1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 /* 31 * Manage the active zone count. Called with zi->i_truncate_mutex held. 32 */ 33 static void zonefs_account_active(struct inode *inode) 34 { 35 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 36 struct zonefs_inode_info *zi = ZONEFS_I(inode); 37 38 lockdep_assert_held(&zi->i_truncate_mutex); 39 40 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 41 return; 42 43 /* 44 * If the zone is active, that is, if it is explicitly open or 45 * partially written, check if it was already accounted as active. 46 */ 47 if ((zi->i_flags & ZONEFS_ZONE_OPEN) || 48 (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) { 49 if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) { 50 zi->i_flags |= ZONEFS_ZONE_ACTIVE; 51 atomic_inc(&sbi->s_active_seq_files); 52 } 53 return; 54 } 55 56 /* The zone is not active. If it was, update the active count */ 57 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) { 58 zi->i_flags &= ~ZONEFS_ZONE_ACTIVE; 59 atomic_dec(&sbi->s_active_seq_files); 60 } 61 } 62 63 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op) 64 { 65 struct zonefs_inode_info *zi = ZONEFS_I(inode); 66 int ret; 67 68 lockdep_assert_held(&zi->i_truncate_mutex); 69 70 /* 71 * With ZNS drives, closing an explicitly open zone that has not been 72 * written will change the zone state to "closed", that is, the zone 73 * will remain active. Since this can then cause failure of explicit 74 * open operation on other zones if the drive active zone resources 75 * are exceeded, make sure that the zone does not remain active by 76 * resetting it. 77 */ 78 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset) 79 op = REQ_OP_ZONE_RESET; 80 81 trace_zonefs_zone_mgmt(inode, op); 82 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 83 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 84 if (ret) { 85 zonefs_err(inode->i_sb, 86 "Zone management operation %s at %llu failed %d\n", 87 blk_op_str(op), zi->i_zsector, ret); 88 return ret; 89 } 90 91 return 0; 92 } 93 94 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 95 { 96 struct zonefs_inode_info *zi = ZONEFS_I(inode); 97 98 i_size_write(inode, isize); 99 /* 100 * A full zone is no longer open/active and does not need 101 * explicit closing. 102 */ 103 if (isize >= zi->i_max_size) { 104 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 105 106 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) 107 atomic_dec(&sbi->s_active_seq_files); 108 zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE); 109 } 110 } 111 112 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 113 loff_t length, unsigned int flags, 114 struct iomap *iomap, struct iomap *srcmap) 115 { 116 struct zonefs_inode_info *zi = ZONEFS_I(inode); 117 struct super_block *sb = inode->i_sb; 118 loff_t isize; 119 120 /* 121 * All blocks are always mapped below EOF. If reading past EOF, 122 * act as if there is a hole up to the file maximum size. 123 */ 124 mutex_lock(&zi->i_truncate_mutex); 125 iomap->bdev = inode->i_sb->s_bdev; 126 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 127 isize = i_size_read(inode); 128 if (iomap->offset >= isize) { 129 iomap->type = IOMAP_HOLE; 130 iomap->addr = IOMAP_NULL_ADDR; 131 iomap->length = length; 132 } else { 133 iomap->type = IOMAP_MAPPED; 134 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 135 iomap->length = isize - iomap->offset; 136 } 137 mutex_unlock(&zi->i_truncate_mutex); 138 139 trace_zonefs_iomap_begin(inode, iomap); 140 141 return 0; 142 } 143 144 static const struct iomap_ops zonefs_read_iomap_ops = { 145 .iomap_begin = zonefs_read_iomap_begin, 146 }; 147 148 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 149 loff_t length, unsigned int flags, 150 struct iomap *iomap, struct iomap *srcmap) 151 { 152 struct zonefs_inode_info *zi = ZONEFS_I(inode); 153 struct super_block *sb = inode->i_sb; 154 loff_t isize; 155 156 /* All write I/Os should always be within the file maximum size */ 157 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 158 return -EIO; 159 160 /* 161 * Sequential zones can only accept direct writes. This is already 162 * checked when writes are issued, so warn if we see a page writeback 163 * operation. 164 */ 165 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 166 !(flags & IOMAP_DIRECT))) 167 return -EIO; 168 169 /* 170 * For conventional zones, all blocks are always mapped. For sequential 171 * zones, all blocks after always mapped below the inode size (zone 172 * write pointer) and unwriten beyond. 173 */ 174 mutex_lock(&zi->i_truncate_mutex); 175 iomap->bdev = inode->i_sb->s_bdev; 176 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 177 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 178 isize = i_size_read(inode); 179 if (iomap->offset >= isize) { 180 iomap->type = IOMAP_UNWRITTEN; 181 iomap->length = zi->i_max_size - iomap->offset; 182 } else { 183 iomap->type = IOMAP_MAPPED; 184 iomap->length = isize - iomap->offset; 185 } 186 mutex_unlock(&zi->i_truncate_mutex); 187 188 trace_zonefs_iomap_begin(inode, iomap); 189 190 return 0; 191 } 192 193 static const struct iomap_ops zonefs_write_iomap_ops = { 194 .iomap_begin = zonefs_write_iomap_begin, 195 }; 196 197 static int zonefs_read_folio(struct file *unused, struct folio *folio) 198 { 199 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 200 } 201 202 static void zonefs_readahead(struct readahead_control *rac) 203 { 204 iomap_readahead(rac, &zonefs_read_iomap_ops); 205 } 206 207 /* 208 * Map blocks for page writeback. This is used only on conventional zone files, 209 * which implies that the page range can only be within the fixed inode size. 210 */ 211 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 212 struct inode *inode, loff_t offset) 213 { 214 struct zonefs_inode_info *zi = ZONEFS_I(inode); 215 216 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 217 return -EIO; 218 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 219 return -EIO; 220 221 /* If the mapping is already OK, nothing needs to be done */ 222 if (offset >= wpc->iomap.offset && 223 offset < wpc->iomap.offset + wpc->iomap.length) 224 return 0; 225 226 return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset, 227 IOMAP_WRITE, &wpc->iomap, NULL); 228 } 229 230 static const struct iomap_writeback_ops zonefs_writeback_ops = { 231 .map_blocks = zonefs_write_map_blocks, 232 }; 233 234 static int zonefs_writepages(struct address_space *mapping, 235 struct writeback_control *wbc) 236 { 237 struct iomap_writepage_ctx wpc = { }; 238 239 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 240 } 241 242 static int zonefs_swap_activate(struct swap_info_struct *sis, 243 struct file *swap_file, sector_t *span) 244 { 245 struct inode *inode = file_inode(swap_file); 246 struct zonefs_inode_info *zi = ZONEFS_I(inode); 247 248 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 249 zonefs_err(inode->i_sb, 250 "swap