xref: /linux/fs/zonefs/super.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Manage the active zone count. Called with zi->i_truncate_mutex held.
32  */
33 static void zonefs_account_active(struct inode *inode)
34 {
35 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
36 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
37 
38 	lockdep_assert_held(&zi->i_truncate_mutex);
39 
40 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
41 		return;
42 
43 	/*
44 	 * If the zone is active, that is, if it is explicitly open or
45 	 * partially written, check if it was already accounted as active.
46 	 */
47 	if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
48 	    (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
49 		if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
50 			zi->i_flags |= ZONEFS_ZONE_ACTIVE;
51 			atomic_inc(&sbi->s_active_seq_files);
52 		}
53 		return;
54 	}
55 
56 	/* The zone is not active. If it was, update the active count */
57 	if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
58 		zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
59 		atomic_dec(&sbi->s_active_seq_files);
60 	}
61 }
62 
63 static inline int zonefs_zone_mgmt(struct inode *inode,
64 				   enum req_opf op)
65 {
66 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
67 	int ret;
68 
69 	lockdep_assert_held(&zi->i_truncate_mutex);
70 
71 	/*
72 	 * With ZNS drives, closing an explicitly open zone that has not been
73 	 * written will change the zone state to "closed", that is, the zone
74 	 * will remain active. Since this can then cause failure of explicit
75 	 * open operation on other zones if the drive active zone resources
76 	 * are exceeded, make sure that the zone does not remain active by
77 	 * resetting it.
78 	 */
79 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
80 		op = REQ_OP_ZONE_RESET;
81 
82 	trace_zonefs_zone_mgmt(inode, op);
83 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
84 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
85 	if (ret) {
86 		zonefs_err(inode->i_sb,
87 			   "Zone management operation %s at %llu failed %d\n",
88 			   blk_op_str(op), zi->i_zsector, ret);
89 		return ret;
90 	}
91 
92 	return 0;
93 }
94 
95 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
96 {
97 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
98 
99 	i_size_write(inode, isize);
100 	/*
101 	 * A full zone is no longer open/active and does not need
102 	 * explicit closing.
103 	 */
104 	if (isize >= zi->i_max_size) {
105 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
106 
107 		if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
108 			atomic_dec(&sbi->s_active_seq_files);
109 		zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
110 	}
111 }
112 
113 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
114 				   loff_t length, unsigned int flags,
115 				   struct iomap *iomap, struct iomap *srcmap)
116 {
117 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
118 	struct super_block *sb = inode->i_sb;
119 	loff_t isize;
120 
121 	/*
122 	 * All blocks are always mapped below EOF. If reading past EOF,
123 	 * act as if there is a hole up to the file maximum size.
124 	 */
125 	mutex_lock(&zi->i_truncate_mutex);
126 	iomap->bdev = inode->i_sb->s_bdev;
127 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
128 	isize = i_size_read(inode);
129 	if (iomap->offset >= isize) {
130 		iomap->type = IOMAP_HOLE;
131 		iomap->addr = IOMAP_NULL_ADDR;
132 		iomap->length = length;
133 	} else {
134 		iomap->type = IOMAP_MAPPED;
135 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
136 		iomap->length = isize - iomap->offset;
137 	}
138 	mutex_unlock(&zi->i_truncate_mutex);
139 
140 	trace_zonefs_iomap_begin(inode, iomap);
141 
142 	return 0;
143 }
144 
145 static const struct iomap_ops zonefs_read_iomap_ops = {
146 	.iomap_begin	= zonefs_read_iomap_begin,
147 };
148 
149 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
150 				    loff_t length, unsigned int flags,
151 				    struct iomap *iomap, struct iomap *srcmap)
152 {
153 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
154 	struct super_block *sb = inode->i_sb;
155 	loff_t isize;
156 
157 	/* All write I/Os should always be within the file maximum size */
158 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
159 		return -EIO;
160 
161 	/*
162 	 * Sequential zones can only accept direct writes. This is already
163 	 * checked when writes are issued, so warn if we see a page writeback
164 	 * operation.
165 	 */
166 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
167 			 !(flags & IOMAP_DIRECT)))
168 		return -EIO;
169 
170 	/*
171 	 * For conventional zones, all blocks are always mapped. For sequential
172 	 * zones, all blocks after always mapped below the inode size (zone
173 	 * write pointer) and unwriten beyond.
174 	 */
175 	mutex_lock(&zi->i_truncate_mutex);
176 	iomap->bdev = inode->i_sb->s_bdev;
177 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
178 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
179 	isize = i_size_read(inode);
180 	if (iomap->offset >= isize) {
181 		iomap->type = IOMAP_UNWRITTEN;
182 		iomap->length = zi->i_max_size - iomap->offset;
183 	} else {
184 		iomap->type = IOMAP_MAPPED;
185 		iomap->length = isize - iomap->offset;
186 	}
187 	mutex_unlock(&zi->i_truncate_mutex);
188 
189 	trace_zonefs_iomap_begin(inode, iomap);
190 
191 	return 0;
192 }
193 
194 static const struct iomap_ops zonefs_write_iomap_ops = {
195 	.iomap_begin	= zonefs_write_iomap_begin,
196 };
197 
198 static int zonefs_read_folio(struct file *unused, struct folio *folio)
199 {
200 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
201 }
202 
203 static void zonefs_readahead(struct readahead_control *rac)
204 {
205 	iomap_readahead(rac, &zonefs_read_iomap_ops);
206 }
207 
208 /*
209  * Map blocks for page writeback. This is used only on conventional zone files,
210  * which implies that the page range can only be within the fixed inode size.
211  */
212 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
213 				   struct inode *inode, loff_t offset)
214 {
215 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
216 
217 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
218 		return -EIO;
219 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
220 		return -EIO;
221 
222 	/* If the mapping is already OK, nothing needs to be done */
223 	if (offset >= wpc->iomap.offset &&
224 	    offset < wpc->iomap.offset + wpc->iomap.length)
225 		return 0;
226 
227 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
228 					IOMAP_WRITE, &wpc->iomap, NULL);
229 }
230 
231 static const struct iomap_writeback_ops zonefs_writeback_ops = {
232 	.map_blocks		= zonefs_write_map_blocks,
233 };
234 
235 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
236 {
237 	struct iomap_writepage_ctx wpc = { };
238 
239 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
240 }
241 
242 static int zonefs_writepages(struct address_space *mapping,
243 			     struct writeback_control *wbc)
244 {
245 	struct iomap_writepage_ctx wpc = { };
246 
247 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
248 }
249 
250 static int zonefs_swap_activate(struct swap_info_struct *sis,
251 				struct file *swap_file, sector_t *span)
252 {
253 	struct inode *inode = file_inode(swap_file);
254 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
255 
256 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
257 		zonefs_err(inode->i_sb,
258 			   "swap file: not a conventional zone file\n");
259 		return -EINVAL;
260 	}
261 
262 	return iomap_swapfile_activate(sis, swap_file, span,
263 				       &zonefs_read_iomap_ops);
264 }
265 
266 static const struct address_space_operations zonefs_file_aops = {
267 	.read_folio		= zonefs_read_folio,
268 	.readahead		= zonefs_readahead,
269 	.writepage		= zonefs_writepage,
270 	.writepages		= zonefs_writepages,
271 	.dirty_folio		= filemap_dirty_folio,
272 	.release_folio		= iomap_release_folio,
273 	.invalidate_folio	= iomap_invalidate_folio,
274 	.migratepage		= iomap_migrate_page,
275 	.is_partially_uptodate	= iomap_is_partially_uptodate,
276 	.error_remove_page	= generic_error_remove_page,
277 	.direct_IO		= noop_direct_IO,
278 	.swap_activate		= zonefs_swap_activate,
279 };
280 
281 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
282 {
283 	struct super_block *sb = inode->i_sb;
284 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
285 	loff_t old_isize = i_size_read(inode);
286 	loff_t nr_blocks;
287 
288 	if (new_isize == old_isize)
289 		return;
290 
291 	spin_lock(&sbi->s_lock);
292 
293 	/*
294 	 * This may be called for an update after an IO error.
