xref: /linux/fs/zonefs/super.c (revision d195c39052d1da278a00a6744ce59c383b67b191)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 
24 #include "zonefs.h"
25 
26 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
27 			      unsigned int flags, struct iomap *iomap,
28 			      struct iomap *srcmap)
29 {
30 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 	struct super_block *sb = inode->i_sb;
32 	loff_t isize;
33 
34 	/* All I/Os should always be within the file maximum size */
35 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
36 		return -EIO;
37 
38 	/*
39 	 * Sequential zones can only accept direct writes. This is already
40 	 * checked when writes are issued, so warn if we see a page writeback
41 	 * operation.
42 	 */
43 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
44 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
45 		return -EIO;
46 
47 	/*
48 	 * For conventional zones, all blocks are always mapped. For sequential
49 	 * zones, all blocks after always mapped below the inode size (zone
50 	 * write pointer) and unwriten beyond.
51 	 */
52 	mutex_lock(&zi->i_truncate_mutex);
53 	isize = i_size_read(inode);
54 	if (offset >= isize)
55 		iomap->type = IOMAP_UNWRITTEN;
56 	else
57 		iomap->type = IOMAP_MAPPED;
58 	if (flags & IOMAP_WRITE)
59 		length = zi->i_max_size - offset;
60 	else
61 		length = min(length, isize - offset);
62 	mutex_unlock(&zi->i_truncate_mutex);
63 
64 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
65 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
66 	iomap->bdev = inode->i_sb->s_bdev;
67 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
68 
69 	return 0;
70 }
71 
72 static const struct iomap_ops zonefs_iomap_ops = {
73 	.iomap_begin	= zonefs_iomap_begin,
74 };
75 
76 static int zonefs_readpage(struct file *unused, struct page *page)
77 {
78 	return iomap_readpage(page, &zonefs_iomap_ops);
79 }
80 
81 static int zonefs_readpages(struct file *unused, struct address_space *mapping,
82 			    struct list_head *pages, unsigned int nr_pages)
83 {
84 	return iomap_readpages(mapping, pages, nr_pages, &zonefs_iomap_ops);
85 }
86 
87 /*
88  * Map blocks for page writeback. This is used only on conventional zone files,
89  * which implies that the page range can only be within the fixed inode size.
90  */
91 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
92 			     struct inode *inode, loff_t offset)
93 {
94 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
95 
96 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
97 		return -EIO;
98 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
99 		return -EIO;
100 
101 	/* If the mapping is already OK, nothing needs to be done */
102 	if (offset >= wpc->iomap.offset &&
103 	    offset < wpc->iomap.offset + wpc->iomap.length)
104 		return 0;
105 
106 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
107 				  IOMAP_WRITE, &wpc->iomap, NULL);
108 }
109 
110 static const struct iomap_writeback_ops zonefs_writeback_ops = {
111 	.map_blocks		= zonefs_map_blocks,
112 };
113 
114 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
115 {
116 	struct iomap_writepage_ctx wpc = { };
117 
118 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
119 }
120 
121 static int zonefs_writepages(struct address_space *mapping,
122 			     struct writeback_control *wbc)
123 {
124 	struct iomap_writepage_ctx wpc = { };
125 
126 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
127 }
128 
129 static const struct address_space_operations zonefs_file_aops = {
130 	.readpage		= zonefs_readpage,
131 	.readpages		= zonefs_readpages,
132 	.writepage		= zonefs_writepage,
133 	.writepages		= zonefs_writepages,
134 	.set_page_dirty		= iomap_set_page_dirty,
135 	.releasepage		= iomap_releasepage,
136 	.invalidatepage		= iomap_invalidatepage,
137 	.migratepage		= iomap_migrate_page,
138 	.is_partially_uptodate	= iomap_is_partially_uptodate,
139 	.error_remove_page	= generic_error_remove_page,
140 	.direct_IO		= noop_direct_IO,
141 };
142 
143 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
144 {
145 	struct super_block *sb = inode->i_sb;
146 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
147 	loff_t old_isize = i_size_read(inode);
148 	loff_t nr_blocks;
149 
150 	if (new_isize == old_isize)
151 		return;
152 
153 	spin_lock(&sbi->s_lock);
154 
155 	/*
156 	 * This may be called for an update after an IO error.
157 	 * So beware of the values seen.
158 	 */
159 	if (new_isize < old_isize) {
160 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
161 		if (sbi->s_used_blocks > nr_blocks)
162 			sbi->s_used_blocks -= nr_blocks;
163 		else
164 			sbi->s_used_blocks = 0;
165 	} else {
166 		sbi->s_used_blocks +=
167 			(new_isize - old_isize) >> sb->s_blocksize_bits;
168 		if (sbi->s_used_blocks > sbi->s_blocks)
169 			sbi->s_used_blocks = sbi->s_blocks;
170 	}
171 
172 	spin_unlock(&sbi->s_lock);
173 }
174 
175 /*
176  * Check a zone condition and adjust its file inode access permissions for
177  * offline and readonly zones. Return the inode size corresponding to the
178  * amount of readable data in the zone.
179  */
180 static loff_t zonefs_check_zone_condition(struct inode *inode,
181 					  struct blk_zone *zone, bool warn,
182 					  bool mount)
183 {
184 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
185 
186 	switch (zone->cond) {
187 	case BLK_ZONE_COND_OFFLINE:
188 		/*
189 		 * Dead zone: make the inode immutable, disable all accesses
190 		 * and set the file size to 0 (zone wp set to zone start).
