1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 static inline int zonefs_zone_mgmt(struct inode *inode, 28 enum req_opf op) 29 { 30 struct zonefs_inode_info *zi = ZONEFS_I(inode); 31 int ret; 32 33 lockdep_assert_held(&zi->i_truncate_mutex); 34 35 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 36 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 37 if (ret) { 38 zonefs_err(inode->i_sb, 39 "Zone management operation %s at %llu failed %d\n", 40 blk_op_str(op), zi->i_zsector, ret); 41 return ret; 42 } 43 44 return 0; 45 } 46 47 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 48 { 49 struct zonefs_inode_info *zi = ZONEFS_I(inode); 50 51 i_size_write(inode, isize); 52 /* 53 * A full zone is no longer open/active and does not need 54 * explicit closing. 55 */ 56 if (isize >= zi->i_max_size) 57 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 58 } 59 60 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 61 unsigned int flags, struct iomap *iomap, 62 struct iomap *srcmap) 63 { 64 struct zonefs_inode_info *zi = ZONEFS_I(inode); 65 struct super_block *sb = inode->i_sb; 66 loff_t isize; 67 68 /* All I/Os should always be within the file maximum size */ 69 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 70 return -EIO; 71 72 /* 73 * Sequential zones can only accept direct writes. This is already 74 * checked when writes are issued, so warn if we see a page writeback 75 * operation. 76 */ 77 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 78 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 79 return -EIO; 80 81 /* 82 * For conventional zones, all blocks are always mapped. For sequential 83 * zones, all blocks after always mapped below the inode size (zone 84 * write pointer) and unwriten beyond. 85 */ 86 mutex_lock(&zi->i_truncate_mutex); 87 isize = i_size_read(inode); 88 if (offset >= isize) 89 iomap->type = IOMAP_UNWRITTEN; 90 else 91 iomap->type = IOMAP_MAPPED; 92 if (flags & IOMAP_WRITE) 93 length = zi->i_max_size - offset; 94 else 95 length = min(length, isize - offset); 96 mutex_unlock(&zi->i_truncate_mutex); 97 98 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 99 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 100 iomap->bdev = inode->i_sb->s_bdev; 101 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 102 103 return 0; 104 } 105 106 static const struct iomap_ops zonefs_iomap_ops = { 107 .iomap_begin = zonefs_iomap_begin, 108 }; 109 110 static int zonefs_readpage(struct file *unused, struct page *page) 111 { 112 return iomap_readpage(page, &zonefs_iomap_ops); 113 } 114 115 static void zonefs_readahead(struct readahead_control *rac) 116 { 117 iomap_readahead(rac, &zonefs_iomap_ops); 118 } 119 120 /* 121 * Map blocks for page writeback. This is used only on conventional zone files, 122 * which implies that the page range can only be within the fixed inode size. 123 */ 124 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 125 struct inode *inode, loff_t offset) 126 { 127 struct zonefs_inode_info *zi = ZONEFS_I(inode); 128 129 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 130 return -EIO; 131 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 132 return -EIO; 133 134 /* If the mapping is already OK, nothing needs to be done */ 135 if (offset >= wpc->iomap.offset && 136 offset < wpc->iomap.offset + wpc->iomap.length) 137 return 0; 138 139 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 140 IOMAP_WRITE, &wpc->iomap, NULL); 141 } 142 143 static const struct iomap_writeback_ops zonefs_writeback_ops = { 144 .map_blocks = zonefs_map_blocks, 145 }; 146 147 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 148 { 149 struct iomap_writepage_ctx wpc = { }; 150 151 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 152 } 153 154 static int zonefs_writepages(struct address_space *mapping, 155 struct writeback_control *wbc) 156 { 157 struct iomap_writepage_ctx wpc = { }; 158 159 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 160 } 161 