file: not a conventional zone file\n"); 251 return -EINVAL; 252 } 253 254 return iomap_swapfile_activate(sis, swap_file, span, 255 &zonefs_read_iomap_ops); 256 } 257 258 static const struct address_space_operations zonefs_file_aops = { 259 .read_folio = zonefs_read_folio, 260 .readahead = zonefs_readahead, 261 .writepages = zonefs_writepages, 262 .dirty_folio = filemap_dirty_folio, 263 .release_folio = iomap_release_folio, 264 .invalidate_folio = iomap_invalidate_folio, 265 .migrate_folio = filemap_migrate_folio, 266 .is_partially_uptodate = iomap_is_partially_uptodate, 267 .error_remove_page = generic_error_remove_page, 268 .direct_IO = noop_direct_IO, 269 .swap_activate = zonefs_swap_activate, 270 }; 271 272 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 273 { 274 struct super_block *sb = inode->i_sb; 275 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 276 loff_t old_isize = i_size_read(inode); 277 loff_t nr_blocks; 278 279 if (new_isize == old_isize) 280 return; 281 282 spin_lock(&sbi->s_lock); 283 284 /* 285 * This may be called for an update after an IO error. 286 * So beware of the values seen. 287 */ 288 if (new_isize < old_isize) { 289 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 290 if (sbi->s_used_blocks > nr_blocks) 291 sbi->s_used_blocks -= nr_blocks; 292 else 293 sbi->s_used_blocks = 0; 294 } else { 295 sbi->s_used_blocks += 296 (new_isize - old_isize) >> sb->s_blocksize_bits; 297 if (sbi->s_used_blocks > sbi->s_blocks) 298 sbi->s_used_blocks = sbi->s_blocks; 299 } 300 301 spin_unlock(&sbi->s_lock); 302 } 303 304 /* 305 * Check a zone condition and adjust its file inode access permissions for 306 * offline and readonly zones. Return the inode size corresponding to the 307 * amount of readable data in the zone. 308 */ 309 static loff_t zonefs_check_zone_condition(struct inode *inode, 310 struct blk_zone *zone, bool warn, 311 bool mount) 312 { 313 struct zonefs_inode_info *zi = ZONEFS_I(inode); 314 315 switch (zone->cond) { 316 case BLK_ZONE_COND_OFFLINE: 317 /* 318 * Dead zone: make the inode immutable, disable all accesses 319 * and set the file size to 0 (zone wp set to zone start). 320 */ 321 if (warn) 322 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 323 inode->i_ino); 324 inode->i_flags |= S_IMMUTABLE; 325 inode->i_mode &= ~0777; 326 zone->wp = zone->start; 327 return 0; 328 case BLK_ZONE_COND_READONLY: 329 /* 330 * The write pointer of read-only zones is invalid. If such a 331 * zone is found during mount, the file size cannot be retrieved 332 * so we treat the zone as offline (mount == true case). 333 * Otherwise, keep the file size as it was when last updated 334 * so that the user can recover data. In both cases, writes are 335 * always disabled for the zone. 336 */ 337 if (warn) 338 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 339 inode->i_ino); 340 inode->i_flags |= S_IMMUTABLE; 341 if (mount) { 342 zone->cond = BLK_ZONE_COND_OFFLINE; 343 inode->i_mode &= ~0777; 344 zone->wp = zone->start; 345 return 0; 346 } 347 inode->i_mode &= ~0222; 348 return i_size_read(inode); 349 case BLK_ZONE_COND_FULL: 350 /* The write pointer of full zones is invalid. */ 351 return zi->i_max_size; 352 default: 353 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 354 return zi->i_max_size; 355 return (zone->wp - zone->start) << SECTOR_SHIFT; 356 } 357 } 358 359 struct zonefs_ioerr_data { 360 struct inode *inode; 361 bool write; 362 }; 363 364 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 365 void *data) 366 { 367 struct zonefs_ioerr_data *err = data; 368 struct inode *inode = err->inode; 369 struct zonefs_inode_info *zi = ZONEFS_I(inode); 370 struct super_block *sb = inode->i_sb; 371 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 372 loff_t isize, data_size; 373 374 /* 375 * Check the zone condition: if the zone is not "bad" (offline or 376 * read-only), read errors are simply signaled to the IO issuer as long 377 * as there is no inconsistency between the inode size and the amount of 378 * data writen in the zone (data_size). 379 */ 380 data_size = zonefs_check_zone_condition(inode, zone, true, false); 381 isize = i_size_read(inode); 382 if (zone->cond != BLK_ZONE_COND_OFFLINE && 383 zone->cond != BLK_ZONE_COND_READONLY && 384 !err->write && isize == data_size) 385 return 0; 386 387 /* 388 * At this point, we detected either a bad zone or an inconsistency 389 * between the inode size and the amount of data written in the zone. 390 * For the latter case, the cause may be a write IO error or an external 391 * action on the device. Two error patterns exist: 392 * 1) The inode size is lower than the amount of data in the zone: 393 * a write operation partially failed and data was writen at the end 394 * of the file. This can happen in the case of a large direct IO 395 * needing several BIOs and/or write requests to be processed. 396 * 2) The inode size is larger than the amount of data in the zone: 397 * this can happen with a deferred write error with the use of the 398 * device side write cache after getting successful write IO 399 * completions. Other possibilities are (a) an external corruption, 400 * e.g. an application reset the zone directly, or (b) the device 401 * has a serious problem (e.g. firmware bug). 402 * 403 * In all cases, warn about inode size inconsistency and handle the 404 * IO error according to the zone condition and to the mount options. 405 */ 406 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 407 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 408 inode->i_ino, isize, data_size); 409 410 /* 411 * First handle bad zones signaled by hardware. The mount options 412 * errors=zone-ro and errors=zone-offline result in changing the 413 * zone condition to read-only and offline respectively, as if the 414 * condition was signaled by the hardware. 415 */ 416 if (zone->cond == BLK_ZONE_COND_OFFLINE || 417 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 418 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 419 inode->i_ino); 420 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 421 zone->cond = BLK_ZONE_COND_OFFLINE; 422 data_size = zonefs_check_zone_condition(inode, zone, 423 false, false); 424 } 425 } else if (zone->cond == BLK_ZONE_COND_READONLY || 426 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 427 zonefs_warn(sb, "inode %lu: write access disabled\n", 428 inode->i_ino); 429 if (zone->cond != BLK_ZONE_COND_READONLY) { 430 zone->cond = BLK_ZONE_COND_READONLY; 431 data_size = zonefs_check_zone_condition(inode, zone, 432 false, false); 433 } 434 } 435 436 /* 437 * If the filesystem is mounted with the explicit-open mount option, we 438 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 439 * the read-only or offline condition, to avoid attempting an explicit 440 * close of the zone when the inode file is closed. 