191 		 */
192 		if (warn)
193 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
194 				    inode->i_ino);
195 		inode->i_flags |= S_IMMUTABLE;
196 		inode->i_mode &= ~0777;
197 		zone->wp = zone->start;
198 		return 0;
199 	case BLK_ZONE_COND_READONLY:
200 		/*
201 		 * The write pointer of read-only zones is invalid. If such a
202 		 * zone is found during mount, the file size cannot be retrieved
203 		 * so we treat the zone as offline (mount == true case).
204 		 * Otherwise, keep the file size as it was when last updated
205 		 * so that the user can recover data. In both cases, writes are
206 		 * always disabled for the zone.
207 		 */
208 		if (warn)
209 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
210 				    inode->i_ino);
211 		inode->i_flags |= S_IMMUTABLE;
212 		if (mount) {
213 			zone->cond = BLK_ZONE_COND_OFFLINE;
214 			inode->i_mode &= ~0777;
215 			zone->wp = zone->start;
216 			return 0;
217 		}
218 		inode->i_mode &= ~0222;
219 		return i_size_read(inode);
220 	default:
221 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
222 			return zi->i_max_size;
223 		return (zone->wp - zone->start) << SECTOR_SHIFT;
224 	}
225 }
226 
227 struct zonefs_ioerr_data {
228 	struct inode	*inode;
229 	bool		write;
230 };
231 
232 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
233 			      void *data)
234 {
235 	struct zonefs_ioerr_data *err = data;
236 	struct inode *inode = err->inode;
237 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
238 	struct super_block *sb = inode->i_sb;
239 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
240 	loff_t isize, data_size;
241 
242 	/*
243 	 * Check the zone condition: if the zone is not "bad" (offline or
244 	 * read-only), read errors are simply signaled to the IO issuer as long
245 	 * as there is no inconsistency between the inode size and the amount of
246 	 * data writen in the zone (data_size).
247 	 */
248 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
249 	isize = i_size_read(inode);
250 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
251 	    zone->cond != BLK_ZONE_COND_READONLY &&
252 	    !err->write && isize == data_size)
253 		return 0;
254 
255 	/*
256 	 * At this point, we detected either a bad zone or an inconsistency
257 	 * between the inode size and the amount of data written in the zone.
258 	 * For the latter case, the cause may be a write IO error or an external
259 	 * action on the device. Two error patterns exist:
260 	 * 1) The inode size is lower than the amount of data in the zone:
261 	 *    a write operation partially failed and data was writen at the end
262 	 *    of the file. This can happen in the case of a large direct IO
263 	 *    needing several BIOs and/or write requests to be processed.
264 	 * 2) The inode size is larger than the amount of data in the zone:
265 	 *    this can happen with a deferred write error with the use of the
266 	 *    device side write cache after getting successful write IO
267 	 *    completions. Other possibilities are (a) an external corruption,
268 	 *    e.g. an application reset the zone directly, or (b) the device
269 	 *    has a serious problem (e.g. firmware bug).
270 	 *
271 	 * In all cases, warn about inode size inconsistency and handle the
272 	 * IO error according to the zone condition and to the mount options.
273 	 */
274 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
275 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
276 			    inode->i_ino, isize, data_size);
277 
278 	/*
279 	 * First handle bad zones signaled by hardware. The mount options
280 	 * errors=zone-ro and errors=zone-offline result in changing the
281 	 * zone condition to read-only and offline respectively, as if the
282 	 * condition was signaled by the hardware.
283 	 */
284 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
285 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
286 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
287 			    inode->i_ino);
288 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
289 			zone->cond = BLK_ZONE_COND_OFFLINE;
290 			data_size = zonefs_check_zone_condition(inode, zone,
291 								false, false);
292 		}
293 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
294 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
295 		zonefs_warn(sb, "inode %lu: write access disabled\n",
296 			    inode->i_ino);
297 		if (zone->cond != BLK_ZONE_COND_READONLY) {
298 			zone->cond = BLK_ZONE_COND_READONLY;
299 			data_size = zonefs_check_zone_condition(inode, zone,
300 								false, false);
301 		}
302 	}
303 
304 	/*
305 	 * If error=remount-ro was specified, any error result in remounting
306 	 * the volume as read-only.
307 	 */
308 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
309 		zonefs_warn(sb, "remounting filesystem read-only\n");
310 		sb->s_flags |= SB_RDONLY;
311 	}
312 
313 	/*
314 	 * Update block usage stats and the inode size  to prevent access to
315 	 * invalid data.
316 	 */
317 	zonefs_update_stats(inode, data_size);
318 	i_size_write(inode, data_size);
319 	zi->i_wpoffset = data_size;
320 
321 	return 0;
322 }
323 
324 /*
325  * When an file IO error occurs, check the file zone to see if there is a change
326  * in the zone condition (e.g. offline or read-only). For a failed write to a
327  * sequential zone, the zone write pointer position must also be checked to
328  * eventually correct the file size and zonefs inode write pointer offset
329  * (which can be out of sync with the drive due to partial write failures).