295 	 * So beware of the values seen.
296 	 */
297 	if (new_isize < old_isize) {
298 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
299 		if (sbi->s_used_blocks > nr_blocks)
300 			sbi->s_used_blocks -= nr_blocks;
301 		else
302 			sbi->s_used_blocks = 0;
303 	} else {
304 		sbi->s_used_blocks +=
305 			(new_isize - old_isize) >> sb->s_blocksize_bits;
306 		if (sbi->s_used_blocks > sbi->s_blocks)
307 			sbi->s_used_blocks = sbi->s_blocks;
308 	}
309 
310 	spin_unlock(&sbi->s_lock);
311 }
312 
313 /*
314  * Check a zone condition and adjust its file inode access permissions for
315  * offline and readonly zones. Return the inode size corresponding to the
316  * amount of readable data in the zone.
317  */
318 static loff_t zonefs_check_zone_condition(struct inode *inode,
319 					  struct blk_zone *zone, bool warn,
320 					  bool mount)
321 {
322 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
323 
324 	switch (zone->cond) {
325 	case BLK_ZONE_COND_OFFLINE:
326 		/*
327 		 * Dead zone: make the inode immutable, disable all accesses
328 		 * and set the file size to 0 (zone wp set to zone start).
329 		 */
330 		if (warn)
331 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
332 				    inode->i_ino);
333 		inode->i_flags |= S_IMMUTABLE;
334 		inode->i_mode &= ~0777;
335 		zone->wp = zone->start;
336 		return 0;
337 	case BLK_ZONE_COND_READONLY:
338 		/*
339 		 * The write pointer of read-only zones is invalid. If such a
340 		 * zone is found during mount, the file size cannot be retrieved
341 		 * so we treat the zone as offline (mount == true case).
342 		 * Otherwise, keep the file size as it was when last updated
343 		 * so that the user can recover data. In both cases, writes are
344 		 * always disabled for the zone.
345 		 */
346 		if (warn)
347 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
348 				    inode->i_ino);
349 		inode->i_flags |= S_IMMUTABLE;
350 		if (mount) {
351 			zone->cond = BLK_ZONE_COND_OFFLINE;
352 			inode->i_mode &= ~0777;
353 			zone->wp = zone->start;
354 			return 0;
355 		}
356 		inode->i_mode &= ~0222;
357 		return i_size_read(inode);
358 	case BLK_ZONE_COND_FULL:
359 		/* The write pointer of full zones is invalid. */
360 		return zi->i_max_size;
361 	default:
362 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
363 			return zi->i_max_size;
364 		return (zone->wp - zone->start) << SECTOR_SHIFT;
365 	}
366 }
367 
368 struct zonefs_ioerr_data {
369 	struct inode	*inode;
370 	bool		write;
371 };
372 
373 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
374 			      void *data)
375 {
376 	struct zonefs_ioerr_data *err = data;
377 	struct inode *inode = err->inode;
378 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
379 	struct super_block *sb = inode->i_sb;
380 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
381 	loff_t isize, data_size;
382 
383 	/*
384 	 * Check the zone condition: if the zone is not "bad" (offline or
385 	 * read-only), read errors are simply signaled to the IO issuer as long
386 	 * as there is no inconsistency between the inode size and the amount of
387 	 * data writen in the zone (data_size).
388 	 */
389 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
390 	isize = i_size_read(inode);
391 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
392 	    zone->cond != BLK_ZONE_COND_READONLY &&
393 	    !err->write && isize == data_size)
394 		return 0;
395 
396 	/*
397 	 * At this point, we detected either a bad zone or an inconsistency
398 	 * between the inode size and the amount of data written in the zone.
399 	 * For the latter case, the cause may be a write IO error or an external
400 	 * action on the device. Two error patterns exist:
401 	 * 1) The inode size is lower than the amount of data in the zone:
402 	 *    a write operation partially failed and data was writen at the end
403 	 *    of the file. This can happen in the case of a large direct IO
404 	 *    needing several BIOs and/or write requests to be processed.
405 	 * 2) The inode size is larger than the amount of data in the zone:
406 	 *    this can happen with a deferred write error with the use of the
407 	 *    device side write cache after getting successful write IO
408 	 *    completions. Other possibilities are (a) an external corruption,
409 	 *    e.g. an application reset the zone directly, or (b) the device
410 	 *    has a serious problem (e.g. firmware bug).
411 	 *
412 	 * In all cases, warn about inode size inconsistency and handle the
413 	 * IO error according to the zone condition and to the mount options.
414 	 */
415 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
416 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
417 			    inode->i_ino, isize, data_size);
418 
419 	/*
420 	 * First handle bad zones signaled by hardware. The mount options
421 	 * errors=zone-ro and errors=zone-offline result in changing the
422 	 * zone condition to read-only and offline respectively, as if the
423 	 * condition was signaled by the hardware.
424 	 */
425 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
426 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
427 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
428 			    inode->i_ino);
429 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
430 			zone->cond = BLK_ZONE_COND_OFFLINE;
431 			data_size = zonefs_check_zone_condition(inode, zone,
432 								false, false);
433 		}
434 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
435 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
436 		zonefs_warn(sb, "inode %lu: write access disabled\n",
437 			    inode->i_ino);
438 		if (zone->cond != BLK_ZONE_COND_READONLY) {
439 			zone->cond = BLK_ZONE_COND_READONLY;
440 			data_size = zonefs_check_zone_condition(inode, zone,
441 								false, false);
442 		}
443 	}
444 
445 	/*
446 	 * If the filesystem is mounted with the explicit-open mount option, we
447 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
448 	 * the read-only or offline condition, to avoid attempting an explicit
449 	 * close of the zone when the inode file is closed.
450 	 */
451 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
452 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
453 	     zone->cond == BLK_ZONE_COND_READONLY))
454 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
455 
456 	/*
457 	 * If error=remount-ro was specified, any error result in remounting
458 	 * the volume as read-only.
459 	 */
460 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
461 		zonefs_warn(sb, "remounting filesystem read-only\n");
462 		sb->s_flags |= SB_RDONLY;
463 	}
464 
465 	/*
466 	 * Update block usage stats and the inode size  to prevent access to
467 	 * invalid data.
