xref: /linux/fs/zonefs/super.c (revision 3c4fc7bf4c9e66fe71abcbf93f62f4ddb89b7f15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Manage the active zone count. Called with zi->i_truncate_mutex held.
32  */
33 static void zonefs_account_active(struct inode *inode)
34 {
35 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
36 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
37 
38 	lockdep_assert_held(&zi->i_truncate_mutex);
39 
40 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
41 		return;
42 
43 	/*
44 	 * If the zone is active, that is, if it is explicitly open or
45 	 * partially written, check if it was already accounted as active.
46 	 */
47 	if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
48 	    (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
49 		if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
50 			zi->i_flags |= ZONEFS_ZONE_ACTIVE;
51 			atomic_inc(&sbi->s_active_seq_files);
52 		}
53 		return;
54 	}
55 
56 	/* The zone is not active. If it was, update the active count */
57 	if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
58 		zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
59 		atomic_dec(&sbi->s_active_seq_files);
60 	}
61 }
62 
63 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op)
64 {
65 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
66 	int ret;
67 
68 	lockdep_assert_held(&zi->i_truncate_mutex);
69 
70 	/*
71 	 * With ZNS drives, closing an explicitly open zone that has not been
72 	 * written will change the zone state to "closed", that is, the zone
73 	 * will remain active. Since this can then cause failure of explicit
74 	 * open operation on other zones if the drive active zone resources
75 	 * are exceeded, make sure that the zone does not remain active by
76 	 * resetting it.
77 	 */
78 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
79 		op = REQ_OP_ZONE_RESET;
80 
81 	trace_zonefs_zone_mgmt(inode, op);
82 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
83 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
84 	if (ret) {
85 		zonefs_err(inode->i_sb,
86 			   "Zone management operation %s at %llu failed %d\n",
87 			   blk_op_str(op), zi->i_zsector, ret);
88 		return ret;
89 	}
90 
91 	return 0;
92 }
93 
94 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
95 {
96 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
97 
98 	i_size_write(inode, isize);
99 	/*
100 	 * A full zone is no longer open/active and does not need
101 	 * explicit closing.
102 	 */
103 	if (isize >= zi->i_max_size) {
104 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
105 
106 		if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
107 			atomic_dec(&sbi->s_active_seq_files);
108 		zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
109 	}
110 }
111 
112 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
113 				   loff_t length, unsigned int flags,
114 				   struct iomap *iomap, struct iomap *srcmap)
115 {
116 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
117 	struct super_block *sb = inode->i_sb;
118 	loff_t isize;
119 
120 	/*
121 	 * All blocks are always mapped below EOF. If reading past EOF,
122 	 * act as if there is a hole up to the file maximum size.
123 	 */
124 	mutex_lock(&zi->i_truncate_mutex);
125 	iomap->bdev = inode->i_sb->s_bdev;
126 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
127 	isize = i_size_read(inode);
128 	if (iomap->offset >= isize) {
129 		iomap->type = IOMAP_HOLE;
130 		iomap->addr = IOMAP_NULL_ADDR;
131 		iomap->length = length;
132 	} else {
133 		iomap->type = IOMAP_MAPPED;
134 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 		iomap->length = isize - iomap->offset;
136 	}
137 	mutex_unlock(&zi->i_truncate_mutex);
138 
139 	trace_zonefs_iomap_begin(inode, iomap);
140 
141 	return 0;
142 }
143 
144 static const struct iomap_ops zonefs_read_iomap_ops = {
145 	.iomap_begin	= zonefs_read_iomap_begin,
146 };
147 
148 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
149 				    loff_t length, unsigned int flags,
150 				    struct iomap *iomap, struct iomap *srcmap)
151 {
152 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
153 	struct super_block *sb = inode->i_sb;
154 	loff_t isize;
155 
156 	/* All write I/Os should always be within the file maximum size */
157 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
158 		return -EIO;
159 
160 	/*
161 	 * Sequential zones can only accept direct writes. This is already
162 	 * checked when writes are issued, so warn if we see a page writeback
163 	 * operation.
164 	 */
165 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
166 			 !(flags & IOMAP_DIRECT)))
167 		return -EIO;
168 
169 	/*
170 	 * For conventional zones, all blocks are always mapped. For sequential
171 	 * zones, all blocks after always mapped below the inode size (zone
172 	 * write pointer) and unwriten beyond.
173 	 */
174 	mutex_lock(&zi->i_truncate_mutex);
175 	iomap->bdev = inode->i_sb->s_bdev;
176 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
177 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
178 	isize = i_size_read(inode);
179 	if (iomap->offset >= isize) {
180 		iomap->type = IOMAP_UNWRITTEN;
181 		iomap->length = zi->i_max_size - iomap->offset;
182 	} else {
183 		iomap->type = IOMAP_MAPPED;
184 		iomap->length = isize - iomap->offset;
185 	}
186 	mutex_unlock(&zi->i_truncate_mutex);
187 
188 	trace_zonefs_iomap_begin(inode, iomap);
189 
190 	return 0;
191 }
192 
193 static const struct iomap_ops zonefs_write_iomap_ops = {
194 	.iomap_begin	= zonefs_write_iomap_begin,
195 };
196 
197 static int zonefs_read_folio(struct file *unused, struct folio *folio)
198 {
199 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
200 }
201 
202 static void zonefs_readahead(struct readahead_control *rac)
203 {
204 	iomap_readahead(rac, &zonefs_read_iomap_ops);
205 }
206 
207 /*
208  * Map blocks for page writeback. This is used only on conventional zone files,
209  * which implies that the page range can only be within the fixed inode size.
210  */
211 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
212 				   struct inode *inode, loff_t offset)
213 {
214 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
215 
216 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
217 		return -EIO;
218 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
219 		return -EIO;
220 
221 	/* If the mapping is already OK, nothing needs to be done */
222 	if (offset >= wpc->iomap.offset &&
223 	    offset < wpc->iomap.offset + wpc->iomap.length)
224 		return 0;
225 
226 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
227 					IOMAP_WRITE, &wpc->iomap, NULL);
228 }
229 
230 static const struct iomap_writeback_ops zonefs_writeback_ops = {
231 	.map_blocks		= zonefs_write_map_blocks,
232 };
233 
234 static int zonefs_writepages(struct address_space *mapping,
235 			     struct writeback_control *wbc)
236 {
237 	struct iomap_writepage_ctx wpc = { };
238 
239 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
240 }
241 
242 static int zonefs_swap_activate(struct swap_info_struct *sis,
243 				struct file *swap_file, sector_t *span)
244 {
245 	struct inode *inode = file_inode(swap_file);
246 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
247 
248 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
249 		zonefs_err(inode->i_sb,
250 			   "swap file: not a conventional zone file\n");
251 		return -EINVAL;
252 	}
253 
254 	return iomap_swapfile_activate(sis, swap_file, span,
255 				       &zonefs_read_iomap_ops);
256 }
257 
258 static const struct address_space_operations zonefs_file_aops = {
259 	.read_folio		= zonefs_read_folio,
260 	.readahead		= zonefs_readahead,
261 	.writepages		= zonefs_writepages,
262 	.dirty_folio		= filemap_dirty_folio,
263 	.release_folio		= iomap_release_folio,
264 	.invalidate_folio	= iomap_invalidate_folio,
265 	.migrate_folio		= filemap_migrate_folio,
266 	.is_partially_uptodate	= iomap_is_partially_uptodate,
267 	.error_remove_page	= generic_error_remove_page,
268 	.direct_IO		= noop_direct_IO,
269 	.swap_activate		= zonefs_swap_activate,
270 };
271 
272 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
273 {
274 	struct super_block *sb = inode->i_sb;
275 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
276 	loff_t old_isize = i_size_read(inode);
277 	loff_t nr_blocks;
278 
279 	if (new_isize == old_isize)
280 		return;
281 
282 	spin_lock(&sbi->s_lock);
283 
284 	/*
285 	 * This may be called for an update after an IO error.