330  */
331 static void zonefs_io_error(struct inode *inode, bool write)
332 {
333 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
334 	struct super_block *sb = inode->i_sb;
335 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
336 	unsigned int noio_flag;
337 	unsigned int nr_zones =
338 		zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
339 	struct zonefs_ioerr_data err = {
340 		.inode = inode,
341 		.write = write,
342 	};
343 	int ret;
344 
345 	mutex_lock(&zi->i_truncate_mutex);
346 
347 	/*
348 	 * Memory allocations in blkdev_report_zones() can trigger a memory
349 	 * reclaim which may in turn cause a recursion into zonefs as well as
350 	 * struct request allocations for the same device. The former case may
351 	 * end up in a deadlock on the inode truncate mutex, while the latter
352 	 * may prevent IO forward progress. Executing the report zones under
353 	 * the GFP_NOIO context avoids both problems.
354 	 */
355 	noio_flag = memalloc_noio_save();
356 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
357 				  zonefs_io_error_cb, &err);
358 	if (ret != nr_zones)
359 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
360 			   inode->i_ino, ret);
361 	memalloc_noio_restore(noio_flag);
362 
363 	mutex_unlock(&zi->i_truncate_mutex);
364 }
365 
366 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
367 {
368 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
369 	loff_t old_isize;
370 	enum req_opf op;
371 	int ret = 0;
372 
373 	/*
374 	 * Only sequential zone files can be truncated and truncation is allowed
375 	 * only down to a 0 size, which is equivalent to a zone reset, and to
376 	 * the maximum file size, which is equivalent to a zone finish.
377 	 */
378 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
379 		return -EPERM;
380 
381 	if (!isize)
382 		op = REQ_OP_ZONE_RESET;
383 	else if (isize == zi->i_max_size)
384 		op = REQ_OP_ZONE_FINISH;
385 	else
386 		return -EPERM;
387 
388 	inode_dio_wait(inode);
389 
390 	/* Serialize against page faults */
391 	down_write(&zi->i_mmap_sem);
392 
393 	/* Serialize against zonefs_iomap_begin() */
394 	mutex_lock(&zi->i_truncate_mutex);
395 
396 	old_isize = i_size_read(inode);
397 	if (isize == old_isize)
398 		goto unlock;
399 
400 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
401 			       zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS);
402 	if (ret) {
403 		zonefs_err(inode->i_sb,
404 			   "Zone management operation at %llu failed %d",
405 			   zi->i_zsector, ret);
406 		goto unlock;
407 	}
408 
409 	zonefs_update_stats(inode, isize);
410 	truncate_setsize(inode, isize);
411 	zi->i_wpoffset = isize;
412 
413 unlock:
414 	mutex_unlock(&zi->i_truncate_mutex);
415 	up_write(&zi->i_mmap_sem);
416 
417 	return ret;
418 }
419 
420 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
421 {
422 	struct inode *inode = d_inode(dentry);
423 	int ret;
424 
425 	if (unlikely(IS_IMMUTABLE(inode)))
426 		return -EPERM;
427 
428 	ret = setattr_prepare(dentry, iattr);
429 	if (ret)
430 		return ret;
431 
432 	/*
433 	 * Since files and directories cannot be created nor deleted, do not
434 	 * allow setting any write attributes on the sub-directories grouping
435 	 * files by zone type.
436 	 */
437 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
438 	    (iattr->ia_mode & 0222))
439 		return -EPERM;
440 
441 	if (((iattr->ia_valid & ATTR_UID) &&
442 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
443 	    ((iattr->ia_valid & ATTR_GID) &&
444 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
445 		ret = dquot_transfer(inode, iattr);
446 		if (ret)
447 			return ret;
448 	}
449 
450 	if (iattr->ia_valid & ATTR_SIZE) {
451 		ret = zonefs_file_truncate(inode, iattr->ia_size);
452 		if (ret)
453 			return ret;
454 	}
455 
456 	setattr_copy(inode, iattr);
457 
458 	return 0;
459 }
460 
461 static const struct inode_operations zonefs_file_inode_operations = {
462 	.setattr	= zonefs_inode_setattr,
463 };
464 
465 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
466 			     int datasync)
467 {
468 	struct inode *inode = file_inode(file);
469 	int ret = 0;
470 
471 	if (unlikely(IS_IMMUTABLE(inode)))
472 		return -EPERM;
473 
474 	/*
475 	 * Since only direct writes are allowed in sequential files, page cache
476 	 * flush is needed only for conventional zone files.
477 	 */
478 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
479 		ret = file_write_and_wait_range(file, start, end);
480 	if (!ret)
481 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
482 
483 	if (ret)
484 		zonefs_io_error(inode, true);
485 
486 	return ret;
487 }
488 
489 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
490 {
491 	struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
492 	vm_fault_t ret;
493 
494 	down_read(&zi->i_mmap_sem);
495 	ret = filemap_fault(vmf);
496 	up_read(&zi->i_mmap_sem);
497 
498 	return ret;
499 }
500 
501 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
502 {
503 	struct inode *inode = file_inode(vmf->vma->vm_file);
504 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
505 	vm_fault_t ret;
506 
507 	if (unlikely(IS_IMMUTABLE(inode)))
508 		return VM_FAULT_SIGBUS;
509 
510 	/*
511 	 * Sanity check: only conventional zone files can have shared
512 	 * writeable mappings.
513 	 */
514 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
515 		return VM_FAULT_NOPAGE;
516 
517 	sb_start_pagefault(inode->i_sb);
518 	file_update_time(vmf->vma->vm_file);
519 
520 	/* Serialize against truncates */
521 	down_read(&zi->i_mmap_sem);
522 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
523 	up_read(&zi->i_mmap_sem);
524 
525 	sb_end_pagefault(inode->i_sb);
526 	return ret;
527 }
528 
529 static const struct vm_operations_struct zonefs_file_vm_ops = {
530 	.fault		= zonefs_filemap_fault,
531 	.map_pages	= filemap_map_pages,
532 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
533 };
534 
535 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
536 {
537 	/*
538 	 * Conventional zones accept random writes, so their files can support
539 	 * shared writable mappings. For sequential zone files, only read
540 	 * mappings are possible since there are no guarantees for write
541 	 * ordering between msync() and page cache writeback.
