_bio_wait(&bio); 1219 if (ret) 1220 goto free_page; 1221 1222 super = kmap(page); 1223 1224 ret = -EINVAL; 1225 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1226 goto unmap; 1227 1228 stored_crc = le32_to_cpu(super->s_crc); 1229 super->s_crc = 0; 1230 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1231 if (crc != stored_crc) { 1232 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1233 crc, stored_crc); 1234 goto unmap; 1235 } 1236 1237 sbi->s_features = le64_to_cpu(super->s_features); 1238 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1239 zonefs_err(sb, "Unknown features set 0x%llx\n", 1240 sbi->s_features); 1241 goto unmap; 1242 } 1243 1244 if (sbi->s_features & ZONEFS_F_UID) { 1245 sbi->s_uid = make_kuid(current_user_ns(), 1246 le32_to_cpu(super->s_uid)); 1247 if (!uid_valid(sbi->s_uid)) { 1248 zonefs_err(sb, "Invalid UID feature\n"); 1249 goto unmap; 1250 } 1251 } 1252 1253 if (sbi->s_features & ZONEFS_F_GID) { 1254 sbi->s_gid = make_kgid(current_user_ns(), 1255 le32_to_cpu(super->s_gid)); 1256 if (!gid_valid(sbi->s_gid)) { 1257 zonefs_err(sb, "Invalid GID feature\n"); 1258 goto unmap; 1259 } 1260 } 1261 1262 if (sbi->s_features & ZONEFS_F_PERM) 1263 sbi->s_perm = le32_to_cpu(super->s_perm); 1264 1265 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1266 zonefs_err(sb, "Reserved area is being used\n"); 1267 goto unmap; 1268 } 1269 1270 uuid_copy(&sbi->s_uuid, (uuid_t *)super->s_uuid); 1271 ret = 0; 1272 1273 unmap: 1274 kunmap(page); 1275 free_page: 1276 __free_page(page); 1277 1278 return ret; 1279 } 1280 1281 /* 1282 * Check that the device is zoned. If it is, get the list of zones and create 1283 * sub-directories and files according to the device zone configuration and 1284 * format options. 1285 */ 1286 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1287 { 1288 struct zonefs_zone_data zd; 1289 struct zonefs_sb_info *sbi; 1290 struct inode *inode; 1291 enum zonefs_ztype t; 1292 int ret; 1293 1294 if (!bdev_is_zoned(sb->s_bdev)) { 1295 zonefs_err(sb, "Not a zoned block device\n"); 1296 return -EINVAL; 1297 } 1298 1299 /* 1300 * Initialize super block information: the maximum file size is updated 1301 * when the zone files are created so that the format option 1302 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1303 * beyond the zone size is taken into account. 1304 */ 1305 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1306 if (!sbi) 1307 return -ENOMEM; 1308 1309 spin_lock_init(&sbi->s_lock); 1310 sb->s_fs_info = sbi; 1311 sb->s_magic = ZONEFS_MAGIC; 1312 sb->s_maxbytes = 0; 1313 sb->s_op = &zonefs_sops; 1314 sb->s_time_gran = 1; 1315 1316 /* 1317 * The block size is set to the device physical sector size to ensure 1318 * that write operations on 512e devices (512B logical block and 4KB 1319 * physical block) are always aligned to the device physical blocks, 1320 * as mandated by the ZBC/ZAC specifications. 1321 */ 1322 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev)); 1323 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1324 sbi->s_uid = GLOBAL_ROOT_UID; 1325 sbi->s_gid = GLOBAL_ROOT_GID; 1326 sbi->s_perm = 0640; 1327 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1328 1329 ret = zonefs_read_super(sb); 1330 if (ret) 1331 return ret; 1332 1333 ret = zonefs_parse_options(sb, data); 1334 if (ret) 1335 return ret; 1336 1337 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1338 zd.sb = sb; 1339 ret = zonefs_get_zone_info(&zd); 1340 if (ret) 1341 goto cleanup; 1342 1343 zonefs_info(sb, "Mounting %u zones", 1344 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1345 1346 /* Create root directory inode */ 1347 ret = -ENOMEM; 1348 inode = new_inode(sb); 1349 if (!inode) 1350 goto cleanup; 1351 1352 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1353 inode->i_mode = S_IFDIR | 0555; 1354 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1355 inode->i_op = &zonefs_dir_inode_operations; 1356 inode->i_fop = &simple_dir_operations; 1357 set_nlink(inode, 2); 1358 1359 sb->s_root = d_make_root(inode); 1360 if (!sb->s_root) 1361 goto cleanup; 1362 1363 /* Create and populate files in zone groups directories */ 1364 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1365 ret = zonefs_create_zgroup(&zd, t); 1366 if (ret) 1367 break; 1368 } 1369 1370 cleanup: 1371 zonefs_cleanup_zone_info(&zd); 1372 1373 return ret; 1374 } 1375 1376 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1377 int flags, const char *dev_name, void *data) 1378 { 1379 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1380 } 1381 1382 static void zonefs_kill_super(struct super_block *sb) 1383 { 1384 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1385 1386 if (sb->s_root) 1387 d_genocide(sb->s_root); 1388 kill_block_super(sb); 1389 kfree(sbi); 1390 } 1391 1392 /* 1393 * File system definition and registration. 1394 */ 1395 static struct file_system_type zonefs_type = { 1396 .owner = THIS_MODULE, 1397 .name = "zonefs", 1398 .mount = zonefs_mount, 1399 .kill_sb = zonefs_kill_super, 1400 .fs_flags = FS_REQUIRES_DEV, 1401 }; 1402 1403 static int __init zonefs_init_inodecache(void) 1404 { 1405 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1406 sizeof(struct zonefs_inode_info), 0, 1407 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1408 NULL); 1409 if (zonefs_inode_cachep == NULL) 1410 return -ENOMEM; 1411 return 0; 1412 } 1413 1414 static void zonefs_destroy_inodecache(void) 1415 { 1416 /* 1417 * Make sure all delayed rcu free inodes are flushed before we 1418 * destroy the inode cache. 1419 */ 1420 rcu_barrier(); 1421 kmem_cache_destroy(zonefs_inode_cachep); 1422 } 1423 1424 static int __init zonefs_init(void) 1425 { 1426 int ret; 1427 1428 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1429 1430 ret = zonefs_init_inodecache(); 1431 if (ret) 1432 return ret; 1433 1434 ret = register_filesystem(&zonefs_type); 1435 if (ret) { 1436 zonefs_destroy_inodecache(); 1437 return ret; 1438 } 1439 1440 return 0; 1441 } 1442 1443 static void __exit zonefs_exit(void) 1444 { 1445 zonefs_destroy_inodecache(); 1446 unregister_filesystem(&zonefs_type); 1447 } 1448 1449 MODULE_AUTHOR("Damien Le Moal"); 1450 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1451 MODULE_LICENSE("GPL"); 1452 module_init(zonefs_init); 1453 module_exit(zonefs_exit); 1454