286 	 * So beware of the values seen.
287 	 */
288 	if (new_isize < old_isize) {
289 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
290 		if (sbi->s_used_blocks > nr_blocks)
291 			sbi->s_used_blocks -= nr_blocks;
292 		else
293 			sbi->s_used_blocks = 0;
294 	} else {
295 		sbi->s_used_blocks +=
296 			(new_isize - old_isize) >> sb->s_blocksize_bits;
297 		if (sbi->s_used_blocks > sbi->s_blocks)
298 			sbi->s_used_blocks = sbi->s_blocks;
299 	}
300 
301 	spin_unlock(&sbi->s_lock);
302 }
303 
304 /*
305  * Check a zone condition and adjust its file inode access permissions for
306  * offline and readonly zones. Return the inode size corresponding to the
307  * amount of readable data in the zone.
308  */
309 static loff_t zonefs_check_zone_condition(struct inode *inode,
310 					  struct blk_zone *zone, bool warn,
311 					  bool mount)
312 {
313 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
314 
315 	switch (zone->cond) {
316 	case BLK_ZONE_COND_OFFLINE:
317 		/*
318 		 * Dead zone: make the inode immutable, disable all accesses
319 		 * and set the file size to 0 (zone wp set to zone start).
320 		 */
321 		if (warn)
322 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
323 				    inode->i_ino);
324 		inode->i_flags |= S_IMMUTABLE;
325 		inode->i_mode &= ~0777;
326 		zone->wp = zone->start;
327 		return 0;
328 	case BLK_ZONE_COND_READONLY:
329 		/*
330 		 * The write pointer of read-only zones is invalid. If such a
331 		 * zone is found during mount, the file size cannot be retrieved
332 		 * so we treat the zone as offline (mount == true case).
333 		 * Otherwise, keep the file size as it was when last updated
334 		 * so that the user can recover data. In both cases, writes are
335 		 * always disabled for the zone.
336 		 */
337 		if (warn)
338 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
339 				    inode->i_ino);
340 		inode->i_flags |= S_IMMUTABLE;
341 		if (mount) {
342 			zone->cond = BLK_ZONE_COND_OFFLINE;
343 			inode->i_mode &= ~0777;
344 			zone->wp = zone->start;
345 			return 0;
346 		}
347 		inode->i_mode &= ~0222;
348 		return i_size_read(inode);
349 	case BLK_ZONE_COND_FULL:
350 		/* The write pointer of full zones is invalid. */
351 		return zi->i_max_size;
352 	default:
353 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
354 			return zi->i_max_size;
355 		return (zone->wp - zone->start) << SECTOR_SHIFT;
356 	}
357 }
358 
359 struct zonefs_ioerr_data {
360 	struct inode	*inode;
361 	bool		write;
362 };
363 
364 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
365 			      void *data)
366 {
367 	struct zonefs_ioerr_data *err = data;
368 	struct inode *inode = err->inode;
369 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
370 	struct super_block *sb = inode->i_sb;
371 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
372 	loff_t isize, data_size;
373 
374 	/*
375 	 * Check the zone condition: if the zone is not "bad" (offline or
376 	 * read-only), read errors are simply signaled to the IO issuer as long
377 	 * as there is no inconsistency between the inode size and the amount of
378 	 * data writen in the zone (data_size).
379 	 */
380 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
381 	isize = i_size_read(inode);
382 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
383 	    zone->cond != BLK_ZONE_COND_READONLY &&
384 	    !err->write && isize == data_size)
385 		return 0;
386 
387 	/*
388 	 * At this point, we detected either a bad zone or an inconsistency
389 	 * between the inode size and the amount of data written in the zone.
390 	 * For the latter case, the cause may be a write IO error or an external
391 	 * action on the device. Two error patterns exist:
392 	 * 1) The inode size is lower than the amount of data in the zone:
393 	 *    a write operation partially failed and data was writen at the end
394 	 *    of the file. This can happen in the case of a large direct IO
395 	 *    needing several BIOs and/or write requests to be processed.
396 	 * 2) The inode size is larger than the amount of data in the zone:
397 	 *    this can happen with a deferred write error with the use of the
398 	 *    device side write cache after getting successful write IO
399 	 *    completions. Other possibilities are (a) an external corruption,
400 	 *    e.g. an application reset the zone directly, or (b) the device
401 	 *    has a serious problem (e.g. firmware bug).
402 	 *
403 	 * In all cases, warn about inode size inconsistency and handle the
404 	 * IO error according to the zone condition and to the mount options.
405 	 */
406 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
407 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
408 			    inode->i_ino, isize, data_size);
409 
410 	/*
411 	 * First handle bad zones signaled by hardware. The mount options
412 	 * errors=zone-ro and errors=zone-offline result in changing the
413 	 * zone condition to read-only and offline respectively, as if the
414 	 * condition was signaled by the hardware.
415 	 */
416 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
417 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
418 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
419 			    inode->i_ino);
420 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
421 			zone->cond = BLK_ZONE_COND_OFFLINE;
422 			data_size = zonefs_check_zone_condition(inode, zone,
423 								false, false);
424 		}
425 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
426 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
427 		zonefs_warn(sb, "inode %lu: write access disabled\n",
428 			    inode->i_ino);
429 		if (zone->cond != BLK_ZONE_COND_READONLY) {
430 			zone->cond = BLK_ZONE_COND_READONLY;
431 			data_size = zonefs_check_zone_condition(inode, zone,
432 								false, false);
433 		}
434 	}
435 
436 	/*
437 	 * If the filesystem is mounted with the explicit-open mount option, we
438 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
439 	 * the read-only or offline condition, to avoid attempting an explicit
440 	 * close of the zone when the inode file is closed.
441 	 */
442 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
443 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
444 	     zone->cond == BLK_ZONE_COND_READONLY))
445 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
446 
447 	/*
448 	 * If error=remount-ro was specified, any error result in remounting
449 	 * the volume as read-only.
450 	 */
451 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
452 		zonefs_warn(sb, "remounting filesystem read-only\n");
453 		sb->s_flags |= SB_RDONLY;
454 	}
455 
456 	/*
457 	 * Update block usage stats and the inode size  to prevent access to
458 	 * invalid data.