542 	 */
543 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
544 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
545 		return -EINVAL;
546 
547 	file_accessed(file);
548 	vma->vm_ops = &zonefs_file_vm_ops;
549 
550 	return 0;
551 }
552 
553 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
554 {
555 	loff_t isize = i_size_read(file_inode(file));
556 
557 	/*
558 	 * Seeks are limited to below the zone size for conventional zones
559 	 * and below the zone write pointer for sequential zones. In both
560 	 * cases, this limit is the inode size.
561 	 */
562 	return generic_file_llseek_size(file, offset, whence, isize, isize);
563 }
564 
565 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
566 					int error, unsigned int flags)
567 {
568 	struct inode *inode = file_inode(iocb->ki_filp);
569 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
570 
571 	if (error) {
572 		zonefs_io_error(inode, true);
573 		return error;
574 	}
575 
576 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
577 		/*
578 		 * Note that we may be seeing completions out of order,
579 		 * but that is not a problem since a write completed
580 		 * successfully necessarily means that all preceding writes
581 		 * were also successful. So we can safely increase the inode
582 		 * size to the write end location.
583 		 */
584 		mutex_lock(&zi->i_truncate_mutex);
585 		if (i_size_read(inode) < iocb->ki_pos + size) {
586 			zonefs_update_stats(inode, iocb->ki_pos + size);
587 			i_size_write(inode, iocb->ki_pos + size);
588 		}
589 		mutex_unlock(&zi->i_truncate_mutex);
590 	}
591 
592 	return 0;
593 }
594 
595 static const struct iomap_dio_ops zonefs_write_dio_ops = {
596 	.end_io			= zonefs_file_write_dio_end_io,
597 };
598 
599 /*
600  * Handle direct writes. For sequential zone files, this is the only possible
601  * write path. For these files, check that the user is issuing writes
602  * sequentially from the end of the file. This code assumes that the block layer
603  * delivers write requests to the device in sequential order. This is always the
604  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
605  * elevator feature is being used (e.g. mq-deadline). The block layer always
606  * automatically select such an elevator for zoned block devices during the
607  * device initialization.
608  */
609 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
610 {
611 	struct inode *inode = file_inode(iocb->ki_filp);
612 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
613 	struct super_block *sb = inode->i_sb;
614 	size_t count;
615 	ssize_t ret;
616 
617 	/*
618 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
619 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
620 	 * on the inode lock but the second goes through but is now unaligned).
621 	 */
622 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !is_sync_kiocb(iocb) &&
623 	    (iocb->ki_flags & IOCB_NOWAIT))
624 		return -EOPNOTSUPP;
625 
626 	if (iocb->ki_flags & IOCB_NOWAIT) {
627 		if (!inode_trylock(inode))
628 			return -EAGAIN;
629 	} else {
630 		inode_lock(inode);
631 	}
632 
633 	ret = generic_write_checks(iocb, from);
634 	if (ret <= 0)
635 		goto inode_unlock;
636 
637 	iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
638 	count = iov_iter_count(from);
639 
640 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
641 		ret = -EINVAL;
642 		goto inode_unlock;
643 	}
644 
645 	/* Enforce sequential writes (append only) in sequential zones */
646 	mutex_lock(&zi->i_truncate_mutex);
647 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && iocb->ki_pos != zi->i_wpoffset) {
648 		mutex_unlock(&zi->i_truncate_mutex);
649 		ret = -EINVAL;
650 		goto inode_unlock;
651 	}
652 	mutex_unlock(&zi->i_truncate_mutex);
653 
654 	ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
655 			   &zonefs_write_dio_ops, is_sync_kiocb(iocb));
656 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
657 	    (ret > 0 || ret == -EIOCBQUEUED)) {
658 		if (ret > 0)
659 			count = ret;
660 		mutex_lock(&zi->i_truncate_mutex);
661 		zi->i_wpoffset += count;
662 		mutex_unlock(&zi->i_truncate_mutex);
663 	}
664 
665 inode_unlock:
666 	inode_unlock(inode);
667 
668 	return ret;
669 }
670 
671 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
672 					  struct iov_iter *from)
673 {
674 	struct inode *inode = file_inode(iocb->ki_filp);
675 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
676 	ssize_t ret;
677 
678 	/*
679 	 * Direct IO writes are mandatory for sequential zone files so that the
680 	 * write IO issuing order is preserved.