162 static const struct address_space_operations zonefs_file_aops = { 163 .readpage = zonefs_readpage, 164 .readahead = zonefs_readahead, 165 .writepage = zonefs_writepage, 166 .writepages = zonefs_writepages, 167 .set_page_dirty = iomap_set_page_dirty, 168 .releasepage = iomap_releasepage, 169 .invalidatepage = iomap_invalidatepage, 170 .migratepage = iomap_migrate_page, 171 .is_partially_uptodate = iomap_is_partially_uptodate, 172 .error_remove_page = generic_error_remove_page, 173 .direct_IO = noop_direct_IO, 174 }; 175 176 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 177 { 178 struct super_block *sb = inode->i_sb; 179 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 180 loff_t old_isize = i_size_read(inode); 181 loff_t nr_blocks; 182 183 if (new_isize == old_isize) 184 return; 185 186 spin_lock(&sbi->s_lock); 187 188 /* 189 * This may be called for an update after an IO error. 190 * So beware of the values seen. 191 */ 192 if (new_isize < old_isize) { 193 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 194 if (sbi->s_used_blocks > nr_blocks) 195 sbi->s_used_blocks -= nr_blocks; 196 else 197 sbi->s_used_blocks = 0; 198 } else { 199 sbi->s_used_blocks += 200 (new_isize - old_isize) >> sb->s_blocksize_bits; 201 if (sbi->s_used_blocks > sbi->s_blocks) 202 sbi->s_used_blocks = sbi->s_blocks; 203 } 204 205 spin_unlock(&sbi->s_lock); 206 } 207 208 /* 209 * Check a zone condition and adjust its file inode access permissions for 210 * offline and readonly zones. Return the inode size corresponding to the 211 * amount of readable data in the zone. 212 */ 213 static loff_t zonefs_check_zone_condition(struct inode *inode, 214 struct blk_zone *zone, bool warn, 215 bool mount) 216 { 217 struct zonefs_inode_info *zi = ZONEFS_I(inode); 218 219 switch (zone->cond) { 220 case BLK_ZONE_COND_OFFLINE: 221 /* 222 * Dead zone: make the inode immutable, disable all accesses 223 * and set the file size to 0 (zone wp set to zone start). 224 */ 225 if (warn) 226 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 227 inode->i_ino); 228 inode->i_flags |= S_IMMUTABLE; 229 inode->i_mode &= ~0777; 230 zone->wp = zone->start; 231 return 0; 232 case BLK_ZONE_COND_READONLY: 233 /* 234 * The write pointer of read-only zones is invalid. If such a 235 * zone is found during mount, the file size cannot be retrieved 236 * so we treat the zone as offline (mount == true case). 237 * Otherwise, keep the file size as it was when last updated 238 * so that the user can recover data. In both cases, writes are 239 * always disabled for the zone. 240 */ 241 if (warn) 242 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 243 inode->i_ino); 244 inode->i_flags |= S_IMMUTABLE; 245 if (mount) { 246 zone->cond = BLK_ZONE_COND_OFFLINE; 247 inode->i_mode &= ~0777; 248 zone->wp = zone->start; 249 return 0; 250 } 251 inode->i_mode &= ~0222; 252 return i_size_read(inode); 253 default: 254 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 255 return zi->i_max_size; 256 return (zone->wp - zone->start) << SECTOR_SHIFT; 257 } 258 } 259 260 struct zonefs_ioerr_data { 261 struct inode *inode; 262 bool write; 263 }; 264 265 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 266 void *data) 267 { 268 struct zonefs_ioerr_data *err = data; 269 struct inode *inode = err->inode; 270 struct zonefs_inode_info *zi = ZONEFS_I(inode); 271 struct super_block *sb = inode->i_sb; 272 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 273 loff_t isize, data_size; 274 275 /* 276 * Check the zone condition: if the zone is not "bad" (offline or 277 * read-only), read errors are simply signaled to the IO issuer as long 278 * as there is no inconsistency between the inode size and the amount of 279 * data writen in the zone (data_size). 