459 	 */
460 	zonefs_update_stats(inode, data_size);
461 	zonefs_i_size_write(inode, data_size);
462 	zi->i_wpoffset = data_size;
463 	zonefs_account_active(inode);
464 
465 	return 0;
466 }
467 
468 /*
469  * When an file IO error occurs, check the file zone to see if there is a change
470  * in the zone condition (e.g. offline or read-only). For a failed write to a
471  * sequential zone, the zone write pointer position must also be checked to
472  * eventually correct the file size and zonefs inode write pointer offset
473  * (which can be out of sync with the drive due to partial write failures).
474  */
475 static void __zonefs_io_error(struct inode *inode, bool write)
476 {
477 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
478 	struct super_block *sb = inode->i_sb;
479 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
480 	unsigned int noio_flag;
481 	unsigned int nr_zones =
482 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
483 	struct zonefs_ioerr_data err = {
484 		.inode = inode,
485 		.write = write,
486 	};
487 	int ret;
488 
489 	/*
490 	 * Memory allocations in blkdev_report_zones() can trigger a memory
491 	 * reclaim which may in turn cause a recursion into zonefs as well as
492 	 * struct request allocations for the same device. The former case may
493 	 * end up in a deadlock on the inode truncate mutex, while the latter
494 	 * may prevent IO forward progress. Executing the report zones under
495 	 * the GFP_NOIO context avoids both problems.
496 	 */
497 	noio_flag = memalloc_noio_save();
498 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
499 				  zonefs_io_error_cb, &err);
500 	if (ret != nr_zones)
501 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
502 			   inode->i_ino, ret);
503 	memalloc_noio_restore(noio_flag);
504 }
505 
506 static void zonefs_io_error(struct inode *inode, bool write)
507 {
508 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
509 
510 	mutex_lock(&zi->i_truncate_mutex);
511 	__zonefs_io_error(inode, write);
512 	mutex_unlock(&zi->i_truncate_mutex);
513 }
514 
515 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
516 {
517 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
518 	loff_t old_isize;
519 	enum req_op op;
520 	int ret = 0;
521 
522 	/*
523 	 * Only sequential zone files can be truncated and truncation is allowed
524 	 * only down to a 0 size, which is equivalent to a zone reset, and to
525 	 * the maximum file size, which is equivalent to a zone finish.
526 	 */
527 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
528 		return -EPERM;
529 
530 	if (!isize)
531 		op = REQ_OP_ZONE_RESET;
532 	else if (isize == zi->i_max_size)
533 		op = REQ_OP_ZONE_FINISH;
534 	else
535 		return -EPERM;
536 
537 	inode_dio_wait(inode);
538 
539 	/* Serialize against page faults */
540 	filemap_invalidate_lock(inode->i_mapping);
541 
542 	/* Serialize against zonefs_iomap_begin() */
543 	mutex_lock(&zi->i_truncate_mutex);
544 
545 	old_isize = i_size_read(inode);
546 	if (isize == old_isize)
547 		goto unlock;
548 
549 	ret = zonefs_zone_mgmt(inode, op);
550 	if (ret)
551 		goto unlock;
552 
553 	/*
554 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
555 	 * take care of open zones.
556 	 */
557 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
558 		/*
559 		 * Truncating a zone to EMPTY or FULL is the equivalent of
560 		 * closing the zone. For a truncation to 0, we need to
561 		 * re-open the zone to ensure new writes can be processed.
562 		 * For a truncation to the maximum file size, the zone is
563 		 * closed and writes cannot be accepted anymore, so clear
564 		 * the open flag.
565 		 */
566 		if (!isize)
567 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
568 		else
569 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
570 	}
571 
572 	zonefs_update_stats(inode, isize);
573 	truncate_setsize(inode, isize);
574 	zi->i_wpoffset = isize;
575 	zonefs_account_active(inode);
576 
577 unlock:
578 	mutex_unlock(&zi->i_truncate_mutex);
579 	filemap_invalidate_unlock(inode->i_mapping);
580 
581 	return ret;
582 }
583 
584 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
585 				struct dentry *dentry, struct iattr *iattr)
586 {
587 	struct inode *inode = d_inode(dentry);
588 	int ret;
589 
590 	if (unlikely(IS_IMMUTABLE(inode)))
591 		return -EPERM;
592 
593 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
594 	if (ret)
595 		return ret;
596 
597 	/*
598 	 * Since files and directories cannot be created nor deleted, do not
599 	 * allow setting any write attributes on the sub-directories grouping
600 	 * files by zone type.
601 	 */
602 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
603 	    (iattr->ia_mode & 0222))
604 		return -EPERM;
605 
606 	if (((iattr->ia_valid & ATTR_UID) &&
607 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
608 	    ((iattr->ia_valid & ATTR_GID) &&
609 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
610 		ret = dquot_transfer(mnt_userns, inode, iattr);
611 		if (ret)
612 			return ret;
613 	}
614 
615 	if (iattr->ia_valid & ATTR_SIZE) {
616 		ret = zonefs_file_truncate(inode, iattr->ia_size);
617 		if (ret)
618 			return ret;
619 	}
620 
621 	setattr_copy(&init_user_ns, inode, iattr);
622 
623 	return 0;
624 }
625 
626 static const struct inode_operations zonefs_file_inode_operations = {
627 	.setattr	= zonefs_inode_setattr,
628 };
629 
630 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
631 			     int datasync)
632 {
633 	struct inode *inode = file_inode(file);
634 	int ret = 0;
635 
636 	if (unlikely(IS_IMMUTABLE(inode)))
637 		return -EPERM;
638 
639 	/*
640 	 * Since only direct writes are allowed in sequential files, page cache
641 	 * flush is needed only for conventional zone files.
642 	 */
643 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
644 		ret = file_write_and_wait_range(file, start, end);
645 	if (!ret)
646 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
647 
648 	if (ret)
649 		zonefs_io_error(inode, true);
650 
651 	return ret;
652 }
653 
654 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
655 {
656 	struct inode *inode = file_inode(vmf->vma->vm_file);
657 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
658 	vm_fault_t ret;
659 
660 	if (unlikely(IS_IMMUTABLE(inode)))
661 		return VM_FAULT_SIGBUS;
662 
663 	/*
664 	 * Sanity check: only conventional zone files can have shared
665 	 * writeable mappings.
666 	 */
667 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
668 		return VM_FAULT_NOPAGE;
669 
670 	sb_start_pagefault(inode->i_sb);
671 	file_update_time(vmf->vma->vm_file);
672 
673 	/* Serialize against truncates */
674 	filemap_invalidate_lock_shared(inode->i_mapping);
675 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
676 	filemap_invalidate_unlock_shared(inode->i_mapping);
677 
678 	sb_end_pagefault(inode->i_sb);
679 	return ret;
680 }
681 
682 static const struct vm_operations_struct zonefs_file_vm_ops = {
683 	.fault		= filemap_fault,
684 	.map_pages	= filemap_map_pages,
685 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
686 };
687 
688 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
689 {
690 	/*
691 	 * Conventional zones accept random writes, so their files can support
692 	 * shared writable mappings. For sequential zone files, only read
693 	 * mappings are possible since there are no guarantees for write
694 	 * ordering between msync() and page cache writeback.