681 	 */
682 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
683 		return -EIO;
684 
685 	if (iocb->ki_flags & IOCB_NOWAIT) {
686 		if (!inode_trylock(inode))
687 			return -EAGAIN;
688 	} else {
689 		inode_lock(inode);
690 	}
691 
692 	ret = generic_write_checks(iocb, from);
693 	if (ret <= 0)
694 		goto inode_unlock;
695 
696 	iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
697 
698 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
699 	if (ret > 0)
700 		iocb->ki_pos += ret;
701 	else if (ret == -EIO)
702 		zonefs_io_error(inode, true);
703 
704 inode_unlock:
705 	inode_unlock(inode);
706 	if (ret > 0)
707 		ret = generic_write_sync(iocb, ret);
708 
709 	return ret;
710 }
711 
712 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
713 {
714 	struct inode *inode = file_inode(iocb->ki_filp);
715 
716 	if (unlikely(IS_IMMUTABLE(inode)))
717 		return -EPERM;
718 
719 	if (sb_rdonly(inode->i_sb))
720 		return -EROFS;
721 
722 	/* Write operations beyond the zone size are not allowed */
723 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
724 		return -EFBIG;
725 
726 	if (iocb->ki_flags & IOCB_DIRECT)
727 		return zonefs_file_dio_write(iocb, from);
728 
729 	return zonefs_file_buffered_write(iocb, from);
730 }
731 
732 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
733 				       int error, unsigned int flags)
734 {
735 	if (error) {
736 		zonefs_io_error(file_inode(iocb->ki_filp), false);
737 		return error;
738 	}
739 
740 	return 0;
741 }
742 
743 static const struct iomap_dio_ops zonefs_read_dio_ops = {
744 	.end_io			= zonefs_file_read_dio_end_io,
745 };
746 
747 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
748 {
749 	struct inode *inode = file_inode(iocb->ki_filp);
750 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
751 	struct super_block *sb = inode->i_sb;
752 	loff_t isize;
753 	ssize_t ret;
754 
755 	/* Offline zones cannot be read */
756 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
757 		return -EPERM;
758 
759 	if (iocb->ki_pos >= zi->i_max_size)
760 		return 0;
761 
762 	if (iocb->ki_flags & IOCB_NOWAIT) {
763 		if (!inode_trylock_shared(inode))
764 			return -EAGAIN;
765 	} else {
766 		inode_lock_shared(inode);
767 	}
768 
769 	/* Limit read operations to written data */
770 	mutex_lock(&zi->i_truncate_mutex);
771 	isize = i_size_read(inode);
772 	if (iocb->ki_pos >= isize) {
773 		mutex_unlock(&zi->i_truncate_mutex);
774 		ret = 0;
775 		goto inode_unlock;
776 	}
777 	iov_iter_truncate(to, isize - iocb->ki_pos);
778 	mutex_unlock(&zi->i_truncate_mutex);
779 
780 	if (iocb->ki_flags & IOCB_DIRECT) {
781 		size_t count = iov_iter_count(to);
782 
783 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
784 			ret = -EINVAL;
785 			goto inode_unlock;
786 		}
787 		file_accessed(iocb->ki_filp);
788 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
789 				   &zonefs_read_dio_ops, is_sync_kiocb(iocb));
790 	} else {
791 		ret = generic_file_read_iter(iocb, to);
792 		if (ret == -EIO)
793 			zonefs_io_error(inode, false);
794 	}
795 
796 inode_unlock:
797 	inode_unlock_shared(inode);
798 
799 	return ret;
800 }
801 
802 static const struct file_operations zonefs_file_operations = {
803 	.open		= generic_file_open,
804 	.fsync		= zonefs_file_fsync,
805 	.mmap		= zonefs_file_mmap,
806 	.llseek		= zonefs_file_llseek,
807 	.read_iter	= zonefs_file_read_iter,
808 	.write_iter	= zonefs_file_write_iter,
809 	.splice_read	= generic_file_splice_read,
810 	.splice_write	= iter_file_splice_write,
811 	.iopoll		= iomap_dio_iopoll,
812 };
813 
814 static struct kmem_cache *zonefs_inode_cachep;
815 
816 static struct inode *zonefs_alloc_inode(struct super_block *sb)
817 {
818 	struct zonefs_inode_info *zi;
819 
820 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
821 	if (!zi)
822 		return NULL;
823 
824 	inode_init_once(&zi->i_vnode);
825 	mutex_init(&zi->i_truncate_mutex);
826 	init_rwsem(&zi->i_mmap_sem);
827 
828 	return &zi->i_vnode;
829 }
830 
831 static void zonefs_free_inode(struct inode *inode)
832 {
833 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
834 }
835 
836 /*
837  * File system stat.