441 */ 442 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 443 (zone->cond == BLK_ZONE_COND_OFFLINE || 444 zone->cond == BLK_ZONE_COND_READONLY)) 445 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 446 447 /* 448 * If error=remount-ro was specified, any error result in remounting 449 * the volume as read-only. 450 */ 451 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 452 zonefs_warn(sb, "remounting filesystem read-only\n"); 453 sb->s_flags |= SB_RDONLY; 454 } 455 456 /* 457 * Update block usage stats and the inode size to prevent access to 458 * invalid data. 459 */ 460 zonefs_update_stats(inode, data_size); 461 zonefs_i_size_write(inode, data_size); 462 zi->i_wpoffset = data_size; 463 zonefs_account_active(inode); 464 465 return 0; 466 } 467 468 /* 469 * When an file IO error occurs, check the file zone to see if there is a change 470 * in the zone condition (e.g. offline or read-only). For a failed write to a 471 * sequential zone, the zone write pointer position must also be checked to 472 * eventually correct the file size and zonefs inode write pointer offset 473 * (which can be out of sync with the drive due to partial write failures). 474 */ 475 static void __zonefs_io_error(struct inode *inode, bool write) 476 { 477 struct zonefs_inode_info *zi = ZONEFS_I(inode); 478 struct super_block *sb = inode->i_sb; 479 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 480 unsigned int noio_flag; 481 unsigned int nr_zones = 482 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 483 struct zonefs_ioerr_data err = { 484 .inode = inode, 485 .write = write, 486 }; 487 int ret; 488 489 /* 490 * Memory allocations in blkdev_report_zones() can trigger a memory 491 * reclaim which may in turn cause a recursion into zonefs as well as 492 * struct request allocations for the same device. The former case may 493 * end up in a deadlock on the inode truncate mutex, while the latter 494 * may prevent IO forward progress. Executing the report zones under 495 * the GFP_NOIO context avoids both problems. 496 */ 497 noio_flag = memalloc_noio_save(); 498 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 499 zonefs_io_error_cb, &err); 500 if (ret != nr_zones) 501 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 502 inode->i_ino, ret); 503 memalloc_noio_restore(noio_flag); 504 } 505 506 static void zonefs_io_error(struct inode *inode, bool write) 507 { 508 struct zonefs_inode_info *zi = ZONEFS_I(inode); 509 510 mutex_lock(&zi->i_truncate_mutex); 511 __zonefs_io_error(inode, write); 512 mutex_unlock(&zi->i_truncate_mutex); 513 } 514 515 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 516 { 517 struct zonefs_inode_info *zi = ZONEFS_I(inode); 518 loff_t old_isize; 519 enum req_op op; 520 int ret = 0; 521 522 /* 523 * Only sequential zone files can be truncated and truncation is allowed 524 * only down to a 0 size, which is equivalent to a zone reset, and to 525 * the maximum file size, which is equivalent to a zone finish. 526 */ 527 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 528 return -EPERM; 529 530 if (!isize) 531 op = REQ_OP_ZONE_RESET; 532 else if (isize == zi->i_max_size) 533 op = REQ_OP_ZONE_FINISH; 534 else 535 return -EPERM; 536 537 inode_dio_wait(inode); 538 539 /* Serialize against page faults */ 540 filemap_invalidate_lock(inode->i_mapping); 541 542 /* Serialize against zonefs_iomap_begin() */ 543 mutex_lock(&zi->i_truncate_mutex); 544 545 old_isize = i_size_read(inode); 546 if (isize == old_isize) 547 goto unlock; 548 549 ret = zonefs_zone_mgmt(inode, op); 550 if (ret) 551 goto unlock; 552 553 /* 554 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 555 * take care of open zones. 556 */ 557 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 558 /* 559 * Truncating a zone to EMPTY or FULL is the equivalent of 560 * closing the zone. For a truncation to 0, we need to 561 * re-open the zone to ensure new writes can be processed. 562 * For a truncation to the maximum file size, the zone is 563 * closed and writes cannot be accepted anymore, so clear 564 * the open flag. 565 */ 566 if (!isize) 567 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 568 else 569 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 570 } 571 572 zonefs_update_stats(inode, isize); 573 truncate_setsize(inode, isize); 574 zi->i_wpoffset = isize; 575 zonefs_account_active(inode); 576 577 unlock: 578 mutex_unlock(&zi->i_truncate_mutex); 579 filemap_invalidate_unlock(inode->i_mapping); 580 581 return ret; 582 } 583 584 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 585 struct dentry *dentry, struct iattr *iattr) 586 { 587 struct inode *inode = d_inode(dentry); 588 int ret; 589 590 if (unlikely(IS_IMMUTABLE(inode))) 591 return -EPERM; 592 593 ret = setattr_prepare(&init_user_ns, dentry, iattr); 594 if (ret) 595 return ret; 596 597 /* 598 * Since files and directories cannot be created nor deleted, do not 599 * allow setting any write attributes on the sub-directories grouping 600 * files by zone type. 601 */ 602 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 603 (iattr->ia_mode & 0222)) 604 return -EPERM; 605 606 if (((iattr->ia_valid & ATTR_UID) && 607 !uid_eq(iattr->ia_uid, inode->i_uid)) || 608 ((iattr->ia_valid & ATTR_GID) && 609 !gid_eq(iattr->ia_gid, inode->i_gid))) { 610 ret = dquot_transfer(mnt_userns, inode, iattr); 611 if (ret) 612 return ret; 613 } 614 615 if (iattr->ia_valid & ATTR_SIZE) { 616 ret = zonefs_file_truncate(inode, iattr->ia_size); 617 if (ret) 618 return ret; 619 } 620 621 setattr_copy(&init_user_ns, inode, iattr); 622 623 return 0; 624 } 625 626 static const struct inode_operations zonefs_file_inode_operations = { 627 .setattr = zonefs_inode_setattr, 628 }; 629 630 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 631 int datasync) 632 { 633 struct inode *inode = file_inode(file); 634 int ret = 0; 635 636 if (unlikely(IS_IMMUTABLE(inode))) 637 return -EPERM; 638 639 /* 640 * Since only direct writes are allowed in sequential files, page cache 641 * flush is needed only for conventional zone files. 642 */ 643 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 644 ret = file_write_and_wait_range(file, start, end); 645 if (!ret) 646 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 647 648 if (ret) 649 zonefs_io_error(inode, true); 650 651 return ret; 652 } 653 654 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 655 { 656 struct inode *inode = file_inode(vmf->vma->vm_file); 657 struct zonefs_inode_info *zi = ZONEFS_I(inode); 658 vm_fault_t ret; 659 660 if (unlikely(IS_IMMUTABLE(inode))) 661 return VM_FAULT_SIGBUS; 662 663 /* 664 * Sanity check: only conventional zone files can have shared 665 * writeable mappings. 