695 	 */
696 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
697 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
698 		return -EINVAL;
699 
700 	file_accessed(file);
701 	vma->vm_ops = &zonefs_file_vm_ops;
702 
703 	return 0;
704 }
705 
706 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
707 {
708 	loff_t isize = i_size_read(file_inode(file));
709 
710 	/*
711 	 * Seeks are limited to below the zone size for conventional zones
712 	 * and below the zone write pointer for sequential zones. In both
713 	 * cases, this limit is the inode size.
714 	 */
715 	return generic_file_llseek_size(file, offset, whence, isize, isize);
716 }
717 
718 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
719 					int error, unsigned int flags)
720 {
721 	struct inode *inode = file_inode(iocb->ki_filp);
722 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
723 
724 	if (error) {
725 		zonefs_io_error(inode, true);
726 		return error;
727 	}
728 
729 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
730 		/*
731 		 * Note that we may be seeing completions out of order,
732 		 * but that is not a problem since a write completed
733 		 * successfully necessarily means that all preceding writes
734 		 * were also successful. So we can safely increase the inode
735 		 * size to the write end location.
736 		 */
737 		mutex_lock(&zi->i_truncate_mutex);
738 		if (i_size_read(inode) < iocb->ki_pos + size) {
739 			zonefs_update_stats(inode, iocb->ki_pos + size);
740 			zonefs_i_size_write(inode, iocb->ki_pos + size);
741 		}
742 		mutex_unlock(&zi->i_truncate_mutex);
743 	}
744 
745 	return 0;
746 }
747 
748 static const struct iomap_dio_ops zonefs_write_dio_ops = {
749 	.end_io			= zonefs_file_write_dio_end_io,
750 };
751 
752 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
753 {
754 	struct inode *inode = file_inode(iocb->ki_filp);
755 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
756 	struct block_device *bdev = inode->i_sb->s_bdev;
757 	unsigned int max = bdev_max_zone_append_sectors(bdev);
758 	struct bio *bio;
759 	ssize_t size;
760 	int nr_pages;
761 	ssize_t ret;
762 
763 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
764 	iov_iter_truncate(from, max);
765 
766 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
767 	if (!nr_pages)
768 		return 0;
769 
770 	bio = bio_alloc(bdev, nr_pages,
771 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
772 	bio->bi_iter.bi_sector = zi->i_zsector;
773 	bio->bi_ioprio = iocb->ki_ioprio;
774 	if (iocb_is_dsync(iocb))
775 		bio->bi_opf |= REQ_FUA;
776 
777 	ret = bio_iov_iter_get_pages(bio, from);
778 	if (unlikely(ret))
779 		goto out_release;
780 
781 	size = bio->bi_iter.bi_size;
782 	task_io_account_write(size);
783 
784 	if (iocb->ki_flags & IOCB_HIPRI)
785 		bio_set_polled(bio, iocb);
786 
787 	ret = submit_bio_wait(bio);
788 
789 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
790 	trace_zonefs_file_dio_append(inode, size, ret);
791 
792 out_release:
793 	bio_release_pages(bio, false);
794 	bio_put(bio);
795 
796 	if (ret >= 0) {
797 		iocb->ki_pos += size;
798 		return size;
799 	}
800 
801 	return ret;
802 }
803 
804 /*
805  * Do not exceed the LFS limits nor the file zone size. If pos is under the
806  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
807  */
808 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
809 					loff_t count)
810 {
811 	struct inode *inode = file_inode(file);
812 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
813 	loff_t limit = rlimit(RLIMIT_FSIZE);
814 	loff_t max_size = zi->i_max_size;
815 
816 	if (limit != RLIM_INFINITY) {
817 		if (pos >= limit) {
818 			send_sig(SIGXFSZ, current, 0);
819 			return -EFBIG;
820 		}
821 		count = min(count, limit - pos);
822 	}
823 
824 	if (!(file->f_flags & O_LARGEFILE))
825 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
826 
827 	if (unlikely(pos >= max_size))
828 		return -EFBIG;
829 
830 	return min(count, max_size - pos);
831 }
832 
833 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
834 {
835 	struct file *file = iocb->ki_filp;
836 	struct inode *inode = file_inode(file);
837 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
838 	loff_t count;
839 
840 	if (IS_SWAPFILE(inode))
841 		return -ETXTBSY;
842 
843 	if (!iov_iter_count(from))
844 		return 0;
845 
846 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
847 		return -EINVAL;
848 
849 	if (iocb->ki_flags & IOCB_APPEND) {
850 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
851 			return -EINVAL;
852 		mutex_lock(&zi->i_truncate_mutex);
853 		iocb->ki_pos = zi->i_wpoffset;
854 		mutex_unlock(&zi->i_truncate_mutex);
855 	}
856 
857 	count = zonefs_write_check_limits(file, iocb->ki_pos,
858 					  iov_iter_count(from));
859 	if (count < 0)
860 		return count;
861 
862 	iov_iter_truncate(from, count);
863 	return iov_iter_count(from);
864 }
865 
866 /*
867  * Handle direct writes. For sequential zone files, this is the only possible
868  * write path. For these files, check that the user is issuing writes
869  * sequentially from the end of the file. This code assumes that the block layer
870  * delivers write requests to the device in sequential order. This is always the
871  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
872  * elevator feature is being used (e.g. mq-deadline). The block layer always
873  * automatically select such an elevator for zoned block devices during the
874  * device initialization.
875  */
876 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
877 {
878 	struct inode *inode = file_inode(iocb->ki_filp);
879 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
880 	struct super_block *sb = inode->i_sb;
881 	bool sync = is_sync_kiocb(iocb);
882 	bool append = false;
883 	ssize_t ret, count;
884 
885 	/*
886 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
887 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
888 	 * on the inode lock but the second goes through but is now unaligned).
889 	 */
890 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
891 	    (iocb->ki_flags & IOCB_NOWAIT))
892 		return -EOPNOTSUPP;
893 
894 	if (iocb->ki_flags & IOCB_NOWAIT) {
895 		if (!inode_trylock(inode))
896 			return -EAGAIN;
897 	} else {
898 		inode_lock(inode);
899 	}
900 
901 	count = zonefs_write_checks(iocb, from);
902 	if (count <= 0) {
903 		ret = count;
904 		goto inode_unlock;
905 	}
906 
907 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
908 		ret = -EINVAL;
909 		goto inode_unlock;
910 	}
911 
912 	/* Enforce sequential writes (append only) in sequential zones */
913 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
914 		mutex_lock(&zi->i_truncate_mutex);
915 		if (iocb->ki_pos != zi->i_wpoffset) {
916 			mutex_unlock(&zi->i_truncate_mutex);
917 			ret = -EINVAL;
918 			goto inode_unlock;
919 		}
920 		mutex_unlock(&zi->i_truncate_mutex);
921 		append = sync;
922 	}
923 
924 	if (append)
925 		ret = zonefs_file_dio_append(iocb, from);
926 	else
927 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
928 				   &zonefs_write_dio_ops, 0, NULL, 0);
929 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
930 	    (ret > 0 || ret == -EIOCBQUEUED)) {
931 		if (ret > 0)
932 			count = ret;
933 
934 		/*
935 		 * Update the zone write pointer offset assuming the write
936 		 * operation succeeded. If it did not, the error recovery path
937 		 * will correct it. Also do active seq file accounting.