280 */ 281 data_size = zonefs_check_zone_condition(inode, zone, true, false); 282 isize = i_size_read(inode); 283 if (zone->cond != BLK_ZONE_COND_OFFLINE && 284 zone->cond != BLK_ZONE_COND_READONLY && 285 !err->write && isize == data_size) 286 return 0; 287 288 /* 289 * At this point, we detected either a bad zone or an inconsistency 290 * between the inode size and the amount of data written in the zone. 291 * For the latter case, the cause may be a write IO error or an external 292 * action on the device. Two error patterns exist: 293 * 1) The inode size is lower than the amount of data in the zone: 294 * a write operation partially failed and data was writen at the end 295 * of the file. This can happen in the case of a large direct IO 296 * needing several BIOs and/or write requests to be processed. 297 * 2) The inode size is larger than the amount of data in the zone: 298 * this can happen with a deferred write error with the use of the 299 * device side write cache after getting successful write IO 300 * completions. Other possibilities are (a) an external corruption, 301 * e.g. an application reset the zone directly, or (b) the device 302 * has a serious problem (e.g. firmware bug). 303 * 304 * In all cases, warn about inode size inconsistency and handle the 305 * IO error according to the zone condition and to the mount options. 306 */ 307 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 308 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 309 inode->i_ino, isize, data_size); 310 311 /* 312 * First handle bad zones signaled by hardware. The mount options 313 * errors=zone-ro and errors=zone-offline result in changing the 314 * zone condition to read-only and offline respectively, as if the 315 * condition was signaled by the hardware. 316 */ 317 if (zone->cond == BLK_ZONE_COND_OFFLINE || 318 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 319 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 320 inode->i_ino); 321 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 322 zone->cond = BLK_ZONE_COND_OFFLINE; 323 data_size = zonefs_check_zone_condition(inode, zone, 324 false, false); 325 } 326 } else if (zone->cond == BLK_ZONE_COND_READONLY || 327 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 328 zonefs_warn(sb, "inode %lu: write access disabled\n", 329 inode->i_ino); 330 if (zone->cond != BLK_ZONE_COND_READONLY) { 331 zone->cond = BLK_ZONE_COND_READONLY; 332 data_size = zonefs_check_zone_condition(inode, zone, 333 false, false); 334 } 335 } 336 337 /* 338 * If the filesystem is mounted with the explicit-open mount option, we 339 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 340 * the read-only or offline condition, to avoid attempting an explicit 341 * close of the zone when the inode file is closed. 342 */ 343 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 344 (zone->cond == BLK_ZONE_COND_OFFLINE || 345 zone->cond == BLK_ZONE_COND_READONLY)) 346 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 347 348 /* 349 * If error=remount-ro was specified, any error result in remounting 350 * the volume as read-only. 351 */ 352 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 353 zonefs_warn(sb, "remounting filesystem read-only\n"); 354 sb->s_flags |= SB_RDONLY; 355 } 356 357 /* 358 * Update block usage stats and the inode size to prevent access to 359 * invalid data. 360 */ 361 zonefs_update_stats(inode, data_size); 362 zonefs_i_size_write(inode, data_size); 363 zi->i_wpoffset = data_size; 364 365 return 0; 366 } 367 368 /* 369 * When an file IO error occurs, check the file zone to see if there is a change 370 * in the zone condition (e.g. offline or read-only). For a failed write to a 371 * sequential zone, the zone write pointer position must also be checked to 372 * eventually correct the file size and zonefs inode write pointer offset 373 * (which can be out of sync with the drive due to partial write failures). 