666 */ 667 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 668 return VM_FAULT_NOPAGE; 669 670 sb_start_pagefault(inode->i_sb); 671 file_update_time(vmf->vma->vm_file); 672 673 /* Serialize against truncates */ 674 filemap_invalidate_lock_shared(inode->i_mapping); 675 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 676 filemap_invalidate_unlock_shared(inode->i_mapping); 677 678 sb_end_pagefault(inode->i_sb); 679 return ret; 680 } 681 682 static const struct vm_operations_struct zonefs_file_vm_ops = { 683 .fault = filemap_fault, 684 .map_pages = filemap_map_pages, 685 .page_mkwrite = zonefs_filemap_page_mkwrite, 686 }; 687 688 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 689 { 690 /* 691 * Conventional zones accept random writes, so their files can support 692 * shared writable mappings. For sequential zone files, only read 693 * mappings are possible since there are no guarantees for write 694 * ordering between msync() and page cache writeback. 695 */ 696 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 697 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 698 return -EINVAL; 699 700 file_accessed(file); 701 vma->vm_ops = &zonefs_file_vm_ops; 702 703 return 0; 704 } 705 706 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 707 { 708 loff_t isize = i_size_read(file_inode(file)); 709 710 /* 711 * Seeks are limited to below the zone size for conventional zones 712 * and below the zone write pointer for sequential zones. In both 713 * cases, this limit is the inode size. 714 */ 715 return generic_file_llseek_size(file, offset, whence, isize, isize); 716 } 717 718 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 719 int error, unsigned int flags) 720 { 721 struct inode *inode = file_inode(iocb->ki_filp); 722 struct zonefs_inode_info *zi = ZONEFS_I(inode); 723 724 if (error) { 725 zonefs_io_error(inode, true); 726 return error; 727 } 728 729 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 730 /* 731 * Note that we may be seeing completions out of order, 732 * but that is not a problem since a write completed 733 * successfully necessarily means that all preceding writes 734 * were also successful. So we can safely increase the inode 735 * size to the write end location. 736 */ 737 mutex_lock(&zi->i_truncate_mutex); 738 if (i_size_read(inode) < iocb->ki_pos + size) { 739 zonefs_update_stats(inode, iocb->ki_pos + size); 740 zonefs_i_size_write(inode, iocb->ki_pos + size); 741 } 742 mutex_unlock(&zi->i_truncate_mutex); 743 } 744 745 return 0; 746 } 747 748 static const struct iomap_dio_ops zonefs_write_dio_ops = { 749 .end_io = zonefs_file_write_dio_end_io, 750 }; 751 752 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 753 { 754 struct inode *inode = file_inode(iocb->ki_filp); 755 struct zonefs_inode_info *zi = ZONEFS_I(inode); 756 struct block_device *bdev = inode->i_sb->s_bdev; 757 unsigned int max = bdev_max_zone_append_sectors(bdev); 758 struct bio *bio; 759 ssize_t size; 760 int nr_pages; 761 ssize_t ret; 762 763 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 764 iov_iter_truncate(from, max); 765 766 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 767 if (!nr_pages) 768 return 0; 769 770 bio = bio_alloc(bdev, nr_pages, 771 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 772 bio->bi_iter.bi_sector = zi->i_zsector; 773 bio->bi_ioprio = iocb->ki_ioprio; 774 if (iocb_is_dsync(iocb)) 775 bio->bi_opf |= REQ_FUA; 776 777 ret = bio_iov_iter_get_pages(bio, from); 778 if (unlikely(ret)) 779 goto out_release; 780 781 size = bio->bi_iter.bi_size; 782 task_io_account_write(size); 783 784 if (iocb->ki_flags & IOCB_HIPRI) 785 bio_set_polled(bio, iocb); 786 787 ret = submit_bio_wait(bio); 788 789 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 790 trace_zonefs_file_dio_append(inode, size, ret); 791 792 out_release: 793 bio_release_pages(bio, false); 794 bio_put(bio); 795 796 if (ret >= 0) { 797 iocb->ki_pos += size; 798 return size; 799 } 800 801 return ret; 802 } 803 804 /* 805 * Do not exceed the LFS limits nor the file zone size. If pos is under the 806 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 807 */ 808 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 809 loff_t count) 810 { 811 struct inode *inode = file_inode(file); 812 struct zonefs_inode_info *zi = ZONEFS_I(inode); 813 loff_t limit = rlimit(RLIMIT_FSIZE); 814 loff_t max_size = zi->i_max_size; 815 816 if (limit != RLIM_INFINITY) { 817 if (pos >= limit) { 818 send_sig(SIGXFSZ, current, 0); 819 return -EFBIG; 820 } 821 count = min(count, limit - pos); 822 } 823 824 if (!(file->f_flags & O_LARGEFILE)) 825 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 826 827 if (unlikely(pos >= max_size)) 828 return -EFBIG; 829 830 return min(count, max_size - pos); 831 } 832 833 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 834 { 835 struct file *file = iocb->ki_filp; 836 struct inode *inode = file_inode(file); 837 struct zonefs_inode_info *zi = ZONEFS_I(inode); 838 loff_t count; 839 840 if (IS_SWAPFILE(inode)) 841 return -ETXTBSY; 842 843 if (!iov_iter_count(from)) 844 return 0; 845 846 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 847 return -EINVAL; 848 849 if (iocb->ki_flags & IOCB_APPEND) { 850 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 851 return -EINVAL; 852 mutex_lock(&zi->i_truncate_mutex); 853 iocb->ki_pos = zi->i_wpoffset; 854 mutex_unlock(&zi->i_truncate_mutex); 855 } 856 857 count = zonefs_write_check_limits(file, iocb->ki_pos, 858 iov_iter_count(from)); 859 if (count < 0) 860 return count; 861 862 iov_iter_truncate(from, count); 863 return iov_iter_count(from); 864 } 865 866 /* 867 * Handle direct writes. For sequential zone files, this is the only possible 868 * write path. For these files, check that the user is issuing writes 869 * sequentially from the end of the file. This code assumes that the block layer 870 * delivers write requests to the device in sequential order. This is always the 871 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 872 * elevator feature is being used (e.g. mq-deadline). The block layer always 873 * automatically select such an elevator for zoned block devices during the 874 * device initialization. 875 */ 876 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 877 { 878 struct inode *inode = file_inode(iocb->ki_filp); 879 struct zonefs_inode_info *zi = ZONEFS_I(inode); 880 struct super_block *sb = inode->i_sb; 881 bool sync = is_sync_kiocb(iocb); 882 bool append = false; 883 ssize_t ret, count; 884 885 /* 886 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 887 * as this can cause write reordering (e.g. the first aio gets EAGAIN 888 * on the inode lock but the second goes through but is now unaligned). 