468 	 */
469 	zonefs_update_stats(inode, data_size);
470 	zonefs_i_size_write(inode, data_size);
471 	zi->i_wpoffset = data_size;
472 	zonefs_account_active(inode);
473 
474 	return 0;
475 }
476 
477 /*
478  * When an file IO error occurs, check the file zone to see if there is a change
479  * in the zone condition (e.g. offline or read-only). For a failed write to a
480  * sequential zone, the zone write pointer position must also be checked to
481  * eventually correct the file size and zonefs inode write pointer offset
482  * (which can be out of sync with the drive due to partial write failures).
483  */
484 static void __zonefs_io_error(struct inode *inode, bool write)
485 {
486 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
487 	struct super_block *sb = inode->i_sb;
488 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
489 	unsigned int noio_flag;
490 	unsigned int nr_zones =
491 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
492 	struct zonefs_ioerr_data err = {
493 		.inode = inode,
494 		.write = write,
495 	};
496 	int ret;
497 
498 	/*
499 	 * Memory allocations in blkdev_report_zones() can trigger a memory
500 	 * reclaim which may in turn cause a recursion into zonefs as well as
501 	 * struct request allocations for the same device. The former case may
502 	 * end up in a deadlock on the inode truncate mutex, while the latter
503 	 * may prevent IO forward progress. Executing the report zones under
504 	 * the GFP_NOIO context avoids both problems.
505 	 */
506 	noio_flag = memalloc_noio_save();
507 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
508 				  zonefs_io_error_cb, &err);
509 	if (ret != nr_zones)
510 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
511 			   inode->i_ino, ret);
512 	memalloc_noio_restore(noio_flag);
513 }
514 
515 static void zonefs_io_error(struct inode *inode, bool write)
516 {
517 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
518 
519 	mutex_lock(&zi->i_truncate_mutex);
520 	__zonefs_io_error(inode, write);
521 	mutex_unlock(&zi->i_truncate_mutex);
522 }
523 
524 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
525 {
526 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
527 	loff_t old_isize;
528 	enum req_opf op;
529 	int ret = 0;
530 
531 	/*
532 	 * Only sequential zone files can be truncated and truncation is allowed
533 	 * only down to a 0 size, which is equivalent to a zone reset, and to
534 	 * the maximum file size, which is equivalent to a zone finish.
535 	 */
536 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
537 		return -EPERM;
538 
539 	if (!isize)
540 		op = REQ_OP_ZONE_RESET;
541 	else if (isize == zi->i_max_size)
542 		op = REQ_OP_ZONE_FINISH;
543 	else
544 		return -EPERM;
545 
546 	inode_dio_wait(inode);
547 
548 	/* Serialize against page faults */
549 	filemap_invalidate_lock(inode->i_mapping);
550 
551 	/* Serialize against zonefs_iomap_begin() */
552 	mutex_lock(&zi->i_truncate_mutex);
553 
554 	old_isize = i_size_read(inode);
555 	if (isize == old_isize)
556 		goto unlock;
557 
558 	ret = zonefs_zone_mgmt(inode, op);
559 	if (ret)
560 		goto unlock;
561 
562 	/*
563 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
564 	 * take care of open zones.
565 	 */
566 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
567 		/*
568 		 * Truncating a zone to EMPTY or FULL is the equivalent of
569 		 * closing the zone. For a truncation to 0, we need to
570 		 * re-open the zone to ensure new writes can be processed.
571 		 * For a truncation to the maximum file size, the zone is
572 		 * closed and writes cannot be accepted anymore, so clear
573 		 * the open flag.
574 		 */
575 		if (!isize)
576 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
577 		else
578 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
579 	}
580 
581 	zonefs_update_stats(inode, isize);
582 	truncate_setsize(inode, isize);
583 	zi->i_wpoffset = isize;
584 	zonefs_account_active(inode);
585 
586 unlock:
587 	mutex_unlock(&zi->i_truncate_mutex);
588 	filemap_invalidate_unlock(inode->i_mapping);
589 
590 	return ret;
591 }
592 
593 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
594 				struct dentry *dentry, struct iattr *iattr)
595 {
596 	struct inode *inode = d_inode(dentry);
597 	int ret;
598 
599 	if (unlikely(IS_IMMUTABLE(inode)))
600 		return -EPERM;
601 
602 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
603 	if (ret)
604 		return ret;
605 
606 	/*
607 	 * Since files and directories cannot be created nor deleted, do not
608 	 * allow setting any write attributes on the sub-directories grouping
609 	 * files by zone type.
610 	 */
611 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
612 	    (iattr->ia_mode & 0222))
613 		return -EPERM;
614 
615 	if (((iattr->ia_valid & ATTR_UID) &&
616 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
617 	    ((iattr->ia_valid & ATTR_GID) &&
618 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
619 		ret = dquot_transfer(inode, iattr);
620 		if (ret)
621 			return ret;
622 	}
623 
624 	if (iattr->ia_valid & ATTR_SIZE) {
625 		ret = zonefs_file_truncate(inode, iattr->ia_size);
626 		if (ret)
627 			return ret;
628 	}
629 
630 	setattr_copy(&init_user_ns, inode, iattr);
631 
632 	return 0;
633 }
634 
635 static const struct inode_operations zonefs_file_inode_operations = {
636 	.setattr	= zonefs_inode_setattr,
637 };
638 
639 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
640 			     int datasync)
641 {
642 	struct inode *inode = file_inode(file);
643 	int ret = 0;
644 
645 	if (unlikely(IS_IMMUTABLE(inode)))
646 		return -EPERM;
647 
648 	/*
649 	 * Since only direct writes are allowed in sequential files, page cache
650 	 * flush is needed only for conventional zone files.
651 	 */
652 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
653 		ret = file_write_and_wait_range(file, start, end);
654 	if (!ret)
655 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
656 
657 	if (ret)
658 		zonefs_io_error(inode, true);
659 
660 	return ret;
661 }
662 
663 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
664 {
665 	struct inode *inode = file_inode(vmf->vma->vm_file);
666 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
667 	vm_fault_t ret;
668 
669 	if (unlikely(IS_IMMUTABLE(inode)))
670 		return VM_FAULT_SIGBUS;
671 
672 	/*
673 	 * Sanity check: only conventional zone files can have shared
674 	 * writeable mappings.
675 	 */
676 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
677 		return VM_FAULT_NOPAGE;
678 
679 	sb_start_pagefault(inode->i_sb);
680 	file_update_time(vmf->vma->vm_file);
681 
682 	/* Serialize against truncates */
683 	filemap_invalidate_lock_shared(inode->i_mapping);
684 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
685 	filemap_invalidate_unlock_shared(inode->i_mapping);
686 
687 	sb_end_pagefault(inode->i_sb);
688 	return ret;
689 }
690 
691 static const struct vm_operations_struct zonefs_file_vm_ops = {
692 	.fault		= filemap_fault,
693 	.map_pages	= filemap_map_pages,
694 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
695 };
696 
697 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
698 {
699 	/*
700 	 * Conventional zones accept random writes, so their files can support
701 	 * shared writable mappings. For sequential zone files, only read
702 	 * mappings are possible since there are no guarantees for write
703 	 * ordering between msync() and page cache writeback.