838  */
839 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
840 {
841 	struct super_block *sb = dentry->d_sb;
842 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
843 	enum zonefs_ztype t;
844 	u64 fsid;
845 
846 	buf->f_type = ZONEFS_MAGIC;
847 	buf->f_bsize = sb->s_blocksize;
848 	buf->f_namelen = ZONEFS_NAME_MAX;
849 
850 	spin_lock(&sbi->s_lock);
851 
852 	buf->f_blocks = sbi->s_blocks;
853 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
854 		buf->f_bfree = 0;
855 	else
856 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
857 	buf->f_bavail = buf->f_bfree;
858 
859 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
860 		if (sbi->s_nr_files[t])
861 			buf->f_files += sbi->s_nr_files[t] + 1;
862 	}
863 	buf->f_ffree = 0;
864 
865 	spin_unlock(&sbi->s_lock);
866 
867 	fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
868 		le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
869 	buf->f_fsid.val[0] = (u32)fsid;
870 	buf->f_fsid.val[1] = (u32)(fsid >> 32);
871 
872 	return 0;
873 }
874 
875 enum {
876 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
877 	Opt_err,
878 };
879 
880 static const match_table_t tokens = {
881 	{ Opt_errors_ro,	"errors=remount-ro"},
882 	{ Opt_errors_zro,	"errors=zone-ro"},
883 	{ Opt_errors_zol,	"errors=zone-offline"},
884 	{ Opt_errors_repair,	"errors=repair"},
885 	{ Opt_err,		NULL}
886 };
887 
888 static int zonefs_parse_options(struct super_block *sb, char *options)
889 {
890 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
891 	substring_t args[MAX_OPT_ARGS];
892 	char *p;
893 
894 	if (!options)
895 		return 0;
896 
897 	while ((p = strsep(&options, ",")) != NULL) {
898 		int token;
899 
900 		if (!*p)
901 			continue;
902 
903 		token = match_token(p, tokens, args);
904 		switch (token) {
905 		case Opt_errors_ro:
906 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
907 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
908 			break;
909 		case Opt_errors_zro:
910 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
911 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
912 			break;
913 		case Opt_errors_zol:
914 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
915 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
916 			break;
917 		case Opt_errors_repair:
918 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
919 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
920 			break;
921 		default:
922 			return -EINVAL;
923 		}
924 	}
925 
926 	return 0;
927 }
928 
929 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
930 {
931 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
932 
933 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
934 		seq_puts(seq, ",errors=remount-ro");
935 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
936 		seq_puts(seq, ",errors=zone-ro");
937 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
938 		seq_puts(seq, ",errors=zone-offline");
939 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
940 		seq_puts(seq, ",errors=repair");
941 
942 	return 0;
943 }
944 
945 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
946 {
947 	sync_filesystem(sb);
948 
949 	return zonefs_parse_options(sb, data);
950 }
951 
952 static const struct super_operations zonefs_sops = {
953 	.alloc_inode	= zonefs_alloc_inode,
954 	.free_inode	= zonefs_free_inode,
955 	.statfs		= zonefs_statfs,
956 	.remount_fs	= zonefs_remount,
957 	.show_options	= zonefs_show_options,
958 };
959 
960 static const struct inode_operations zonefs_dir_inode_operations = {
961 	.lookup		= simple_lookup,
962 	.setattr	= zonefs_inode_setattr,
963 };
964 
965 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
966 				  enum zonefs_ztype type)
967 {
968 	struct super_block *sb = parent->i_sb;
969 
970 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
971 	inode_init_owner(inode, parent, S_IFDIR | 0555);
972 	inode->i_op = &zonefs_dir_inode_operations;
973 	inode->i_fop = &simple_dir_operations;
974 	set_nlink(inode, 2);
975 	inc_nlink(parent);
976 }
977 
978 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
979 				   enum zonefs_ztype type)
980 {
981 	struct super_block *sb = inode->i_sb;
982 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
983 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
984 
985 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
986 	inode->i_mode = S_IFREG | sbi->s_perm;
987 
988 	zi->i_ztype = type;
989 	zi->i_zsector = zone->start;
990 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
991 			       zone->len << SECTOR_SHIFT);
992 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
993 
994 	inode->i_uid = sbi->s_uid;
995 	inode->i_gid = sbi->s_gid;
996 	inode->i_size = zi->i_wpoffset;
997 	inode->i_blocks = zone->len;
998 
999 	inode->i_op = &zonefs_file_inode_operations;
1000 	inode->i_fop = &zonefs_file_operations;
1001 	inode->i_mapping->a_ops = &zonefs_file_aops;
1002 
1003 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1004 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1005 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1006 }
1007 
1008 static struct dentry *zonefs_create_inode(struct dentry *parent,
1009 					const char *name, struct blk_zone *zone,
1010 					enum zonefs_ztype type)
1011 {
1012 	struct inode *dir = d_inode(parent);
1013 	struct dentry *dentry;
1014 	struct inode *inode;
1015 
1016 	dentry = d_alloc_name(parent, name);
1017 	if (!dentry)
1018 		return NULL;
1019 
1020 	inode = new_inode(parent->d_sb);
1021 	if (!inode)
1022 		goto dput;
1023 
1024 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1025 	if (zone)
1026 		zonefs_init_file_inode(inode, zone, type);
1027 	else
1028 		zonefs_init_dir_inode(dir, inode, type);
1029 	d_add(dentry, inode);
1030 	dir->i_size++;
1031 
1032 	return dentry;
1033 
1034 dput:
1035 	dput(dentry);
1036 
1037 	return NULL;
1038 }
1039 
1040 struct zonefs_zone_data {
1041 	struct super_block	*sb;
1042 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1043 	struct blk_zone		*zones;
1044 };
1045 
1046 /*
1047  * Create a zone group and populate it with zone files.
1048  */
1049 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1050 				enum zonefs_ztype type)
1051 {
1052 	struct super_block *sb = zd->sb;
1053 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1054 	struct blk_zone *zone, *next, *end;
1055 	const char *zgroup_name;
1056 	char *file_name;
1057 	struct dentry *dir;
1058 	unsigned int n = 0;
1059 	int ret = -ENOMEM;
1060 
1061 	/* If the group is empty, there is nothing to do */
1062 	if (!zd->nr_zones[type])
1063 		return 0;
1064 
1065 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1066 	if (!file_name)
1067 		return -ENOMEM;
1068 
1069 	if (type == ZONEFS_ZTYPE_CNV)
1070 		zgroup_name = "cnv";
1071 	else
1072 		zgroup_name = "seq";
1073 
1074 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1075 	if (!dir)
1076 		goto free;
1077 
1078 	/*
1079 	 * The first zone contains the super block: skip it.