889 */ 890 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 891 (iocb->ki_flags & IOCB_NOWAIT)) 892 return -EOPNOTSUPP; 893 894 if (iocb->ki_flags & IOCB_NOWAIT) { 895 if (!inode_trylock(inode)) 896 return -EAGAIN; 897 } else { 898 inode_lock(inode); 899 } 900 901 count = zonefs_write_checks(iocb, from); 902 if (count <= 0) { 903 ret = count; 904 goto inode_unlock; 905 } 906 907 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 908 ret = -EINVAL; 909 goto inode_unlock; 910 } 911 912 /* Enforce sequential writes (append only) in sequential zones */ 913 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 914 mutex_lock(&zi->i_truncate_mutex); 915 if (iocb->ki_pos != zi->i_wpoffset) { 916 mutex_unlock(&zi->i_truncate_mutex); 917 ret = -EINVAL; 918 goto inode_unlock; 919 } 920 mutex_unlock(&zi->i_truncate_mutex); 921 append = sync; 922 } 923 924 if (append) 925 ret = zonefs_file_dio_append(iocb, from); 926 else 927 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 928 &zonefs_write_dio_ops, 0, NULL, 0); 929 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 930 (ret > 0 || ret == -EIOCBQUEUED)) { 931 if (ret > 0) 932 count = ret; 933 934 /* 935 * Update the zone write pointer offset assuming the write 936 * operation succeeded. If it did not, the error recovery path 937 * will correct it. Also do active seq file accounting. 938 */ 939 mutex_lock(&zi->i_truncate_mutex); 940 zi->i_wpoffset += count; 941 zonefs_account_active(inode); 942 mutex_unlock(&zi->i_truncate_mutex); 943 } 944 945 inode_unlock: 946 inode_unlock(inode); 947 948 return ret; 949 } 950 951 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 952 struct iov_iter *from) 953 { 954 struct inode *inode = file_inode(iocb->ki_filp); 955 struct zonefs_inode_info *zi = ZONEFS_I(inode); 956 ssize_t ret; 957 958 /* 959 * Direct IO writes are mandatory for sequential zone files so that the 960 * write IO issuing order is preserved. 961 */ 962 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 963 return -EIO; 964 965 if (iocb->ki_flags & IOCB_NOWAIT) { 966 if (!inode_trylock(inode)) 967 return -EAGAIN; 968 } else { 969 inode_lock(inode); 970 } 971 972 ret = zonefs_write_checks(iocb, from); 973 if (ret <= 0) 974 goto inode_unlock; 975 976 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 977 if (ret > 0) 978 iocb->ki_pos += ret; 979 else if (ret == -EIO) 980 zonefs_io_error(inode, true); 981 982 inode_unlock: 983 inode_unlock(inode); 984 if (ret > 0) 985 ret = generic_write_sync(iocb, ret); 986 987 return ret; 988 } 989 990 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 991 { 992 struct inode *inode = file_inode(iocb->ki_filp); 993 994 if (unlikely(IS_IMMUTABLE(inode))) 995 return -EPERM; 996 997 if (sb_rdonly(inode->i_sb)) 998 return -EROFS; 999 1000 /* Write operations beyond the zone size are not allowed */ 1001 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 1002 return -EFBIG; 1003 1004 if (iocb->ki_flags & IOCB_DIRECT) { 1005 ssize_t ret = zonefs_file_dio_write(iocb, from); 1006 if (ret != -ENOTBLK) 1007 return ret; 1008 } 1009 1010 return zonefs_file_buffered_write(iocb, from); 1011 } 1012 1013 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 1014 int error, unsigned int flags) 1015 { 1016 if (error) { 1017 zonefs_io_error(file_inode(iocb->ki_filp), false); 1018 return error; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static const struct iomap_dio_ops zonefs_read_dio_ops = { 1025 .end_io = zonefs_file_read_dio_end_io, 1026 }; 1027 1028 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1029 { 1030 struct inode *inode = file_inode(iocb->ki_filp); 1031 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1032 struct super_block *sb = inode->i_sb; 1033 loff_t isize; 1034 ssize_t ret; 1035 1036 /* Offline zones cannot be read */ 1037 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 1038 return -EPERM; 1039 1040 if (iocb->ki_pos >= zi->i_max_size) 1041 return 0; 1042 1043 if (iocb->ki_flags & IOCB_NOWAIT) { 1044 if (!inode_trylock_shared(inode)) 1045 return -EAGAIN; 1046 } else { 1047 inode_lock_shared(inode); 1048 } 1049 1050 /* Limit read operations to written data */ 1051 mutex_lock(&zi->i_truncate_mutex); 1052 isize = i_size_read(inode); 1053 if (iocb->ki_pos >= isize) { 1054 mutex_unlock(&zi->i_truncate_mutex); 1055 ret = 0; 1056 goto inode_unlock; 1057 } 1058 iov_iter_truncate(to, isize - iocb->ki_pos); 1059 mutex_unlock(&zi->i_truncate_mutex); 1060 1061 if (iocb->ki_flags & IOCB_DIRECT) { 1062 size_t count = iov_iter_count(to); 1063 1064 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 1065 ret = -EINVAL; 1066 goto inode_unlock; 1067 } 1068 file_accessed(iocb->ki_filp); 1069 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 1070 &zonefs_read_dio_ops, 0, NULL, 0); 1071 } else { 1072 ret = generic_file_read_iter(iocb, to); 1073 if (ret == -EIO) 1074 zonefs_io_error(inode, false); 1075 } 1076 1077 inode_unlock: 1078 inode_unlock_shared(inode); 1079 1080 return ret; 1081 } 1082 1083 /* 1084 * Write open accounting is done only for sequential files. 1085 */ 1086 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 1087 struct file *file) 1088 { 1089 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1090 1091 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1092 return false; 1093 1094 if (!(file->f_mode & FMODE_WRITE)) 1095 return false; 1096 1097 return true; 1098 } 1099 1100 static int zonefs_seq_file_write_open(struct inode *inode) 1101 { 1102 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1103 int ret = 0; 1104 1105 mutex_lock(&zi->i_truncate_mutex); 1106 1107 if (!zi->i_wr_refcnt) { 1108 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1109 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 1110 1111 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1112 1113 if (sbi->s_max_wro_seq_files 1114 && wro > sbi->s_max_wro_seq_files) { 1115 atomic_dec(&sbi->s_wro_seq_files); 1116 ret = -EBUSY; 1117 goto unlock; 1118 } 1119 1120 if (i_size_read(inode) < zi->i_max_size) { 1121 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1122 if (ret) { 1123 atomic_dec(&sbi->s_wro_seq_files); 1124 goto unlock; 1125 } 1126 zi->i_flags |= ZONEFS_ZONE_OPEN; 1127 zonefs_account_active(inode); 1128 } 1129 } 1130 } 1131 1132 zi->i_wr_refcnt++; 1133 1134 unlock: 1135 mutex_unlock(&zi->i_truncate_mutex); 1136 1137 return ret; 1138 } 1139 1140 static int zonefs_file_open(struct inode *inode, struct file *file) 1141 { 1142 int ret; 1143 1144 ret = generic_file_open(inode, file); 1145 if (ret) 1146 return ret; 1147 1148 if (zonefs_seq_file_need_wro(inode, file)) 1149 return zonefs_seq_file_write_open(inode); 1150 1151 return 0; 1152 } 1153 1154 static void zonefs_seq_file_write_close(struct inode *inode) 1155 { 1156 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1157 struct super_block *sb = inode->i_sb; 1158 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1159 int ret = 0; 1160 1161 mutex_lock(&zi->i_truncate_mutex); 1162 1163 zi->i_wr_refcnt--; 1164 if (zi->i_wr_refcnt) 1165 goto unlock; 1166 1167 /* 1168 * The file zone may not be open anymore (e.g. the file was truncated to 1169 * its maximum size or it was fully written). For this case, we only 1170 * need to decrement the write open count. 1171 */ 1172 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 1173 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1174 if (ret) { 1175 __zonefs_io_error(inode, false); 1176 /* 1177 * Leaving zones explicitly open may lead to a state 1178 * where most zones cannot be written (zone resources 1179 * exhausted). So take preventive action by remounting 1180 * read-only. 1181 */ 1182 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1183 !