704 	 */
705 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
706 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
707 		return -EINVAL;
708 
709 	file_accessed(file);
710 	vma->vm_ops = &zonefs_file_vm_ops;
711 
712 	return 0;
713 }
714 
715 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
716 {
717 	loff_t isize = i_size_read(file_inode(file));
718 
719 	/*
720 	 * Seeks are limited to below the zone size for conventional zones
721 	 * and below the zone write pointer for sequential zones. In both
722 	 * cases, this limit is the inode size.
723 	 */
724 	return generic_file_llseek_size(file, offset, whence, isize, isize);
725 }
726 
727 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
728 					int error, unsigned int flags)
729 {
730 	struct inode *inode = file_inode(iocb->ki_filp);
731 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
732 
733 	if (error) {
734 		zonefs_io_error(inode, true);
735 		return error;
736 	}
737 
738 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
739 		/*
740 		 * Note that we may be seeing completions out of order,
741 		 * but that is not a problem since a write completed
742 		 * successfully necessarily means that all preceding writes
743 		 * were also successful. So we can safely increase the inode
744 		 * size to the write end location.
745 		 */
746 		mutex_lock(&zi->i_truncate_mutex);
747 		if (i_size_read(inode) < iocb->ki_pos + size) {
748 			zonefs_update_stats(inode, iocb->ki_pos + size);
749 			zonefs_i_size_write(inode, iocb->ki_pos + size);
750 		}
751 		mutex_unlock(&zi->i_truncate_mutex);
752 	}
753 
754 	return 0;
755 }
756 
757 static const struct iomap_dio_ops zonefs_write_dio_ops = {
758 	.end_io			= zonefs_file_write_dio_end_io,
759 };
760 
761 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
762 {
763 	struct inode *inode = file_inode(iocb->ki_filp);
764 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
765 	struct block_device *bdev = inode->i_sb->s_bdev;
766 	unsigned int max = bdev_max_zone_append_sectors(bdev);
767 	struct bio *bio;
768 	ssize_t size;
769 	int nr_pages;
770 	ssize_t ret;
771 
772 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
773 	iov_iter_truncate(from, max);
774 
775 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
776 	if (!nr_pages)
777 		return 0;
778 
779 	bio = bio_alloc(bdev, nr_pages,
780 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
781 	bio->bi_iter.bi_sector = zi->i_zsector;
782 	bio->bi_ioprio = iocb->ki_ioprio;
783 	if (iocb->ki_flags & IOCB_DSYNC)
784 		bio->bi_opf |= REQ_FUA;
785 
786 	ret = bio_iov_iter_get_pages(bio, from);
787 	if (unlikely(ret))
788 		goto out_release;
789 
790 	size = bio->bi_iter.bi_size;
791 	task_io_account_write(size);
792 
793 	if (iocb->ki_flags & IOCB_HIPRI)
794 		bio_set_polled(bio, iocb);
795 
796 	ret = submit_bio_wait(bio);
797 
798 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
799 	trace_zonefs_file_dio_append(inode, size, ret);
800 
801 out_release:
802 	bio_release_pages(bio, false);
803 	bio_put(bio);
804 
805 	if (ret >= 0) {
806 		iocb->ki_pos += size;
807 		return size;
808 	}
809 
810 	return ret;
811 }
812 
813 /*
814  * Do not exceed the LFS limits nor the file zone size. If pos is under the
815  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
816  */
817 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
818 					loff_t count)
819 {
820 	struct inode *inode = file_inode(file);
821 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
822 	loff_t limit = rlimit(RLIMIT_FSIZE);
823 	loff_t max_size = zi->i_max_size;
824 
825 	if (limit != RLIM_INFINITY) {
826 		if (pos >= limit) {
827 			send_sig(SIGXFSZ, current, 0);
828 			return -EFBIG;
829 		}
830 		count = min(count, limit - pos);
831 	}
832 
833 	if (!(file->f_flags & O_LARGEFILE))
834 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
835 
836 	if (unlikely(pos >= max_size))
837 		return -EFBIG;
838 
839 	return min(count, max_size - pos);
840 }
841 
842 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
843 {
844 	struct file *file = iocb->ki_filp;
845 	struct inode *inode = file_inode(file);
846 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
847 	loff_t count;
848 
849 	if (IS_SWAPFILE(inode))
850 		return -ETXTBSY;
851 
852 	if (!iov_iter_count(from))
853 		return 0;
854 
855 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
856 		return -EINVAL;
857 
858 	if (iocb->ki_flags & IOCB_APPEND) {
859 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
860 			return -EINVAL;
861 		mutex_lock(&zi->i_truncate_mutex);
862 		iocb->ki_pos = zi->i_wpoffset;
863 		mutex_unlock(&zi->i_truncate_mutex);
864 	}
865 
866 	count = zonefs_write_check_limits(file, iocb->ki_pos,
867 					  iov_iter_count(from));
868 	if (count < 0)
869 		return count;
870 
871 	iov_iter_truncate(from, count);
872 	return iov_iter_count(from);
873 }
874 
875 /*
876  * Handle direct writes. For sequential zone files, this is the only possible
877  * write path. For these files, check that the user is issuing writes
878  * sequentially from the end of the file. This code assumes that the block layer
879  * delivers write requests to the device in sequential order. This is always the
880  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
881  * elevator feature is being used (e.g. mq-deadline). The block layer always
882  * automatically select such an elevator for zoned block devices during the
883  * device initialization.
884  */
885 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
886 {
887 	struct inode *inode = file_inode(iocb->ki_filp);
888 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
889 	struct super_block *sb = inode->i_sb;
890 	bool sync = is_sync_kiocb(iocb);
891 	bool append = false;
892 	ssize_t ret, count;
893 
894 	/*
895 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
896 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
897 	 * on the inode lock but the second goes through but is now unaligned).
898 	 */
899 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
900 	    (iocb->ki_flags & IOCB_NOWAIT))
901 		return -EOPNOTSUPP;
902 
903 	if (iocb->ki_flags & IOCB_NOWAIT) {
904 		if (!inode_trylock(inode))
905 			return -EAGAIN;
906 	} else {
907 		inode_lock(inode);
908 	}
909 
910 	count = zonefs_write_checks(iocb, from);
911 	if (count <= 0) {
912 		ret = count;
913 		goto inode_unlock;
914 	}
915 
916 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
917 		ret = -EINVAL;
918 		goto inode_unlock;
919 	}
920 
921 	/* Enforce sequential writes (append only) in sequential zones */
922 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
923 		mutex_lock(&zi->i_truncate_mutex);
924 		if (iocb->ki_pos != zi->i_wpoffset) {
925 			mutex_unlock(&zi->i_truncate_mutex);
926 			ret = -EINVAL;
927 			goto inode_unlock;
928 		}
929 		mutex_unlock(&zi->i_truncate_mutex);
930 		append = sync;
931 	}
932 
933 	if (append)
934 		ret = zonefs_file_dio_append(iocb, from);
935 	else
936 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
937 				   &zonefs_write_dio_ops, 0, NULL, 0);
938 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
939 	    (ret > 0 || ret == -EIOCBQUEUED)) {
940 		if (ret > 0)
941 			count = ret;
942 
943 		/*
944 		 * Update the zone write pointer offset assuming the write
945 		 * operation succeeded. If it did not, the error recovery path
946 		 * will correct it. Also do active seq file accounting.