374 */ 375 static void __zonefs_io_error(struct inode *inode, bool write) 376 { 377 struct zonefs_inode_info *zi = ZONEFS_I(inode); 378 struct super_block *sb = inode->i_sb; 379 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 380 unsigned int noio_flag; 381 unsigned int nr_zones = 382 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 383 struct zonefs_ioerr_data err = { 384 .inode = inode, 385 .write = write, 386 }; 387 int ret; 388 389 /* 390 * Memory allocations in blkdev_report_zones() can trigger a memory 391 * reclaim which may in turn cause a recursion into zonefs as well as 392 * struct request allocations for the same device. The former case may 393 * end up in a deadlock on the inode truncate mutex, while the latter 394 * may prevent IO forward progress. Executing the report zones under 395 * the GFP_NOIO context avoids both problems. 396 */ 397 noio_flag = memalloc_noio_save(); 398 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 399 zonefs_io_error_cb, &err); 400 if (ret != nr_zones) 401 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 402 inode->i_ino, ret); 403 memalloc_noio_restore(noio_flag); 404 } 405 406 static void zonefs_io_error(struct inode *inode, bool write) 407 { 408 struct zonefs_inode_info *zi = ZONEFS_I(inode); 409 410 mutex_lock(&zi->i_truncate_mutex); 411 __zonefs_io_error(inode, write); 412 mutex_unlock(&zi->i_truncate_mutex); 413 } 414 415 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 416 { 417 struct zonefs_inode_info *zi = ZONEFS_I(inode); 418 loff_t old_isize; 419 enum req_opf op; 420 int ret = 0; 421 422 /* 423 * Only sequential zone files can be truncated and truncation is allowed 424 * only down to a 0 size, which is equivalent to a zone reset, and to 425 * the maximum file size, which is equivalent to a zone finish. 426 */ 427 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 428 return -EPERM; 429 430 if (!isize) 431 op = REQ_OP_ZONE_RESET; 432 else if (isize == zi->i_max_size) 433 op = REQ_OP_ZONE_FINISH; 434 else 435 return -EPERM; 436 437 inode_dio_wait(inode); 438 439 /* Serialize against page faults */ 440 down_write(&zi->i_mmap_sem); 441 442 /* Serialize against zonefs_iomap_begin() */ 443 mutex_lock(&zi->i_truncate_mutex); 444 445 old_isize = i_size_read(inode); 446 if (isize == old_isize) 447 goto unlock; 448 449 ret = zonefs_zone_mgmt(inode, op); 450 if (ret) 451 goto unlock; 452 453 /* 454 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 455 * take care of open zones. 456 */ 457 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 458 /* 459 * Truncating a zone to EMPTY or FULL is the equivalent of 460 * closing the zone. For a truncation to 0, we need to 461 * re-open the zone to ensure new writes can be processed. 462 * For a truncation to the maximum file size, the zone is 463 * closed and writes cannot be accepted anymore, so clear 464 * the open flag. 465 */ 466 if (!isize) 467 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 468 else 469 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 470 } 471 472 zonefs_update_stats(inode, isize); 473 truncate_setsize(inode, isize); 474 zi->i_wpoffset = isize; 475 476 unlock: 477 mutex_unlock(&zi->i_truncate_mutex); 478 up_write(&zi->i_mmap_sem); 479 480 return ret; 481 } 482 483 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr) 484 { 485 struct inode *inode = d_inode(dentry); 486 int ret; 487 488 if (unlikely(IS_IMMUTABLE(inode))) 489 return -EPERM; 490 491 ret = setattr_prepare(dentry, iattr); 492 if (ret) 493 return ret; 494 495 /* 496 * Since files and directories cannot be created nor deleted, do not 497 * allow setting any write attributes on the sub-directories grouping 498 * files by zone type. 499 */ 500 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 501 (iattr->ia_mode & 0222)) 502 return -EPERM; 503 504 if (((iattr->ia_valid & ATTR_UID) && 505 !uid_eq(iattr->ia_uid, inode->i_uid)) || 506 ((iattr->ia_valid & ATTR_GID) && 507 !gid_eq(iattr->ia_gid, inode->i_gid))) { 508 ret = dquot_transfer(inode, iattr); 509 if (ret) 510 return ret; 511 } 512 513 if (iattr->ia_valid & ATTR_SIZE) { 514 ret = zonefs_file_truncate(inode, iattr->ia_size); 515 if (ret) 516 return ret; 517 } 518 519 setattr_copy(inode, iattr); 520 521 return 0; 522 } 523 524 static const struct inode_operations zonefs_file_inode_operations = { 525 .setattr = zonefs_inode_setattr, 526 }; 527 528 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 529 int datasync) 530 { 531 struct inode *inode = file_inode(file); 532 int ret = 0; 533 534 if (unlikely(IS_IMMUTABLE(inode))) 535 return -EPERM; 536 537 /* 538 * Since only direct writes are allowed in sequential files, page cache 539 * flush is needed only for conventional zone files. 