1080 	 */
1081 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1082 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1083 
1084 		next = zone + 1;
1085 		if (zonefs_zone_type(zone) != type)
1086 			continue;
1087 
1088 		/*
1089 		 * For conventional zones, contiguous zones can be aggregated
1090 		 * together to form larger files. Note that this overwrites the
1091 		 * length of the first zone of the set of contiguous zones
1092 		 * aggregated together. If one offline or read-only zone is
1093 		 * found, assume that all zones aggregated have the same
1094 		 * condition.
1095 		 */
1096 		if (type == ZONEFS_ZTYPE_CNV &&
1097 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1098 			for (; next < end; next++) {
1099 				if (zonefs_zone_type(next) != type)
1100 					break;
1101 				zone->len += next->len;
1102 				if (next->cond == BLK_ZONE_COND_READONLY &&
1103 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1104 					zone->cond = BLK_ZONE_COND_READONLY;
1105 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1106 					zone->cond = BLK_ZONE_COND_OFFLINE;
1107 			}
1108 		}
1109 
1110 		/*
1111 		 * Use the file number within its group as file name.
1112 		 */
1113 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1114 		if (!zonefs_create_inode(dir, file_name, zone, type))
1115 			goto free;
1116 
1117 		n++;
1118 	}
1119 
1120 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1121 		    zgroup_name, n, n > 1 ? "s" : "");
1122 
1123 	sbi->s_nr_files[type] = n;
1124 	ret = 0;
1125 
1126 free:
1127 	kfree(file_name);
1128 
1129 	return ret;
1130 }
1131 
1132 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1133 				   void *data)
1134 {
1135 	struct zonefs_zone_data *zd = data;
1136 
1137 	/*
1138 	 * Count the number of usable zones: the first zone at index 0 contains
1139 	 * the super block and is ignored.
1140 	 */
1141 	switch (zone->type) {
1142 	case BLK_ZONE_TYPE_CONVENTIONAL:
1143 		zone->wp = zone->start + zone->len;
1144 		if (idx)
1145 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1146 		break;
1147 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1148 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1149 		if (idx)
1150 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1151 		break;
1152 	default:
1153 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1154 			   zone->type);
1155 		return -EIO;
1156 	}
1157 
1158 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1159 
1160 	return 0;
1161 }
1162 
1163 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1164 {
1165 	struct block_device *bdev = zd->sb->s_bdev;
1166 	int ret;
1167 
1168 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1169 			     sizeof(struct blk_zone), GFP_KERNEL);
1170 	if (!zd->zones)
1171 		return -ENOMEM;
1172 
1173 	/* Get zones information from the device */
1174 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1175 				  zonefs_get_zone_info_cb, zd);
1176 	if (ret < 0) {
1177 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1178 		return ret;
1179 	}
1180 
1181 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1182 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1183 			   ret, blkdev_nr_zones(bdev->bd_disk));
1184 		return -EIO;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1191 {
1192 	kvfree(zd->zones);
1193 }
1194 
1195 /*
1196  * Read super block information from the device.
1197  */
1198 static int zonefs_read_super(struct super_block *sb)
1199 {
1200 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1201 	struct zonefs_super *super;
1202 	u32 crc, stored_crc;
1203 	struct page *page;
1204 	struct bio_vec bio_vec;
1205 	struct bio bio;
1206 	int ret;
1207 
1208 	page = alloc_page(GFP_KERNEL);
1209 	if (!page)
1210 		return -ENOMEM;
1211 
1212 	bio_init(&bio, &bio_vec, 1);
1213 	bio.bi_iter.bi_sector = 0;
1214 	bio.bi_opf = REQ_OP_READ;
1215 	bio_set_dev(&bio, sb->s_bdev);
1216 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1217 
1218 	ret = submit_bio_wait(&bio);
1219 	if (ret)
1220 		goto free_page;
1221 
1222 	super = kmap(page);
1223 
1224 	ret = -EINVAL;
1225 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1226 		goto unmap;
1227 
1228 	stored_crc = le32_to_cpu(super->s_crc);
1229 	super->s_crc = 0;
1230 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1231 	if (crc != stored_crc) {
1232 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1233 			   crc, stored_crc);
1234 		goto unmap;
1235 	}
1236 
1237 	sbi->s_features = le64_to_cpu(super->s_features);
1238 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1239 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1240 			   sbi->s_features);
1241 		goto unmap;
1242 	}
1243 
1244 	if (sbi->s_features & ZONEFS_F_UID) {
1245 		sbi->s_uid = make_kuid(current_user_ns(),
1246 				       le32_to_cpu(super->s_uid));
1247 		if (!uid_valid(sbi->s_uid)) {
1248 			zonefs_err(sb, "Invalid UID feature\n");
1249 			goto unmap;
1250 		}
1251 	}
1252 
1253 	if (sbi->s_features & ZONEFS_F_GID) {
1254 		sbi->s_gid = make_kgid(current_user_ns(),
1255 				       le32_to_cpu(super->s_gid));
1256 		if (!gid_valid(sbi->s_gid)) {
1257 			zonefs_err(sb, "Invalid GID feature\n");
1258 			goto unmap;
1259 		}
1260 	}
1261 
1262 	if (sbi->s_features & ZONEFS_F_PERM)
1263 		sbi->s_perm = le32_to_cpu(super->s_perm);
1264 
1265 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1266 		zonefs_err(sb, "Reserved area is being used\n");
1267 		goto unmap;
1268 	}
1269 
1270 	uuid_copy(&sbi->s_uuid, (uuid_t *)super->s_uuid);
1271 	ret = 0;
1272 
1273 unmap:
1274 	kunmap(page);
1275 free_page:
1276 	__free_page(page);
1277 
1278 	return ret;
1279 }
1280 
1281 /*
1282  * Check that the device is zoned. If it is, get the list of zones and create
1283  * sub-directories and files according to the device zone configuration and
1284  * format options.