947 		 */
948 		mutex_lock(&zi->i_truncate_mutex);
949 		zi->i_wpoffset += count;
950 		zonefs_account_active(inode);
951 		mutex_unlock(&zi->i_truncate_mutex);
952 	}
953 
954 inode_unlock:
955 	inode_unlock(inode);
956 
957 	return ret;
958 }
959 
960 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
961 					  struct iov_iter *from)
962 {
963 	struct inode *inode = file_inode(iocb->ki_filp);
964 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
965 	ssize_t ret;
966 
967 	/*
968 	 * Direct IO writes are mandatory for sequential zone files so that the
969 	 * write IO issuing order is preserved.
970 	 */
971 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
972 		return -EIO;
973 
974 	if (iocb->ki_flags & IOCB_NOWAIT) {
975 		if (!inode_trylock(inode))
976 			return -EAGAIN;
977 	} else {
978 		inode_lock(inode);
979 	}
980 
981 	ret = zonefs_write_checks(iocb, from);
982 	if (ret <= 0)
983 		goto inode_unlock;
984 
985 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
986 	if (ret > 0)
987 		iocb->ki_pos += ret;
988 	else if (ret == -EIO)
989 		zonefs_io_error(inode, true);
990 
991 inode_unlock:
992 	inode_unlock(inode);
993 	if (ret > 0)
994 		ret = generic_write_sync(iocb, ret);
995 
996 	return ret;
997 }
998 
999 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1000 {
1001 	struct inode *inode = file_inode(iocb->ki_filp);
1002 
1003 	if (unlikely(IS_IMMUTABLE(inode)))
1004 		return -EPERM;
1005 
1006 	if (sb_rdonly(inode->i_sb))
1007 		return -EROFS;
1008 
1009 	/* Write operations beyond the zone size are not allowed */
1010 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1011 		return -EFBIG;
1012 
1013 	if (iocb->ki_flags & IOCB_DIRECT) {
1014 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1015 		if (ret != -ENOTBLK)
1016 			return ret;
1017 	}
1018 
1019 	return zonefs_file_buffered_write(iocb, from);
1020 }
1021 
1022 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1023 				       int error, unsigned int flags)
1024 {
1025 	if (error) {
1026 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1027 		return error;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1034 	.end_io			= zonefs_file_read_dio_end_io,
1035 };
1036 
1037 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1038 {
1039 	struct inode *inode = file_inode(iocb->ki_filp);
1040 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1041 	struct super_block *sb = inode->i_sb;
1042 	loff_t isize;
1043 	ssize_t ret;
1044 
1045 	/* Offline zones cannot be read */
1046 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1047 		return -EPERM;
1048 
1049 	if (iocb->ki_pos >= zi->i_max_size)
1050 		return 0;
1051 
1052 	if (iocb->ki_flags & IOCB_NOWAIT) {
1053 		if (!inode_trylock_shared(inode))
1054 			return -EAGAIN;
1055 	} else {
1056 		inode_lock_shared(inode);
1057 	}
1058 
1059 	/* Limit read operations to written data */
1060 	mutex_lock(&zi->i_truncate_mutex);
1061 	isize = i_size_read(inode);
1062 	if (iocb->ki_pos >= isize) {
1063 		mutex_unlock(&zi->i_truncate_mutex);
1064 		ret = 0;
1065 		goto inode_unlock;
1066 	}
1067 	iov_iter_truncate(to, isize - iocb->ki_pos);
1068 	mutex_unlock(&zi->i_truncate_mutex);
1069 
1070 	if (iocb->ki_flags & IOCB_DIRECT) {
1071 		size_t count = iov_iter_count(to);
1072 
1073 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1074 			ret = -EINVAL;
1075 			goto inode_unlock;
1076 		}
1077 		file_accessed(iocb->ki_filp);
1078 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1079 				   &zonefs_read_dio_ops, 0, NULL, 0);
1080 	} else {
1081 		ret = generic_file_read_iter(iocb, to);
1082 		if (ret == -EIO)
1083 			zonefs_io_error(inode, false);
1084 	}
1085 
1086 inode_unlock:
1087 	inode_unlock_shared(inode);
1088 
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Write open accounting is done only for sequential files.
1094  */
1095 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1096 					    struct file *file)
1097 {
1098 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1099 
1100 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1101 		return false;
1102 
1103 	if (!(file->f_mode & FMODE_WRITE))
1104 		return false;
1105 
1106 	return true;
1107 }
1108 
1109 static int zonefs_seq_file_write_open(struct inode *inode)
1110 {
1111 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1112 	int ret = 0;
1113 
1114 	mutex_lock(&zi->i_truncate_mutex);
1115 
1116 	if (!zi->i_wr_refcnt) {
1117 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1118 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1119 
1120 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1121 
1122 			if (sbi->s_max_wro_seq_files
1123 			    && wro > sbi->s_max_wro_seq_files) {
1124 				atomic_dec(&sbi->s_wro_seq_files);
1125 				ret = -EBUSY;
1126 				goto unlock;
1127 			}
1128 
1129 			if (i_size_read(inode) < zi->i_max_size) {
1130 				ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1131 				if (ret) {
1132 					atomic_dec(&sbi->s_wro_seq_files);
1133 					goto unlock;
1134 				}
1135 				zi->i_flags |= ZONEFS_ZONE_OPEN;
1136 				zonefs_account_active(inode);
1137 			}
1138 		}
1139 	}
1140 
1141 	zi->i_wr_refcnt++;
1142 
1143 unlock:
1144 	mutex_unlock(&zi->i_truncate_mutex);
1145 
1146 	return ret;
1147 }
1148 
1149 static int zonefs_file_open(struct inode *inode, struct file *file)
1150 {
1151 	int ret;
1152 
1153 	ret = generic_file_open(inode, file);
1154 	if (ret)
1155 		return ret;
1156 
1157 	if (zonefs_seq_file_need_wro(inode, file))
1158 		return zonefs_seq_file_write_open(inode);
1159 
1160 	return 0;
1161 }
1162 
1163 static void zonefs_seq_file_write_close(struct inode *inode)
1164 {
1165 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1166 	struct super_block *sb = inode->i_sb;
1167 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1168 	int ret = 0;
1169 
1170 	mutex_lock(&zi->i_truncate_mutex);
1171 
1172 	zi->i_wr_refcnt--;
1173 	if (zi->i_wr_refcnt)
1174 		goto unlock;
1175 
1176 	/*
1177 	 * The file zone may not be open anymore (e.g. the file was truncated to
1178 	 * its maximum size or it was fully written). For this case, we only
1179 	 * need to decrement the write open count.
1180 	 */
1181 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1182 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1183 		if (ret) {
1184 			__zonefs_io_error(inode, false);
1185 			/*
1186 			 * Leaving zones explicitly open may lead to a state
1187 			 * where most zones cannot be written (zone resources
1188 			 * exhausted). So take preventive action by remounting
1189 			 * read-only.