938 		 */
939 		mutex_lock(&zi->i_truncate_mutex);
940 		zi->i_wpoffset += count;
941 		zonefs_account_active(inode);
942 		mutex_unlock(&zi->i_truncate_mutex);
943 	}
944 
945 inode_unlock:
946 	inode_unlock(inode);
947 
948 	return ret;
949 }
950 
951 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
952 					  struct iov_iter *from)
953 {
954 	struct inode *inode = file_inode(iocb->ki_filp);
955 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
956 	ssize_t ret;
957 
958 	/*
959 	 * Direct IO writes are mandatory for sequential zone files so that the
960 	 * write IO issuing order is preserved.
961 	 */
962 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
963 		return -EIO;
964 
965 	if (iocb->ki_flags & IOCB_NOWAIT) {
966 		if (!inode_trylock(inode))
967 			return -EAGAIN;
968 	} else {
969 		inode_lock(inode);
970 	}
971 
972 	ret = zonefs_write_checks(iocb, from);
973 	if (ret <= 0)
974 		goto inode_unlock;
975 
976 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
977 	if (ret > 0)
978 		iocb->ki_pos += ret;
979 	else if (ret == -EIO)
980 		zonefs_io_error(inode, true);
981 
982 inode_unlock:
983 	inode_unlock(inode);
984 	if (ret > 0)
985 		ret = generic_write_sync(iocb, ret);
986 
987 	return ret;
988 }
989 
990 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
991 {
992 	struct inode *inode = file_inode(iocb->ki_filp);
993 
994 	if (unlikely(IS_IMMUTABLE(inode)))
995 		return -EPERM;
996 
997 	if (sb_rdonly(inode->i_sb))
998 		return -EROFS;
999 
1000 	/* Write operations beyond the zone size are not allowed */
1001 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1002 		return -EFBIG;
1003 
1004 	if (iocb->ki_flags & IOCB_DIRECT) {
1005 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1006 		if (ret != -ENOTBLK)
1007 			return ret;
1008 	}
1009 
1010 	return zonefs_file_buffered_write(iocb, from);
1011 }
1012 
1013 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1014 				       int error, unsigned int flags)
1015 {
1016 	if (error) {
1017 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1018 		return error;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1025 	.end_io			= zonefs_file_read_dio_end_io,
1026 };
1027 
1028 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1029 {
1030 	struct inode *inode = file_inode(iocb->ki_filp);
1031 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1032 	struct super_block *sb = inode->i_sb;
1033 	loff_t isize;
1034 	ssize_t ret;
1035 
1036 	/* Offline zones cannot be read */
1037 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1038 		return -EPERM;
1039 
1040 	if (iocb->ki_pos >= zi->i_max_size)
1041 		return 0;
1042 
1043 	if (iocb->ki_flags & IOCB_NOWAIT) {
1044 		if (!inode_trylock_shared(inode))
1045 			return -EAGAIN;
1046 	} else {
1047 		inode_lock_shared(inode);
1048 	}
1049 
1050 	/* Limit read operations to written data */
1051 	mutex_lock(&zi->i_truncate_mutex);
1052 	isize = i_size_read(inode);
1053 	if (iocb->ki_pos >= isize) {
1054 		mutex_unlock(&zi->i_truncate_mutex);
1055 		ret = 0;
1056 		goto inode_unlock;
1057 	}
1058 	iov_iter_truncate(to, isize - iocb->ki_pos);
1059 	mutex_unlock(&zi->i_truncate_mutex);
1060 
1061 	if (iocb->ki_flags & IOCB_DIRECT) {
1062 		size_t count = iov_iter_count(to);
1063 
1064 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1065 			ret = -EINVAL;
1066 			goto inode_unlock;
1067 		}
1068 		file_accessed(iocb->ki_filp);
1069 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1070 				   &zonefs_read_dio_ops, 0, NULL, 0);
1071 	} else {
1072 		ret = generic_file_read_iter(iocb, to);
1073 		if (ret == -EIO)
1074 			zonefs_io_error(inode, false);
1075 	}
1076 
1077 inode_unlock:
1078 	inode_unlock_shared(inode);
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * Write open accounting is done only for sequential files.
1085  */
1086 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1087 					    struct file *file)
1088 {
1089 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1090 
1091 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1092 		return false;
1093 
1094 	if (!(file->f_mode & FMODE_WRITE))
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
1100 static int zonefs_seq_file_write_open(struct inode *inode)
1101 {
1102 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1103 	int ret = 0;
1104 
1105 	mutex_lock(&zi->i_truncate_mutex);
1106 
1107 	if (!zi->i_wr_refcnt) {
1108 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1109 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1110 
1111 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1112 
1113 			if (sbi->s_max_wro_seq_files
1114 			    && wro > sbi->s_max_wro_seq_files) {
1115 				atomic_dec(&sbi->s_wro_seq_files);
1116 				ret = -EBUSY;
1117 				goto unlock;
1118 			}
1119 
1120 			if (i_size_read(inode) < zi->i_max_size) {
1121 				ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1122 				if (ret) {
1123 					atomic_dec(&sbi->s_wro_seq_files);
1124 					goto unlock;
1125 				}
1126 				zi->i_flags |= ZONEFS_ZONE_OPEN;
1127 				zonefs_account_active(inode);
1128 			}
1129 		}
1130 	}
1131 
1132 	zi->i_wr_refcnt++;
1133 
1134 unlock:
1135 	mutex_unlock(&zi->i_truncate_mutex);
1136 
1137 	return ret;
1138 }
1139 
1140 static int zonefs_file_open(struct inode *inode, struct file *file)
1141 {
1142 	int ret;
1143 
1144 	ret = generic_file_open(inode, file);
1145 	if (ret)
1146 		return ret;
1147 
1148 	if (zonefs_seq_file_need_wro(inode, file))
1149 		return zonefs_seq_file_write_open(inode);
1150 
1151 	return 0;
1152 }
1153 
1154 static void zonefs_seq_file_write_close(struct inode *inode)
1155 {
1156 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1157 	struct super_block *sb = inode->i_sb;
1158 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1159 	int ret = 0;
1160 
1161 	mutex_lock(&zi->i_truncate_mutex);
1162 
1163 	zi->i_wr_refcnt--;
1164 	if (zi->i_wr_refcnt)
1165 		goto unlock;
1166 
1167 	/*
1168 	 * The file zone may not be open anymore (e.g. the file was truncated to
1169 	 * its maximum size or it was fully written). For this case, we only
1170 	 * need to decrement the write open count.
1171 	 */
1172 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1173 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1174 		if (ret) {
1175 			__zonefs_io_error(inode, false);
1176 			/*
1177 			 * Leaving zones explicitly open may lead to a state
1178 			 * where most zones cannot be written (zone resources
1179 			 * exhausted). So take preventive action by remounting
1180 			 * read-only.