(sb->s_flags & SB_RDONLY)) { 1184 zonefs_warn(sb, 1185 "closing zone at %llu failed %d\n", 1186 zi->i_zsector, ret); 1187 zonefs_warn(sb, 1188 "remounting filesystem read-only\n"); 1189 sb->s_flags |= SB_RDONLY; 1190 } 1191 goto unlock; 1192 } 1193 1194 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1195 zonefs_account_active(inode); 1196 } 1197 1198 atomic_dec(&sbi->s_wro_seq_files); 1199 1200 unlock: 1201 mutex_unlock(&zi->i_truncate_mutex); 1202 } 1203 1204 static int zonefs_file_release(struct inode *inode, struct file *file) 1205 { 1206 /* 1207 * If we explicitly open a zone we must close it again as well, but the 1208 * zone management operation can fail (either due to an IO error or as 1209 * the zone has gone offline or read-only). Make sure we don't fail the 1210 * close(2) for user-space. 1211 */ 1212 if (zonefs_seq_file_need_wro(inode, file)) 1213 zonefs_seq_file_write_close(inode); 1214 1215 return 0; 1216 } 1217 1218 static const struct file_operations zonefs_file_operations = { 1219 .open = zonefs_file_open, 1220 .release = zonefs_file_release, 1221 .fsync = zonefs_file_fsync, 1222 .mmap = zonefs_file_mmap, 1223 .llseek = zonefs_file_llseek, 1224 .read_iter = zonefs_file_read_iter, 1225 .write_iter = zonefs_file_write_iter, 1226 .splice_read = generic_file_splice_read, 1227 .splice_write = iter_file_splice_write, 1228 .iopoll = iocb_bio_iopoll, 1229 }; 1230 1231 static struct kmem_cache *zonefs_inode_cachep; 1232 1233 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1234 { 1235 struct zonefs_inode_info *zi; 1236 1237 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1238 if (!zi) 1239 return NULL; 1240 1241 inode_init_once(&zi->i_vnode); 1242 mutex_init(&zi->i_truncate_mutex); 1243 zi->i_wr_refcnt = 0; 1244 zi->i_flags = 0; 1245 1246 return &zi->i_vnode; 1247 } 1248 1249 static void zonefs_free_inode(struct inode *inode) 1250 { 1251 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1252 } 1253 1254 /* 1255 * File system stat. 1256 */ 1257 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1258 { 1259 struct super_block *sb = dentry->d_sb; 1260 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1261 enum zonefs_ztype t; 1262 1263 buf->f_type = ZONEFS_MAGIC; 1264 buf->f_bsize = sb->s_blocksize; 1265 buf->f_namelen = ZONEFS_NAME_MAX; 1266 1267 spin_lock(&sbi->s_lock); 1268 1269 buf->f_blocks = sbi->s_blocks; 1270 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1271 buf->f_bfree = 0; 1272 else 1273 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1274 buf->f_bavail = buf->f_bfree; 1275 1276 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1277 if (sbi->s_nr_files[t]) 1278 buf->f_files += sbi->s_nr_files[t] + 1; 1279 } 1280 buf->f_ffree = 0; 1281 1282 spin_unlock(&sbi->s_lock); 1283 1284 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1285 1286 return 0; 1287 } 1288 1289 enum { 1290 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1291 Opt_explicit_open, Opt_err, 1292 }; 1293 1294 static const match_table_t tokens = { 1295 { Opt_errors_ro, "errors=remount-ro"}, 1296 { Opt_errors_zro, "errors=zone-ro"}, 1297 { Opt_errors_zol, "errors=zone-offline"}, 1298 { Opt_errors_repair, "errors=repair"}, 1299 { Opt_explicit_open, "explicit-open" }, 1300 { Opt_err, NULL} 1301 }; 1302 1303 static int zonefs_parse_options(struct super_block *sb, char *options) 1304 { 1305 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1306 substring_t args[MAX_OPT_ARGS]; 1307 char *p; 1308 1309 if (!options) 1310 return 0; 1311 1312 while ((p = strsep(&options, ",")) != NULL) { 1313 int token; 1314 1315 if (!*p) 1316 continue; 1317 1318 token = match_token(p, tokens, args); 1319 switch (token) { 1320 case Opt_errors_ro: 1321 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1322 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1323 break; 1324 case Opt_errors_zro: 1325 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1326 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1327 break; 1328 case Opt_errors_zol: 1329 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1330 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1331 break; 1332 case Opt_errors_repair: 1333 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1334 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1335 break; 1336 case Opt_explicit_open: 1337 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1338 break; 1339 default: 1340 return -EINVAL; 1341 } 1342 } 1343 1344 return 0; 1345 } 1346 1347 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1348 { 1349 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1350 1351 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1352 seq_puts(seq, ",errors=remount-ro"); 1353 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1354 seq_puts(seq, ",errors=zone-ro"); 1355 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1356 seq_puts(seq, ",errors=zone-offline"); 1357 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1358 seq_puts(seq, ",errors=repair"); 1359 1360 return 0; 1361 } 1362 1363 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1364 { 1365 sync_filesystem(sb); 1366 1367 return zonefs_parse_options(sb, data); 1368 } 1369 1370 static const struct super_operations zonefs_sops = { 1371 .alloc_inode = zonefs_alloc_inode, 1372 .free_inode = zonefs_free_inode, 1373 .statfs = zonefs_statfs, 1374 .remount_fs = zonefs_remount, 1375 .show_options = zonefs_show_options, 1376 }; 1377 1378 static const struct inode_operations zonefs_dir_inode_operations = { 1379 .lookup = simple_lookup, 1380 .setattr = zonefs_inode_setattr, 1381 }; 1382 1383 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1384 enum zonefs_ztype type) 1385 { 1386 struct super_block *sb = parent->i_sb; 1387 1388 inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1; 1389 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1390 inode->i_op = &zonefs_dir_inode_operations; 1391 inode->i_fop = &simple_dir_operations; 1392 set_nlink(inode, 2); 1393 inc_nlink(parent); 1394 } 1395 1396 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1397 enum zonefs_ztype type) 1398 { 1399 struct super_block *sb = inode->i_sb; 1400 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1401 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1402 int ret = 0; 1403 1404 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1405 inode->i_mode = S_IFREG | sbi->s_perm; 1406 1407 zi->i_ztype = type; 1408 zi->i_zsector = zone->start; 1409 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1410 1411 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1412 zone->capacity << SECTOR_SHIFT); 1413 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1414 1415 inode->i_uid = sbi->s_uid; 1416 inode->i_gid = sbi->s_gid; 1417 inode->i_size = zi->i_wpoffset; 1418 