1190 			 */
1191 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1192 			    !(sb->s_flags & SB_RDONLY)) {
1193 				zonefs_warn(sb,
1194 					"closing zone at %llu failed %d\n",
1195 					zi->i_zsector, ret);
1196 				zonefs_warn(sb,
1197 					"remounting filesystem read-only\n");
1198 				sb->s_flags |= SB_RDONLY;
1199 			}
1200 			goto unlock;
1201 		}
1202 
1203 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1204 		zonefs_account_active(inode);
1205 	}
1206 
1207 	atomic_dec(&sbi->s_wro_seq_files);
1208 
1209 unlock:
1210 	mutex_unlock(&zi->i_truncate_mutex);
1211 }
1212 
1213 static int zonefs_file_release(struct inode *inode, struct file *file)
1214 {
1215 	/*
1216 	 * If we explicitly open a zone we must close it again as well, but the
1217 	 * zone management operation can fail (either due to an IO error or as
1218 	 * the zone has gone offline or read-only). Make sure we don't fail the
1219 	 * close(2) for user-space.
1220 	 */
1221 	if (zonefs_seq_file_need_wro(inode, file))
1222 		zonefs_seq_file_write_close(inode);
1223 
1224 	return 0;
1225 }
1226 
1227 static const struct file_operations zonefs_file_operations = {
1228 	.open		= zonefs_file_open,
1229 	.release	= zonefs_file_release,
1230 	.fsync		= zonefs_file_fsync,
1231 	.mmap		= zonefs_file_mmap,
1232 	.llseek		= zonefs_file_llseek,
1233 	.read_iter	= zonefs_file_read_iter,
1234 	.write_iter	= zonefs_file_write_iter,
1235 	.splice_read	= generic_file_splice_read,
1236 	.splice_write	= iter_file_splice_write,
1237 	.iopoll		= iocb_bio_iopoll,
1238 };
1239 
1240 static struct kmem_cache *zonefs_inode_cachep;
1241 
1242 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1243 {
1244 	struct zonefs_inode_info *zi;
1245 
1246 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1247 	if (!zi)
1248 		return NULL;
1249 
1250 	inode_init_once(&zi->i_vnode);
1251 	mutex_init(&zi->i_truncate_mutex);
1252 	zi->i_wr_refcnt = 0;
1253 	zi->i_flags = 0;
1254 
1255 	return &zi->i_vnode;
1256 }
1257 
1258 static void zonefs_free_inode(struct inode *inode)
1259 {
1260 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1261 }
1262 
1263 /*
1264  * File system stat.
1265  */
1266 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1267 {
1268 	struct super_block *sb = dentry->d_sb;
1269 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1270 	enum zonefs_ztype t;
1271 
1272 	buf->f_type = ZONEFS_MAGIC;
1273 	buf->f_bsize = sb->s_blocksize;
1274 	buf->f_namelen = ZONEFS_NAME_MAX;
1275 
1276 	spin_lock(&sbi->s_lock);
1277 
1278 	buf->f_blocks = sbi->s_blocks;
1279 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1280 		buf->f_bfree = 0;
1281 	else
1282 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1283 	buf->f_bavail = buf->f_bfree;
1284 
1285 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1286 		if (sbi->s_nr_files[t])
1287 			buf->f_files += sbi->s_nr_files[t] + 1;
1288 	}
1289 	buf->f_ffree = 0;
1290 
1291 	spin_unlock(&sbi->s_lock);
1292 
1293 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1294 
1295 	return 0;
1296 }
1297 
1298 enum {
1299 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1300 	Opt_explicit_open, Opt_err,
1301 };
1302 
1303 static const match_table_t tokens = {
1304 	{ Opt_errors_ro,	"errors=remount-ro"},
1305 	{ Opt_errors_zro,	"errors=zone-ro"},
1306 	{ Opt_errors_zol,	"errors=zone-offline"},
1307 	{ Opt_errors_repair,	"errors=repair"},
1308 	{ Opt_explicit_open,	"explicit-open" },
1309 	{ Opt_err,		NULL}
1310 };
1311 
1312 static int zonefs_parse_options(struct super_block *sb, char *options)
1313 {
1314 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1315 	substring_t args[MAX_OPT_ARGS];
1316 	char *p;
1317 
1318 	if (!options)
1319 		return 0;
1320 
1321 	while ((p = strsep(&options, ",")) != NULL) {
1322 		int token;
1323 
1324 		if (!*p)
1325 			continue;
1326 
1327 		token = match_token(p, tokens, args);
1328 		switch (token) {
1329 		case Opt_errors_ro:
1330 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1331 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1332 			break;
1333 		case Opt_errors_zro:
1334 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1335 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1336 			break;
1337 		case Opt_errors_zol:
1338 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1339 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1340 			break;
1341 		case Opt_errors_repair:
1342 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1343 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1344 			break;
1345 		case Opt_explicit_open:
1346 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1347 			break;
1348 		default:
1349 			return -EINVAL;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1357 {
1358 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1359 
1360 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1361 		seq_puts(seq, ",errors=remount-ro");
1362 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1363 		seq_puts(seq, ",errors=zone-ro");
1364 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1365 		seq_puts(seq, ",errors=zone-offline");
1366 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1367 		seq_puts(seq, ",errors=repair");
1368 
1369 	return 0;
1370 }
1371 
1372 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1373 {
1374 	sync_filesystem(sb);
1375 
1376 	return zonefs_parse_options(sb, data);
1377 }
1378 
1379 static const struct super_operations zonefs_sops = {
1380 	.alloc_inode	= zonefs_alloc_inode,
1381 	.free_inode	= zonefs_free_inode,
1382 	.statfs		= zonefs_statfs,
1383 	.remount_fs	= zonefs_remount,
1384 	.show_options	= zonefs_show_options,
1385 };
1386 
1387 static const struct inode_operations zonefs_dir_inode_operations = {
1388 	.lookup		= simple_lookup,
1389 	.setattr	= zonefs_inode_setattr,
1390 };
1391 
1392 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1393 				  enum zonefs_ztype type)
1394 {
1395 	struct super_block *sb = parent->i_sb;
1396 
1397 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1398 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1399 	inode->i_op = &zonefs_dir_inode_operations;
1400 	inode->i_fop = &simple_dir_operations;
1401 	set_nlink(inode, 2);
1402 	inc_nlink(parent);
1403 }
1404 
1405 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1406 				  enum zonefs_ztype type)
1407 {
1408 	struct super_block *sb = inode->i_sb;
1409 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1410 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1411 	int ret = 0;
1412 
1413 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1414 	inode->i_mode = S_IFREG | sbi->s_perm;
1415 
1416 	zi->i_ztype = type;
1417 	zi->i_zsector = zone->start;
1418 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1419 
1420 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1421 			       zone->capacity << SECTOR_SHIFT);
1422 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1423 
1424 	inode->i_uid = sbi->s_uid;
1425 	inode->i_gid = sbi->s_gid;
1426 	inode->i_size = zi->i_wpoffset;
1427 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1428 
1429 	inode->i_op = &zonefs_file_inode_operations;
1430 	inode->i_fop = &zonefs_file_operations;
1431 	inode->i_mapping->a_ops = &zonefs_file_aops;
1432 
1433 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1434 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1435 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1436 
1437 	mutex_lock(&zi->i_truncate_mutex);
1438 
1439 	/*
1440 	 * For sequential zones, make sure that any open zone is closed first
1441 	 * to ensure that the initial number of open zones is 0, in sync with
1442 	 * the open zone accounting done when the mount option
1443 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1444 	 */
1445 	if (type == ZONEFS_ZTYPE_SEQ &&
1446 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1447 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1448 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1449 		if (ret)
1450 			goto unlock;
1451 	}
1452 
1453 	zonefs_account_active(inode);
1454 
1455 unlock:
1456 	mutex_unlock(&zi->i_truncate_mutex);
1457 
1458 	return ret;
1459 }
1460 
1461 static struct dentry *zonefs_create_inode(struct dentry *parent,
1462 					const char *name, struct blk_zone *zone,
1463 					enum zonefs_ztype type)
1464 {
1465 	struct inode *dir = d_inode(parent);
1466 	struct dentry *dentry;
1467 	struct inode *inode;
1468 	int ret;
1469 
1470 	dentry = d_alloc_name(parent, name);
1471 	if (!dentry)
1472 		return NULL;
1473 
1474 	inode = new_inode(parent->d_sb);
1475 	if (!inode)
1476 		goto dput;
1477 
1478 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1479 	if (zone) {
1480 		ret = zonefs_init_file_inode(inode, zone, type);
1481 		if (ret) {
1482 			iput(inode);
1483 			goto dput;
1484 		}
1485 	} else {
1486 		zonefs_init_dir_inode(dir, inode, type);
1487 	}
1488 
1489 	d_add(dentry, inode);
1490 	dir->i_size++;
1491 
1492 	return dentry;
1493 
1494 dput:
1495 	dput(dentry);
1496 
1497 	return NULL;
1498 }
1499 
1500 struct zonefs_zone_data {
1501 	struct super_block	*sb;
1502 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1503 	struct blk_zone		*zones;
1504 };
1505 
1506 /*
1507  * Create a zone group and populate it with zone files.