1181 			 */
1182 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1183 			    !(sb->s_flags & SB_RDONLY)) {
1184 				zonefs_warn(sb,
1185 					"closing zone at %llu failed %d\n",
1186 					zi->i_zsector, ret);
1187 				zonefs_warn(sb,
1188 					"remounting filesystem read-only\n");
1189 				sb->s_flags |= SB_RDONLY;
1190 			}
1191 			goto unlock;
1192 		}
1193 
1194 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1195 		zonefs_account_active(inode);
1196 	}
1197 
1198 	atomic_dec(&sbi->s_wro_seq_files);
1199 
1200 unlock:
1201 	mutex_unlock(&zi->i_truncate_mutex);
1202 }
1203 
1204 static int zonefs_file_release(struct inode *inode, struct file *file)
1205 {
1206 	/*
1207 	 * If we explicitly open a zone we must close it again as well, but the
1208 	 * zone management operation can fail (either due to an IO error or as
1209 	 * the zone has gone offline or read-only). Make sure we don't fail the
1210 	 * close(2) for user-space.
1211 	 */
1212 	if (zonefs_seq_file_need_wro(inode, file))
1213 		zonefs_seq_file_write_close(inode);
1214 
1215 	return 0;
1216 }
1217 
1218 static const struct file_operations zonefs_file_operations = {
1219 	.open		= zonefs_file_open,
1220 	.release	= zonefs_file_release,
1221 	.fsync		= zonefs_file_fsync,
1222 	.mmap		= zonefs_file_mmap,
1223 	.llseek		= zonefs_file_llseek,
1224 	.read_iter	= zonefs_file_read_iter,
1225 	.write_iter	= zonefs_file_write_iter,
1226 	.splice_read	= generic_file_splice_read,
1227 	.splice_write	= iter_file_splice_write,
1228 	.iopoll		= iocb_bio_iopoll,
1229 };
1230 
1231 static struct kmem_cache *zonefs_inode_cachep;
1232 
1233 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1234 {
1235 	struct zonefs_inode_info *zi;
1236 
1237 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1238 	if (!zi)
1239 		return NULL;
1240 
1241 	inode_init_once(&zi->i_vnode);
1242 	mutex_init(&zi->i_truncate_mutex);
1243 	zi->i_wr_refcnt = 0;
1244 	zi->i_flags = 0;
1245 
1246 	return &zi->i_vnode;
1247 }
1248 
1249 static void zonefs_free_inode(struct inode *inode)
1250 {
1251 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1252 }
1253 
1254 /*
1255  * File system stat.
1256  */
1257 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1258 {
1259 	struct super_block *sb = dentry->d_sb;
1260 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1261 	enum zonefs_ztype t;
1262 
1263 	buf->f_type = ZONEFS_MAGIC;
1264 	buf->f_bsize = sb->s_blocksize;
1265 	buf->f_namelen = ZONEFS_NAME_MAX;
1266 
1267 	spin_lock(&sbi->s_lock);
1268 
1269 	buf->f_blocks = sbi->s_blocks;
1270 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1271 		buf->f_bfree = 0;
1272 	else
1273 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1274 	buf->f_bavail = buf->f_bfree;
1275 
1276 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1277 		if (sbi->s_nr_files[t])
1278 			buf->f_files += sbi->s_nr_files[t] + 1;
1279 	}
1280 	buf->f_ffree = 0;
1281 
1282 	spin_unlock(&sbi->s_lock);
1283 
1284 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1285 
1286 	return 0;
1287 }
1288 
1289 enum {
1290 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1291 	Opt_explicit_open, Opt_err,
1292 };
1293 
1294 static const match_table_t tokens = {
1295 	{ Opt_errors_ro,	"errors=remount-ro"},
1296 	{ Opt_errors_zro,	"errors=zone-ro"},
1297 	{ Opt_errors_zol,	"errors=zone-offline"},
1298 	{ Opt_errors_repair,	"errors=repair"},
1299 	{ Opt_explicit_open,	"explicit-open" },
1300 	{ Opt_err,		NULL}
1301 };
1302 
1303 static int zonefs_parse_options(struct super_block *sb, char *options)
1304 {
1305 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1306 	substring_t args[MAX_OPT_ARGS];
1307 	char *p;
1308 
1309 	if (!options)
1310 		return 0;
1311 
1312 	while ((p = strsep(&options, ",")) != NULL) {
1313 		int token;
1314 
1315 		if (!*p)
1316 			continue;
1317 
1318 		token = match_token(p, tokens, args);
1319 		switch (token) {
1320 		case Opt_errors_ro:
1321 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1322 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1323 			break;
1324 		case Opt_errors_zro:
1325 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1326 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1327 			break;
1328 		case Opt_errors_zol:
1329 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1330 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1331 			break;
1332 		case Opt_errors_repair:
1333 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1334 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1335 			break;
1336 		case Opt_explicit_open:
1337 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1338 			break;
1339 		default:
1340 			return -EINVAL;
1341 		}
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1348 {
1349 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1350 
1351 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1352 		seq_puts(seq, ",errors=remount-ro");
1353 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1354 		seq_puts(seq, ",errors=zone-ro");
1355 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1356 		seq_puts(seq, ",errors=zone-offline");
1357 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1358 		seq_puts(seq, ",errors=repair");
1359 
1360 	return 0;
1361 }
1362 
1363 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1364 {
1365 	sync_filesystem(sb);
1366 
1367 	return zonefs_parse_options(sb, data);
1368 }
1369 
1370 static const struct super_operations zonefs_sops = {
1371 	.alloc_inode	= zonefs_alloc_inode,
1372 	.free_inode	= zonefs_free_inode,
1373 	.statfs		= zonefs_statfs,
1374 	.remount_fs	= zonefs_remount,
1375 	.show_options	= zonefs_show_options,
1376 };
1377 
1378 static const struct inode_operations zonefs_dir_inode_operations = {
1379 	.lookup		= simple_lookup,
1380 	.setattr	= zonefs_inode_setattr,
1381 };
1382 
1383 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1384 				  enum zonefs_ztype type)
1385 {
1386 	struct super_block *sb = parent->i_sb;
1387 
1388 	inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1;
1389 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1390 	inode->i_op = &zonefs_dir_inode_operations;
1391 	inode->i_fop = &simple_dir_operations;
1392 	set_nlink(inode, 2);
1393 	inc_nlink(parent);
1394 }
1395 
1396 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1397 				  enum zonefs_ztype type)
1398 {
1399 	struct super_block *sb = inode->i_sb;
1400 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1401 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1402 	int ret = 0;
1403 
1404 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1405 	inode->i_mode = S_IFREG | sbi->s_perm;
1406 
1407 	zi->i_ztype = type;
1408 	zi->i_zsector = zone->start;
1409 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1410 
1411 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1412 			       zone->capacity << SECTOR_SHIFT);
1413 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1414 
1415 	inode->i_uid = sbi->s_uid;
1416 	inode->i_gid = sbi->s_gid;
1417 	inode->i_size = zi->i_wpoffset;
1418 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1419 
1420 	inode->i_op = &zonefs_file_inode_operations;
1421 	inode->i_fop = &zonefs_file_operations;
1422 	inode->i_mapping->a_ops = &zonefs_file_aops;
1423 
1424 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1425 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1426 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1427 
1428 	mutex_lock(&zi->i_truncate_mutex);
1429 
1430 	/*
1431 	 * For sequential zones, make sure that any open zone is closed first
1432 	 * to ensure that the initial number of open zones is 0, in sync with
1433 	 * the open zone accounting done when the mount option
1434 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1435 	 */
1436 	if (type == ZONEFS_ZTYPE_SEQ &&
1437 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1438 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1439 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1440 		if (ret)
1441 			goto unlock;
1442 	}
1443 
1444 	zonefs_account_active(inode);
1445 
1446 unlock:
1447 	mutex_unlock(&zi->i_truncate_mutex);
1448 
1449 	return ret;
1450 }
1451 
1452 static struct dentry *zonefs_create_inode(struct dentry *parent,
1453 					const char *name, struct blk_zone *zone,
1454 					enum zonefs_ztype type)
1455 {
1456 	struct inode *dir = d_inode(parent);
1457 	struct dentry *dentry;
1458 	struct inode *inode;
1459 	int ret;
1460 
1461 	dentry = d_alloc_name(parent, name);
1462 	if (!dentry)
1463 		return NULL;
1464 
1465 	inode = new_inode(parent->d_sb);
1466 	if (!inode)
1467 		goto dput;
1468 
1469 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1470 	if (zone) {
1471 		ret = zonefs_init_file_inode(inode, zone, type);
1472 		if (ret) {
1473 			iput(inode);
1474 			goto dput;
1475 		}
1476 	} else {
1477 		zonefs_init_dir_inode(dir, inode, type);
1478 	}
1479 
1480 	d_add(dentry, inode);
1481 	dir->i_size++;
1482 
1483 	return dentry;
1484 
1485 dput:
1486 	dput(dentry);
1487 
1488 	return NULL;
1489 }
1490 
1491 struct zonefs_zone_data {
1492 	struct super_block	*sb;
1493 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1494 	struct blk_zone		*zones;
1495 };
1496 
1497 /*
1498  * Create a zone group and populate it with zone files.