540 */ 541 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 542 ret = file_write_and_wait_range(file, start, end); 543 if (!ret) 544 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL); 545 546 if (ret) 547 zonefs_io_error(inode, true); 548 549 return ret; 550 } 551 552 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 553 { 554 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 555 vm_fault_t ret; 556 557 down_read(&zi->i_mmap_sem); 558 ret = filemap_fault(vmf); 559 up_read(&zi->i_mmap_sem); 560 561 return ret; 562 } 563 564 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 565 { 566 struct inode *inode = file_inode(vmf->vma->vm_file); 567 struct zonefs_inode_info *zi = ZONEFS_I(inode); 568 vm_fault_t ret; 569 570 if (unlikely(IS_IMMUTABLE(inode))) 571 return VM_FAULT_SIGBUS; 572 573 /* 574 * Sanity check: only conventional zone files can have shared 575 * writeable mappings. 576 */ 577 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 578 return VM_FAULT_NOPAGE; 579 580 sb_start_pagefault(inode->i_sb); 581 file_update_time(vmf->vma->vm_file); 582 583 /* Serialize against truncates */ 584 down_read(&zi->i_mmap_sem); 585 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 586 up_read(&zi->i_mmap_sem); 587 588 sb_end_pagefault(inode->i_sb); 589 return ret; 590 } 591 592 static const struct vm_operations_struct zonefs_file_vm_ops = { 593 .fault = zonefs_filemap_fault, 594 .map_pages = filemap_map_pages, 595 .page_mkwrite = zonefs_filemap_page_mkwrite, 596 }; 597 598 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 599 { 600 /* 601 * Conventional zones accept random writes, so their files can support 602 * shared writable mappings. For sequential zone files, only read 603 * mappings are possible since there are no guarantees for write 604 * ordering between msync() and page cache writeback. 605 */ 606 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 607 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 608 return -EINVAL; 609 610 file_accessed(file); 611 vma->vm_ops = &zonefs_file_vm_ops; 612 613 return 0; 614 } 615 616 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 617 { 618 loff_t isize = i_size_read(file_inode(file)); 619 620 /* 621 * Seeks are limited to below the zone size for conventional zones 622 * and below the zone write pointer for sequential zones. In both 623 * cases, this limit is the inode size. 624 */ 625 return generic_file_llseek_size(file, offset, whence, isize, isize); 626 } 627 628 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 629 int error, unsigned int flags) 630 { 631 struct inode *inode = file_inode(iocb->ki_filp); 632 struct zonefs_inode_info *zi = ZONEFS_I(inode); 633 634 if (error) { 635 zonefs_io_error(inode, true); 636 return error; 637 } 638 639 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 640 /* 641 * Note that we may be seeing completions out of order, 642 * but that is not a problem since a write completed 643 * successfully necessarily means that all preceding writes 644 * were also successful. So we can safely increase the inode 645 * size to the write end location. 