1508  */
1509 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1510 				enum zonefs_ztype type)
1511 {
1512 	struct super_block *sb = zd->sb;
1513 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1514 	struct blk_zone *zone, *next, *end;
1515 	const char *zgroup_name;
1516 	char *file_name;
1517 	struct dentry *dir;
1518 	unsigned int n = 0;
1519 	int ret;
1520 
1521 	/* If the group is empty, there is nothing to do */
1522 	if (!zd->nr_zones[type])
1523 		return 0;
1524 
1525 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1526 	if (!file_name)
1527 		return -ENOMEM;
1528 
1529 	if (type == ZONEFS_ZTYPE_CNV)
1530 		zgroup_name = "cnv";
1531 	else
1532 		zgroup_name = "seq";
1533 
1534 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1535 	if (!dir) {
1536 		ret = -ENOMEM;
1537 		goto free;
1538 	}
1539 
1540 	/*
1541 	 * The first zone contains the super block: skip it.
1542 	 */
1543 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1544 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1545 
1546 		next = zone + 1;
1547 		if (zonefs_zone_type(zone) != type)
1548 			continue;
1549 
1550 		/*
1551 		 * For conventional zones, contiguous zones can be aggregated
1552 		 * together to form larger files. Note that this overwrites the
1553 		 * length of the first zone of the set of contiguous zones
1554 		 * aggregated together. If one offline or read-only zone is
1555 		 * found, assume that all zones aggregated have the same
1556 		 * condition.
1557 		 */
1558 		if (type == ZONEFS_ZTYPE_CNV &&
1559 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1560 			for (; next < end; next++) {
1561 				if (zonefs_zone_type(next) != type)
1562 					break;
1563 				zone->len += next->len;
1564 				zone->capacity += next->capacity;
1565 				if (next->cond == BLK_ZONE_COND_READONLY &&
1566 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1567 					zone->cond = BLK_ZONE_COND_READONLY;
1568 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1569 					zone->cond = BLK_ZONE_COND_OFFLINE;
1570 			}
1571 			if (zone->capacity != zone->len) {
1572 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1573 				ret = -EINVAL;
1574 				goto free;
1575 			}
1576 		}
1577 
1578 		/*
1579 		 * Use the file number within its group as file name.
1580 		 */
1581 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1582 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1583 			ret = -ENOMEM;
1584 			goto free;
1585 		}
1586 
1587 		n++;
1588 	}
1589 
1590 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1591 		    zgroup_name, n, n > 1 ? "s" : "");
1592 
1593 	sbi->s_nr_files[type] = n;
1594 	ret = 0;
1595 
1596 free:
1597 	kfree(file_name);
1598 
1599 	return ret;
1600 }
1601 
1602 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1603 				   void *data)
1604 {
1605 	struct zonefs_zone_data *zd = data;
1606 
1607 	/*
1608 	 * Count the number of usable zones: the first zone at index 0 contains
1609 	 * the super block and is ignored.
1610 	 */
1611 	switch (zone->type) {
1612 	case BLK_ZONE_TYPE_CONVENTIONAL:
1613 		zone->wp = zone->start + zone->len;
1614 		if (idx)
1615 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1616 		break;
1617 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1618 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1619 		if (idx)
1620 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1621 		break;
1622 	default:
1623 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1624 			   zone->type);
1625 		return -EIO;
1626 	}
1627 
1628 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1629 
1630 	return 0;
1631 }
1632 
1633 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1634 {
1635 	struct block_device *bdev = zd->sb->s_bdev;
1636 	int ret;
1637 
1638 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1639 			     sizeof(struct blk_zone), GFP_KERNEL);
1640 	if (!zd->zones)
1641 		return -ENOMEM;
1642 
1643 	/* Get zones information from the device */
1644 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1645 				  zonefs_get_zone_info_cb, zd);
1646 	if (ret < 0) {
1647 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1648 		return ret;
1649 	}
1650 
1651 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1652 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1653 			   ret, blkdev_nr_zones(bdev->bd_disk));
1654 		return -EIO;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1661 {
1662 	kvfree(zd->zones);
1663 }
1664 
1665 /*
1666  * Read super block information from the device.
1667  */
1668 static int zonefs_read_super(struct super_block *sb)
1669 {
1670 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1671 	struct zonefs_super *super;
1672 	u32 crc, stored_crc;
1673 	struct page *page;
1674 	struct bio_vec bio_vec;
1675 	struct bio bio;
1676 	int ret;
1677 
1678 	page = alloc_page(GFP_KERNEL);
1679 	if (!page)
1680 		return -ENOMEM;
1681 
1682 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1683 	bio.bi_iter.bi_sector = 0;
1684 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1685 
1686 	ret = submit_bio_wait(&bio);
1687 	if (ret)
1688 		goto free_page;
1689 
1690 	super = kmap(page);
1691 
1692 	ret = -EINVAL;
1693 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1694 		goto unmap;
1695 
1696 	stored_crc = le32_to_cpu(super->s_crc);
1697 	super->s_crc = 0;
1698 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1699 	if (crc != stored_crc) {
1700 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1701 			   crc, stored_crc);
1702 		goto unmap;
1703 	}
1704 
1705 	sbi->s_features = le64_to_cpu(super->s_features);
1706 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1707 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1708 			   sbi->s_features);
1709 		goto unmap;
1710 	}
1711 
1712 	if (sbi->s_features & ZONEFS_F_UID) {
1713 		sbi->s_uid = make_kuid(current_user_ns(),
1714 				       le32_to_cpu(super->s_uid));
1715 		if (!uid_valid(sbi->s_uid)) {
1716 			zonefs_err(sb, "Invalid UID feature\n");
1717 			goto unmap;
1718 		}
1719 	}
1720 
1721 	if (sbi->s_features & ZONEFS_F_GID) {
1722 		sbi->s_gid = make_kgid(current_user_ns(),
1723 				       le32_to_cpu(super->s_gid));
1724 		if (!gid_valid(sbi->s_gid)) {
1725 			zonefs_err(sb, "Invalid GID feature\n");
1726 			goto unmap;
1727 		}
1728 	}
1729 
1730 	if (sbi->s_features & ZONEFS_F_PERM)
1731 		sbi->s_perm = le32_to_cpu(super->s_perm);
1732 
1733 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1734 		zonefs_err(sb, "Reserved area is being used\n");
1735 		goto unmap;
1736 	}
1737 
1738 	import_uuid(&sbi->s_uuid, super->s_uuid);
1739 	ret = 0;
1740 
1741 unmap:
1742 	kunmap(page);
1743 free_page:
1744 	__free_page(page);
1745 
1746 	return ret;
1747 }
1748 
1749 /*
1750  * Check that the device is zoned. If it is, get the list of zones and create
1751  * sub-directories and files according to the device zone configuration and
1752  * format options.