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1419 1420 inode->i_op = &zonefs_file_inode_operations; 1421 inode->i_fop = &zonefs_file_operations; 1422 inode->i_mapping->a_ops = &zonefs_file_aops; 1423 1424 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1425 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1426 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1427 1428 mutex_lock(&zi->i_truncate_mutex); 1429 1430 /* 1431 * For sequential zones, make sure that any open zone is closed first 1432 * to ensure that the initial number of open zones is 0, in sync with 1433 * the open zone accounting done when the mount option 1434 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used. 1435 */ 1436 if (type == ZONEFS_ZTYPE_SEQ && 1437 (zone->cond == BLK_ZONE_COND_IMP_OPEN || 1438 zone->cond == BLK_ZONE_COND_EXP_OPEN)) { 1439 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1440 if (ret) 1441 goto unlock; 1442 } 1443 1444 zonefs_account_active(inode); 1445 1446 unlock: 1447 mutex_unlock(&zi->i_truncate_mutex); 1448 1449 return ret; 1450 } 1451 1452 static struct dentry *zonefs_create_inode(struct dentry *parent, 1453 const char *name, struct blk_zone *zone, 1454 enum zonefs_ztype type) 1455 { 1456 struct inode *dir = d_inode(parent); 1457 struct dentry *dentry; 1458 struct inode *inode; 1459 int ret; 1460 1461 dentry = d_alloc_name(parent, name); 1462 if (!dentry) 1463 return NULL; 1464 1465 inode = new_inode(parent->d_sb); 1466 if (!inode) 1467 goto dput; 1468 1469 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1470 if (zone) { 1471 ret = zonefs_init_file_inode(inode, zone, type); 1472 if (ret) { 1473 iput(inode); 1474 goto dput; 1475 } 1476 } else { 1477 zonefs_init_dir_inode(dir, inode, type); 1478 } 1479 1480 d_add(dentry, inode); 1481 dir->i_size++; 1482 1483 return dentry; 1484 1485 dput: 1486 dput(dentry); 1487 1488 return NULL; 1489 } 1490 1491 struct zonefs_zone_data { 1492 struct super_block *sb; 1493 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1494 struct blk_zone *zones; 1495 }; 1496 1497 /* 1498 * Create a zone group and populate it with zone files. 1499 */ 1500 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1501 enum zonefs_ztype type) 1502 { 1503 struct super_block *sb = zd->sb; 1504 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1505 struct blk_zone *zone, *next, *end; 1506 const char *zgroup_name; 1507 char *file_name; 1508 struct dentry *dir; 1509 unsigned int n = 0; 1510 int ret; 1511 1512 /* If the group is empty, there is nothing to do */ 1513 if (!zd->nr_zones[type]) 1514 return 0; 1515 1516 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1517 if (!file_name) 1518 return -ENOMEM; 1519 1520 if (type == ZONEFS_ZTYPE_CNV) 1521 zgroup_name = "cnv"; 1522 else 1523 zgroup_name = "seq"; 1524 1525 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1526 if (!dir) { 1527 ret = -ENOMEM; 1528 goto free; 1529 } 1530 1531 /* 1532 * The first zone contains the super block: skip it. 1533 */ 1534 end = zd->zones + bdev_nr_zones(sb->s_bdev); 1535 for (zone = &zd->zones[1]; zone < end; zone = next) { 1536 1537 next = zone + 1; 1538 if (zonefs_zone_type(zone) != type) 1539 continue; 1540 1541 /* 1542 * For conventional zones, contiguous zones can be aggregated 1543 * together to form larger files. Note that this overwrites the 1544 * length of the first zone of the set of contiguous zones 1545 * aggregated together. If one offline or read-only zone is 1546 * found, assume that all zones aggregated have the same 1547 * condition. 1548 */ 1549 if (type == ZONEFS_ZTYPE_CNV && 1550 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1551 for (; next < end; next++) { 1552 if (zonefs_zone_type(next) != type) 1553 break; 1554 zone->len += next->len; 1555 zone->capacity += next->capacity; 1556 if (next->cond == BLK_ZONE_COND_READONLY && 1557 zone->cond != BLK_ZONE_COND_OFFLINE) 1558 zone->cond = BLK_ZONE_COND_READONLY; 1559 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1560 zone->cond = BLK_ZONE_COND_OFFLINE; 1561 } 1562 if (zone->capacity != zone->len) { 1563 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1564 ret = -EINVAL; 1565 goto free; 1566 } 1567 } 1568 1569 /* 1570 * Use the file number within its group as file name. 1571 */ 1572 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1573 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1574 ret = -ENOMEM; 1575 goto free; 1576 } 1577 1578 n++; 1579 } 1580 1581 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1582 zgroup_name, n, n > 1 ? "s" : ""); 1583 1584 sbi->s_nr_files[type] = n; 1585 ret = 0; 1586 1587 free: 1588 kfree(file_name); 1589 1590 return ret; 1591 } 1592 1593 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1594 void *data) 1595 { 1596 struct zonefs_zone_data *zd = data; 1597 1598 /* 1599 * Count the number of usable zones: the first zone at index 0 contains 1600 * the super block and is ignored. 1601 */ 1602 switch (zone->type) { 1603 case BLK_ZONE_TYPE_CONVENTIONAL: 1604 zone->wp = zone->start + zone->len; 1605 if (idx) 1606 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1607 break; 1608 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1609 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1610 if (idx) 1611 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1612 break; 1613 default: 1614 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1615 zone->type); 1616 return -EIO; 1617 } 1618 1619 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1620 1621 return 0; 1622 } 1623 1624 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1625 { 1626 struct block_device *bdev = zd->sb->s_bdev; 1627 int ret; 1628 1629 zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone), 1630 GFP_KERNEL); 1631 if (!zd->zones) 1632 return -ENOMEM; 1633 1634 /* Get zones information from the device */ 1635 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1636 zonefs_get_zone_info_cb, zd); 1637 if (ret < 0) { 1638 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1639 return ret; 1640 } 1641 1642 if (ret != bdev_nr_zones(bdev)) { 1643 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1644 ret, bdev_nr_zones(bdev)); 1645 return -EIO; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1652 { 1653 kvfree(zd->zones); 1654 } 1655 1656 /* 1657 * Read super block information from the device. 