1499  */
1500 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1501 				enum zonefs_ztype type)
1502 {
1503 	struct super_block *sb = zd->sb;
1504 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1505 	struct blk_zone *zone, *next, *end;
1506 	const char *zgroup_name;
1507 	char *file_name;
1508 	struct dentry *dir;
1509 	unsigned int n = 0;
1510 	int ret;
1511 
1512 	/* If the group is empty, there is nothing to do */
1513 	if (!zd->nr_zones[type])
1514 		return 0;
1515 
1516 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1517 	if (!file_name)
1518 		return -ENOMEM;
1519 
1520 	if (type == ZONEFS_ZTYPE_CNV)
1521 		zgroup_name = "cnv";
1522 	else
1523 		zgroup_name = "seq";
1524 
1525 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1526 	if (!dir) {
1527 		ret = -ENOMEM;
1528 		goto free;
1529 	}
1530 
1531 	/*
1532 	 * The first zone contains the super block: skip it.
1533 	 */
1534 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
1535 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1536 
1537 		next = zone + 1;
1538 		if (zonefs_zone_type(zone) != type)
1539 			continue;
1540 
1541 		/*
1542 		 * For conventional zones, contiguous zones can be aggregated
1543 		 * together to form larger files. Note that this overwrites the
1544 		 * length of the first zone of the set of contiguous zones
1545 		 * aggregated together. If one offline or read-only zone is
1546 		 * found, assume that all zones aggregated have the same
1547 		 * condition.
1548 		 */
1549 		if (type == ZONEFS_ZTYPE_CNV &&
1550 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1551 			for (; next < end; next++) {
1552 				if (zonefs_zone_type(next) != type)
1553 					break;
1554 				zone->len += next->len;
1555 				zone->capacity += next->capacity;
1556 				if (next->cond == BLK_ZONE_COND_READONLY &&
1557 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1558 					zone->cond = BLK_ZONE_COND_READONLY;
1559 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1560 					zone->cond = BLK_ZONE_COND_OFFLINE;
1561 			}
1562 			if (zone->capacity != zone->len) {
1563 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1564 				ret = -EINVAL;
1565 				goto free;
1566 			}
1567 		}
1568 
1569 		/*
1570 		 * Use the file number within its group as file name.
1571 		 */
1572 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1573 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1574 			ret = -ENOMEM;
1575 			goto free;
1576 		}
1577 
1578 		n++;
1579 	}
1580 
1581 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1582 		    zgroup_name, n, n > 1 ? "s" : "");
1583 
1584 	sbi->s_nr_files[type] = n;
1585 	ret = 0;
1586 
1587 free:
1588 	kfree(file_name);
1589 
1590 	return ret;
1591 }
1592 
1593 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1594 				   void *data)
1595 {
1596 	struct zonefs_zone_data *zd = data;
1597 
1598 	/*
1599 	 * Count the number of usable zones: the first zone at index 0 contains
1600 	 * the super block and is ignored.
1601 	 */
1602 	switch (zone->type) {
1603 	case BLK_ZONE_TYPE_CONVENTIONAL:
1604 		zone->wp = zone->start + zone->len;
1605 		if (idx)
1606 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1607 		break;
1608 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1609 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1610 		if (idx)
1611 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1612 		break;
1613 	default:
1614 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1615 			   zone->type);
1616 		return -EIO;
1617 	}
1618 
1619 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1620 
1621 	return 0;
1622 }
1623 
1624 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1625 {
1626 	struct block_device *bdev = zd->sb->s_bdev;
1627 	int ret;
1628 
1629 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
1630 			     GFP_KERNEL);
1631 	if (!zd->zones)
1632 		return -ENOMEM;
1633 
1634 	/* Get zones information from the device */
1635 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1636 				  zonefs_get_zone_info_cb, zd);
1637 	if (ret < 0) {
1638 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1639 		return ret;
1640 	}
1641 
1642 	if (ret != bdev_nr_zones(bdev)) {
1643 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1644 			   ret, bdev_nr_zones(bdev));
1645 		return -EIO;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1652 {
1653 	kvfree(zd->zones);
1654 }
1655 
1656 /*
1657  * Read super block information from the device.