1753  */
1754 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1755 {
1756 	struct zonefs_zone_data zd;
1757 	struct zonefs_sb_info *sbi;
1758 	struct inode *inode;
1759 	enum zonefs_ztype t;
1760 	int ret;
1761 
1762 	if (!bdev_is_zoned(sb->s_bdev)) {
1763 		zonefs_err(sb, "Not a zoned block device\n");
1764 		return -EINVAL;
1765 	}
1766 
1767 	/*
1768 	 * Initialize super block information: the maximum file size is updated
1769 	 * when the zone files are created so that the format option
1770 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1771 	 * beyond the zone size is taken into account.
1772 	 */
1773 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1774 	if (!sbi)
1775 		return -ENOMEM;
1776 
1777 	spin_lock_init(&sbi->s_lock);
1778 	sb->s_fs_info = sbi;
1779 	sb->s_magic = ZONEFS_MAGIC;
1780 	sb->s_maxbytes = 0;
1781 	sb->s_op = &zonefs_sops;
1782 	sb->s_time_gran	= 1;
1783 
1784 	/*
1785 	 * The block size is set to the device zone write granularity to ensure
1786 	 * that write operations are always aligned according to the device
1787 	 * interface constraints.
1788 	 */
1789 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1790 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1791 	sbi->s_uid = GLOBAL_ROOT_UID;
1792 	sbi->s_gid = GLOBAL_ROOT_GID;
1793 	sbi->s_perm = 0640;
1794 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1795 
1796 	atomic_set(&sbi->s_wro_seq_files, 0);
1797 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1798 	atomic_set(&sbi->s_active_seq_files, 0);
1799 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1800 
1801 	ret = zonefs_read_super(sb);
1802 	if (ret)
1803 		return ret;
1804 
1805 	ret = zonefs_parse_options(sb, data);
1806 	if (ret)
1807 		return ret;
1808 
1809 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1810 	zd.sb = sb;
1811 	ret = zonefs_get_zone_info(&zd);
1812 	if (ret)
1813 		goto cleanup;
1814 
1815 	ret = zonefs_sysfs_register(sb);
1816 	if (ret)
1817 		goto cleanup;
1818 
1819 	zonefs_info(sb, "Mounting %u zones",
1820 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1821 
1822 	if (!sbi->s_max_wro_seq_files &&
1823 	    !sbi->s_max_active_seq_files &&
1824 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1825 		zonefs_info(sb,
1826 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1827 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1828 	}
1829 
1830 	/* Create root directory inode */
1831 	ret = -ENOMEM;
1832 	inode = new_inode(sb);
1833 	if (!inode)
1834 		goto cleanup;
1835 
1836 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1837 	inode->i_mode = S_IFDIR | 0555;
1838 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1839 	inode->i_op = &zonefs_dir_inode_operations;
1840 	inode->i_fop = &simple_dir_operations;
1841 	set_nlink(inode, 2);
1842 
1843 	sb->s_root = d_make_root(inode);
1844 	if (!sb->s_root)
1845 		goto cleanup;
1846 
1847 	/* Create and populate files in zone groups directories */
1848 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1849 		ret = zonefs_create_zgroup(&zd, t);
1850 		if (ret)
1851 			break;
1852 	}
1853 
1854 cleanup:
1855 	zonefs_cleanup_zone_info(&zd);
1856 
1857 	return ret;
1858 }
1859 
1860 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1861 				   int flags, const char *dev_name, void *data)
1862 {
1863 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1864 }
1865 
1866 static void zonefs_kill_super(struct super_block *sb)
1867 {
1868 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1869 
1870 	if (sb->s_root)
1871 		d_genocide(sb->s_root);
1872 
1873 	zonefs_sysfs_unregister(sb);
1874 	kill_block_super(sb);
1875 	kfree(sbi);
1876 }
1877 
1878 /*
1879  * File system definition and registration.
1880  */
1881 static struct file_system_type zonefs_type = {
1882 	.owner		= THIS_MODULE,
1883 	.name		= "zonefs",
1884 	.mount		= zonefs_mount,
1885 	.kill_sb	= zonefs_kill_super,
1886 	.fs_flags	= FS_REQUIRES_DEV,
1887 };
1888 
1889 static int __init zonefs_init_inodecache(void)
1890 {
1891 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1892 			sizeof(struct zonefs_inode_info), 0,
1893 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1894 			NULL);
1895 	if (zonefs_inode_cachep == NULL)
1896 		return -ENOMEM;
1897 	return 0;
1898 }
1899 
1900 static void zonefs_destroy_inodecache(void)
1901 {
1902 	/*
1903 	 * Make sure all delayed rcu free inodes are flushed before we
1904 	 * destroy the inode cache.
1905 	 */
1906 	rcu_barrier();
1907 	kmem_cache_destroy(zonefs_inode_cachep);
1908 }
1909 
1910 static int __init zonefs_init(void)
1911 {
1912 	int ret;
1913 
1914 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1915 
1916 	ret = zonefs_init_inodecache();
1917 	if (ret)
1918 		return ret;
1919 
1920 	ret = register_filesystem(&zonefs_type);
1921 	if (ret)
1922 		goto destroy_inodecache;
1923 
1924 	ret = zonefs_sysfs_init();
1925 	if (ret)
1926 		goto unregister_fs;
1927 
1928 	return 0;
1929 
1930 unregister_fs:
1931 	unregister_filesystem(&zonefs_type);
1932 destroy_inodecache:
1933 	zonefs_destroy_inodecache();
1934 
1935 	return ret;
1936 }
1937 
1938 static void __exit zonefs_exit(void)
1939 {
1940 	zonefs_sysfs_exit();
1941 	zonefs_destroy_inodecache();
1942 	unregister_filesystem(&zonefs_type);
1943 }
1944 
1945 MODULE_AUTHOR("Damien Le Moal");
1946 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1947 MODULE_LICENSE("GPL");
1948 MODULE_ALIAS_FS("zonefs");
1949 module_init(zonefs_init);
1950 module_exit(zonefs_exit);
1951