1658 */ 1659 static int zonefs_read_super(struct super_block *sb) 1660 { 1661 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1662 struct zonefs_super *super; 1663 u32 crc, stored_crc; 1664 struct page *page; 1665 struct bio_vec bio_vec; 1666 struct bio bio; 1667 int ret; 1668 1669 page = alloc_page(GFP_KERNEL); 1670 if (!page) 1671 return -ENOMEM; 1672 1673 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1674 bio.bi_iter.bi_sector = 0; 1675 bio_add_page(&bio, page, PAGE_SIZE, 0); 1676 1677 ret = submit_bio_wait(&bio); 1678 if (ret) 1679 goto free_page; 1680 1681 super = page_address(page); 1682 1683 ret = -EINVAL; 1684 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1685 goto free_page; 1686 1687 stored_crc = le32_to_cpu(super->s_crc); 1688 super->s_crc = 0; 1689 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1690 if (crc != stored_crc) { 1691 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1692 crc, stored_crc); 1693 goto free_page; 1694 } 1695 1696 sbi->s_features = le64_to_cpu(super->s_features); 1697 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1698 zonefs_err(sb, "Unknown features set 0x%llx\n", 1699 sbi->s_features); 1700 goto free_page; 1701 } 1702 1703 if (sbi->s_features & ZONEFS_F_UID) { 1704 sbi->s_uid = make_kuid(current_user_ns(), 1705 le32_to_cpu(super->s_uid)); 1706 if (!uid_valid(sbi->s_uid)) { 1707 zonefs_err(sb, "Invalid UID feature\n"); 1708 goto free_page; 1709 } 1710 } 1711 1712 if (sbi->s_features & ZONEFS_F_GID) { 1713 sbi->s_gid = make_kgid(current_user_ns(), 1714 le32_to_cpu(super->s_gid)); 1715 if (!gid_valid(sbi->s_gid)) { 1716 zonefs_err(sb, "Invalid GID feature\n"); 1717 goto free_page; 1718 } 1719 } 1720 1721 if (sbi->s_features & ZONEFS_F_PERM) 1722 sbi->s_perm = le32_to_cpu(super->s_perm); 1723 1724 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1725 zonefs_err(sb, "Reserved area is being used\n"); 1726 goto free_page; 1727 } 1728 1729 import_uuid(&sbi->s_uuid, super->s_uuid); 1730 ret = 0; 1731 1732 free_page: 1733 __free_page(page); 1734 1735 return ret; 1736 } 1737 1738 /* 1739 * Check that the device is zoned. If it is, get the list of zones and create 1740 * sub-directories and files according to the device zone configuration and 1741 * format options. 1742 */ 1743 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1744 { 1745 struct zonefs_zone_data zd; 1746 struct zonefs_sb_info *sbi; 1747 struct inode *inode; 1748 enum zonefs_ztype t; 1749 int ret; 1750 1751 if (!bdev_is_zoned(sb->s_bdev)) { 1752 zonefs_err(sb, "Not a zoned block device\n"); 1753 return -EINVAL; 1754 } 1755 1756 /* 1757 * Initialize super block information: the maximum file size is updated 1758 * when the zone files are created so that the format option 1759 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1760 * beyond the zone size is taken into account. 1761 */ 1762 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1763 if (!sbi) 1764 return -ENOMEM; 1765 1766 spin_lock_init(&sbi->s_lock); 1767 sb->s_fs_info = sbi; 1768 sb->s_magic = ZONEFS_MAGIC; 1769 sb->s_maxbytes = 0; 1770 sb->s_op = &zonefs_sops; 1771 sb->s_time_gran = 1; 1772 1773 /* 1774 * The block size is set to the device zone write granularity to ensure 1775 * that write operations are always aligned according to the device 1776 * interface constraints. 1777 */ 1778 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1779 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1780 sbi->s_uid = GLOBAL_ROOT_UID; 1781 sbi->s_gid = GLOBAL_ROOT_GID; 1782 sbi->s_perm = 0640; 1783 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1784 1785 atomic_set(&sbi->s_wro_seq_files, 0); 1786 sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev); 1787 atomic_set(&sbi->s_active_seq_files, 0); 1788 sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev); 1789 1790 ret = zonefs_read_super(sb); 1791 if (ret) 1792 return ret; 1793 1794 ret = zonefs_parse_options(sb, data); 1795 if (ret) 1796 return ret; 1797 1798 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1799 zd.sb = sb; 1800 ret = zonefs_get_zone_info(&zd); 1801 if (ret) 1802 goto cleanup; 1803 1804 ret = zonefs_sysfs_register(sb); 1805 if (ret) 1806 goto cleanup; 1807 1808 zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev)); 1809 1810 if (!sbi->s_max_wro_seq_files && 1811 !sbi->s_max_active_seq_files && 1812 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1813 zonefs_info(sb, 1814 "No open and active zone limits. Ignoring explicit_open mount option\n"); 1815 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1816 } 1817 1818 /* Create root directory inode */ 1819 ret = -ENOMEM; 1820 inode = new_inode(sb); 1821 if (!inode) 1822 goto cleanup; 1823 1824 inode->i_ino = bdev_nr_zones(sb->s_bdev); 1825 inode->i_mode = S_IFDIR | 0555; 1826 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1827 inode->i_op = &zonefs_dir_inode_operations; 1828 inode->i_fop = &simple_dir_operations; 1829 set_nlink(inode, 2); 1830 1831 sb->s_root = d_make_root(inode); 1832 if (!sb->s_root) 1833 goto cleanup; 1834 1835 /* Create and populate files in zone groups directories */ 1836 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1837 ret = zonefs_create_zgroup(&zd, t); 1838 if (ret) 1839 break; 1840 } 1841 1842 cleanup: 1843 zonefs_cleanup_zone_info(&zd); 1844 1845 return ret; 1846 } 1847 1848 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1849 int flags, const char *dev_name, void *data) 1850 { 1851 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1852 } 1853 1854 static void zonefs_kill_super(struct super_block *sb) 1855 { 1856 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1857 1858 if (sb->s_root) 1859 d_genocide(sb->s_root); 1860 1861 zonefs_sysfs_unregister(sb); 1862 kill_block_super(sb); 1863 kfree(sbi); 1864 } 1865 1866 /* 1867 * File system definition and registration. 1868 */ 1869 static struct file_system_type zonefs_type = { 1870 .owner = THIS_MODULE, 1871 .name = "zonefs", 1872 .mount = zonefs_mount, 1873 .kill_sb = zonefs_kill_super, 1874 .fs_flags = FS_REQUIRES_DEV, 1875 }; 1876 1877 static int __init zonefs_init_inodecache(void) 1878 { 1879 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1880 sizeof(struct zonefs_inode_info), 0, 1881 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1882 NULL); 1883 if (zonefs_inode_cachep == NULL) 1884 return -ENOMEM; 1885 return 0; 1886 } 1887 1888 static void zonefs_destroy_inodecache(void) 1889 { 1890 /* 1891 * Make sure all delayed rcu free inodes are flushed before we 1892 * destroy the inode cache. 1893 */ 1894 rcu_barrier(); 1895 kmem_cache_destroy(zonefs_inode_cachep); 1896 } 1897 1898 static int __init zonefs_init(void) 1899 { 1900 int ret; 1901 1902 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1903 1904 ret = zonefs_init_inodecache(); 1905 if (ret) 1906 return ret; 1907 1908 ret = register_filesystem(&zonefs_type); 1909 if (ret) 1910 goto destroy_inodecache; 1911 1912 ret = zonefs_sysfs_init(); 1913 if (ret) 1914 goto unregister_fs; 1915 1916 return 0; 1917 1918 unregister_fs: 1919 unregister_filesystem(&zonefs_type); 1920 destroy_inodecache: 1921 zonefs_destroy_inodecache(); 1922 1923 return ret; 1924 } 1925 1926 static void __exit zonefs_exit(void) 1927 { 1928 zonefs_sysfs_exit(); 1929 zonefs_destroy_inodecache(); 1930 unregister_filesystem(&zonefs_type); 1931 } 1932 1933 MODULE_AUTHOR("Damien Le Moal"); 1934 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1935 MODULE_LICENSE("GPL"); 1936 MODULE_ALIAS_FS("zonefs"); 1937 module_init(zonefs_init); 1938 module_exit(zonefs_exit); 1939