1285  */
1286 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1287 {
1288 	struct zonefs_zone_data zd;
1289 	struct zonefs_sb_info *sbi;
1290 	struct inode *inode;
1291 	enum zonefs_ztype t;
1292 	int ret;
1293 
1294 	if (!bdev_is_zoned(sb->s_bdev)) {
1295 		zonefs_err(sb, "Not a zoned block device\n");
1296 		return -EINVAL;
1297 	}
1298 
1299 	/*
1300 	 * Initialize super block information: the maximum file size is updated
1301 	 * when the zone files are created so that the format option
1302 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1303 	 * beyond the zone size is taken into account.
1304 	 */
1305 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1306 	if (!sbi)
1307 		return -ENOMEM;
1308 
1309 	spin_lock_init(&sbi->s_lock);
1310 	sb->s_fs_info = sbi;
1311 	sb->s_magic = ZONEFS_MAGIC;
1312 	sb->s_maxbytes = 0;
1313 	sb->s_op = &zonefs_sops;
1314 	sb->s_time_gran	= 1;
1315 
1316 	/*
1317 	 * The block size is set to the device physical sector size to ensure
1318 	 * that write operations on 512e devices (512B logical block and 4KB
1319 	 * physical block) are always aligned to the device physical blocks,
1320 	 * as mandated by the ZBC/ZAC specifications.
1321 	 */
1322 	sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1323 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1324 	sbi->s_uid = GLOBAL_ROOT_UID;
1325 	sbi->s_gid = GLOBAL_ROOT_GID;
1326 	sbi->s_perm = 0640;
1327 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1328 
1329 	ret = zonefs_read_super(sb);
1330 	if (ret)
1331 		return ret;
1332 
1333 	ret = zonefs_parse_options(sb, data);
1334 	if (ret)
1335 		return ret;
1336 
1337 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1338 	zd.sb = sb;
1339 	ret = zonefs_get_zone_info(&zd);
1340 	if (ret)
1341 		goto cleanup;
1342 
1343 	zonefs_info(sb, "Mounting %u zones",
1344 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1345 
1346 	/* Create root directory inode */
1347 	ret = -ENOMEM;
1348 	inode = new_inode(sb);
1349 	if (!inode)
1350 		goto cleanup;
1351 
1352 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1353 	inode->i_mode = S_IFDIR | 0555;
1354 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1355 	inode->i_op = &zonefs_dir_inode_operations;
1356 	inode->i_fop = &simple_dir_operations;
1357 	set_nlink(inode, 2);
1358 
1359 	sb->s_root = d_make_root(inode);
1360 	if (!sb->s_root)
1361 		goto cleanup;
1362 
1363 	/* Create and populate files in zone groups directories */
1364 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1365 		ret = zonefs_create_zgroup(&zd, t);
1366 		if (ret)
1367 			break;
1368 	}
1369 
1370 cleanup:
1371 	zonefs_cleanup_zone_info(&zd);
1372 
1373 	return ret;
1374 }
1375 
1376 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1377 				   int flags, const char *dev_name, void *data)
1378 {
1379 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1380 }
1381 
1382 static void zonefs_kill_super(struct super_block *sb)
1383 {
1384 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1385 
1386 	if (sb->s_root)
1387 		d_genocide(sb->s_root);
1388 	kill_block_super(sb);
1389 	kfree(sbi);
1390 }
1391 
1392 /*
1393  * File system definition and registration.
1394  */
1395 static struct file_system_type zonefs_type = {
1396 	.owner		= THIS_MODULE,
1397 	.name		= "zonefs",
1398 	.mount		= zonefs_mount,
1399 	.kill_sb	= zonefs_kill_super,
1400 	.fs_flags	= FS_REQUIRES_DEV,
1401 };
1402 
1403 static int __init zonefs_init_inodecache(void)
1404 {
1405 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1406 			sizeof(struct zonefs_inode_info), 0,
1407 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1408 			NULL);
1409 	if (zonefs_inode_cachep == NULL)
1410 		return -ENOMEM;
1411 	return 0;
1412 }
1413 
1414 static void zonefs_destroy_inodecache(void)
1415 {
1416 	/*
1417 	 * Make sure all delayed rcu free inodes are flushed before we
1418 	 * destroy the inode cache.
1419 	 */
1420 	rcu_barrier();
1421 	kmem_cache_destroy(zonefs_inode_cachep);
1422 }
1423 
1424 static int __init zonefs_init(void)
1425 {
1426 	int ret;
1427 
1428 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1429 
1430 	ret = zonefs_init_inodecache();
1431 	if (ret)
1432 		return ret;
1433 
1434 	ret = register_filesystem(&zonefs_type);
1435 	if (ret) {
1436 		zonefs_destroy_inodecache();
1437 		return ret;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static void __exit zonefs_exit(void)
1444 {
1445 	zonefs_destroy_inodecache();
1446 	unregister_filesystem(&zonefs_type);
1447 }
1448 
1449 MODULE_AUTHOR("Damien Le Moal");
1450 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1451 MODULE_LICENSE("GPL");
1452 module_init(zonefs_init);
1453 module_exit(zonefs_exit);
1454