1658  */
1659 static int zonefs_read_super(struct super_block *sb)
1660 {
1661 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1662 	struct zonefs_super *super;
1663 	u32 crc, stored_crc;
1664 	struct page *page;
1665 	struct bio_vec bio_vec;
1666 	struct bio bio;
1667 	int ret;
1668 
1669 	page = alloc_page(GFP_KERNEL);
1670 	if (!page)
1671 		return -ENOMEM;
1672 
1673 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1674 	bio.bi_iter.bi_sector = 0;
1675 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1676 
1677 	ret = submit_bio_wait(&bio);
1678 	if (ret)
1679 		goto free_page;
1680 
1681 	super = page_address(page);
1682 
1683 	ret = -EINVAL;
1684 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1685 		goto free_page;
1686 
1687 	stored_crc = le32_to_cpu(super->s_crc);
1688 	super->s_crc = 0;
1689 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1690 	if (crc != stored_crc) {
1691 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1692 			   crc, stored_crc);
1693 		goto free_page;
1694 	}
1695 
1696 	sbi->s_features = le64_to_cpu(super->s_features);
1697 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1698 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1699 			   sbi->s_features);
1700 		goto free_page;
1701 	}
1702 
1703 	if (sbi->s_features & ZONEFS_F_UID) {
1704 		sbi->s_uid = make_kuid(current_user_ns(),
1705 				       le32_to_cpu(super->s_uid));
1706 		if (!uid_valid(sbi->s_uid)) {
1707 			zonefs_err(sb, "Invalid UID feature\n");
1708 			goto free_page;
1709 		}
1710 	}
1711 
1712 	if (sbi->s_features & ZONEFS_F_GID) {
1713 		sbi->s_gid = make_kgid(current_user_ns(),
1714 				       le32_to_cpu(super->s_gid));
1715 		if (!gid_valid(sbi->s_gid)) {
1716 			zonefs_err(sb, "Invalid GID feature\n");
1717 			goto free_page;
1718 		}
1719 	}
1720 
1721 	if (sbi->s_features & ZONEFS_F_PERM)
1722 		sbi->s_perm = le32_to_cpu(super->s_perm);
1723 
1724 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1725 		zonefs_err(sb, "Reserved area is being used\n");
1726 		goto free_page;
1727 	}
1728 
1729 	import_uuid(&sbi->s_uuid, super->s_uuid);
1730 	ret = 0;
1731 
1732 free_page:
1733 	__free_page(page);
1734 
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Check that the device is zoned. If it is, get the list of zones and create
1740  * sub-directories and files according to the device zone configuration and
1741  * format options.
1742  */
1743 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1744 {
1745 	struct zonefs_zone_data zd;
1746 	struct zonefs_sb_info *sbi;
1747 	struct inode *inode;
1748 	enum zonefs_ztype t;
1749 	int ret;
1750 
1751 	if (!bdev_is_zoned(sb->s_bdev)) {
1752 		zonefs_err(sb, "Not a zoned block device\n");
1753 		return -EINVAL;
1754 	}
1755 
1756 	/*
1757 	 * Initialize super block information: the maximum file size is updated
1758 	 * when the zone files are created so that the format option
1759 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1760 	 * beyond the zone size is taken into account.
1761 	 */
1762 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1763 	if (!sbi)
1764 		return -ENOMEM;
1765 
1766 	spin_lock_init(&sbi->s_lock);
1767 	sb->s_fs_info = sbi;
1768 	sb->s_magic = ZONEFS_MAGIC;
1769 	sb->s_maxbytes = 0;
1770 	sb->s_op = &zonefs_sops;
1771 	sb->s_time_gran	= 1;
1772 
1773 	/*
1774 	 * The block size is set to the device zone write granularity to ensure
1775 	 * that write operations are always aligned according to the device
1776 	 * interface constraints.
1777 	 */
1778 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1779 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1780 	sbi->s_uid = GLOBAL_ROOT_UID;
1781 	sbi->s_gid = GLOBAL_ROOT_GID;
1782 	sbi->s_perm = 0640;
1783 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1784 
1785 	atomic_set(&sbi->s_wro_seq_files, 0);
1786 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1787 	atomic_set(&sbi->s_active_seq_files, 0);
1788 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1789 
1790 	ret = zonefs_read_super(sb);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = zonefs_parse_options(sb, data);
1795 	if (ret)
1796 		return ret;
1797 
1798 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1799 	zd.sb = sb;
1800 	ret = zonefs_get_zone_info(&zd);
1801 	if (ret)
1802 		goto cleanup;
1803 
1804 	ret = zonefs_sysfs_register(sb);
1805 	if (ret)
1806 		goto cleanup;
1807 
1808 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1809 
1810 	if (!sbi->s_max_wro_seq_files &&
1811 	    !sbi->s_max_active_seq_files &&
1812 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1813 		zonefs_info(sb,
1814 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1815 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1816 	}
1817 
1818 	/* Create root directory inode */
1819 	ret = -ENOMEM;
1820 	inode = new_inode(sb);
1821 	if (!inode)
1822 		goto cleanup;
1823 
1824 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1825 	inode->i_mode = S_IFDIR | 0555;
1826 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1827 	inode->i_op = &zonefs_dir_inode_operations;
1828 	inode->i_fop = &simple_dir_operations;
1829 	set_nlink(inode, 2);
1830 
1831 	sb->s_root = d_make_root(inode);
1832 	if (!sb->s_root)
1833 		goto cleanup;
1834 
1835 	/* Create and populate files in zone groups directories */
1836 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1837 		ret = zonefs_create_zgroup(&zd, t);
1838 		if (ret)
1839 			break;
1840 	}
1841 
1842 cleanup:
1843 	zonefs_cleanup_zone_info(&zd);
1844 
1845 	return ret;
1846 }
1847 
1848 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1849 				   int flags, const char *dev_name, void *data)
1850 {
1851 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1852 }
1853 
1854 static void zonefs_kill_super(struct super_block *sb)
1855 {
1856 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1857 
1858 	if (sb->s_root)
1859 		d_genocide(sb->s_root);
1860 
1861 	zonefs_sysfs_unregister(sb);
1862 	kill_block_super(sb);
1863 	kfree(sbi);
1864 }
1865 
1866 /*
1867  * File system definition and registration.
1868  */
1869 static struct file_system_type zonefs_type = {
1870 	.owner		= THIS_MODULE,
1871 	.name		= "zonefs",
1872 	.mount		= zonefs_mount,
1873 	.kill_sb	= zonefs_kill_super,
1874 	.fs_flags	= FS_REQUIRES_DEV,
1875 };
1876 
1877 static int __init zonefs_init_inodecache(void)
1878 {
1879 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1880 			sizeof(struct zonefs_inode_info), 0,
1881 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1882 			NULL);
1883 	if (zonefs_inode_cachep == NULL)
1884 		return -ENOMEM;
1885 	return 0;
1886 }
1887 
1888 static void zonefs_destroy_inodecache(void)
1889 {
1890 	/*
1891 	 * Make sure all delayed rcu free inodes are flushed before we
1892 	 * destroy the inode cache.
1893 	 */
1894 	rcu_barrier();
1895 	kmem_cache_destroy(zonefs_inode_cachep);
1896 }
1897 
1898 static int __init zonefs_init(void)
1899 {
1900 	int ret;
1901 
1902 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1903 
1904 	ret = zonefs_init_inodecache();
1905 	if (ret)
1906 		return ret;
1907 
1908 	ret = register_filesystem(&zonefs_type);
1909 	if (ret)
1910 		goto destroy_inodecache;
1911 
1912 	ret = zonefs_sysfs_init();
1913 	if (ret)
1914 		goto unregister_fs;
1915 
1916 	return 0;
1917 
1918 unregister_fs:
1919 	unregister_filesystem(&zonefs_type);
1920 destroy_inodecache:
1921 	zonefs_destroy_inodecache();
1922 
1923 	return ret;
1924 }
1925 
1926 static void __exit zonefs_exit(void)
1927 {
1928 	zonefs_sysfs_exit();
1929 	zonefs_destroy_inodecache();
1930 	unregister_filesystem(&zonefs_type);
1931 }
1932 
1933 MODULE_AUTHOR("Damien Le Moal");
1934 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1935 MODULE_LICENSE("GPL");
1936 MODULE_ALIAS_FS("zonefs");
1937 module_init(zonefs_init);
1938 module_exit(zonefs_exit);
1939