646 */ 647 mutex_lock(&zi->i_truncate_mutex); 648 if (i_size_read(inode) < iocb->ki_pos + size) { 649 zonefs_update_stats(inode, iocb->ki_pos + size); 650 zonefs_i_size_write(inode, iocb->ki_pos + size); 651 } 652 mutex_unlock(&zi->i_truncate_mutex); 653 } 654 655 return 0; 656 } 657 658 static const struct iomap_dio_ops zonefs_write_dio_ops = { 659 .end_io = zonefs_file_write_dio_end_io, 660 }; 661 662 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 663 { 664 struct inode *inode = file_inode(iocb->ki_filp); 665 struct zonefs_inode_info *zi = ZONEFS_I(inode); 666 struct block_device *bdev = inode->i_sb->s_bdev; 667 unsigned int max; 668 struct bio *bio; 669 ssize_t size; 670 int nr_pages; 671 ssize_t ret; 672 673 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 674 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 675 iov_iter_truncate(from, max); 676 677 nr_pages = iov_iter_npages(from, BIO_MAX_PAGES); 678 if (!nr_pages) 679 return 0; 680 681 bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set); 682 if (!bio) 683 return -ENOMEM; 684 685 bio_set_dev(bio, bdev); 686 bio->bi_iter.bi_sector = zi->i_zsector; 687 bio->bi_write_hint = iocb->ki_hint; 688 bio->bi_ioprio = iocb->ki_ioprio; 689 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE; 690 if (iocb->ki_flags & IOCB_DSYNC) 691 bio->bi_opf |= REQ_FUA; 692 693 ret = bio_iov_iter_get_pages(bio, from); 694 if (unlikely(ret)) 695 goto out_release; 696 697 size = bio->bi_iter.bi_size; 698 task_io_account_write(size); 699 700 if (iocb->ki_flags & IOCB_HIPRI) 701 bio_set_polled(bio, iocb); 702 703 ret = submit_bio_wait(bio); 704 705 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 706 707 out_release: 708 bio_release_pages(bio, false); 709 bio_put(bio); 710 711 if (ret >= 0) { 712 iocb->ki_pos += size; 713 return size; 714 } 715 716 return ret; 717 } 718 719 /* 720 * Handle direct writes. For sequential zone files, this is the only possible 721 * write path. For these files, check that the user is issuing writes 722 * sequentially from the end of the file. This code assumes that the block layer 723 * delivers write requests to the device in sequential order. This is always the 724 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 725 * elevator feature is being used (e.g. mq-deadline). The block layer always 726 * automatically select such an elevator for zoned block devices during the 727 * device initialization. 728 */ 729 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 730 { 731 struct inode *inode = file_inode(iocb->ki_filp); 732 struct zonefs_inode_info *zi = ZONEFS_I(inode); 733 struct super_block *sb = inode->i_sb; 734 bool sync = is_sync_kiocb(iocb); 735 bool append = false; 736 size_t count; 737 ssize_t ret; 738 739 /* 740 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 741 * as this can cause write reordering (e.g. the first aio gets EAGAIN 742 * on the inode lock but the second goes through but is now unaligned). 743 */ 744 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 745 (iocb->ki_flags & IOCB_NOWAIT)) 746 return -EOPNOTSUPP; 747 748 if (iocb->ki_flags & IOCB_NOWAIT) { 749 if (!inode_trylock(inode)) 750 return -EAGAIN; 751 } else { 752 inode_lock(inode); 753 } 754 755 ret = generic_write_checks(iocb, from); 756 if (ret <= 0) 757 goto inode_unlock; 758 759 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 760 count = iov_iter_count(from); 761 762 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 763 ret = -EINVAL; 764 goto inode_unlock; 765 } 766 767 /* Enforce sequential writes (append only) in sequential zones */ 768 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 769 mutex_lock(&zi->i_truncate_mutex); 770 if (iocb->ki_pos != zi->i_wpoffset) { 771 mutex_unlock(&zi->i_truncate_mutex); 772 ret = -EINVAL; 773 goto inode_unlock; 774 } 775 mutex_unlock(&zi->i_truncate_mutex); 776 append = sync; 777 } 778 779 if (append) 780 ret = zonefs_file_dio_append(iocb, from); 781 else 782 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 783 &zonefs_write_dio_ops, sync); 784 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 785 (ret > 0 || ret == -EIOCBQUEUED)) { 786 if (ret > 0) 787 count = ret; 788 mutex_lock(&zi->i_truncate_mutex); 789 zi->i_wpoffset += count; 790 mutex_unlock(&zi->i_truncate_mutex); 791 } 792 793 inode_unlock: 794 inode_unlock(inode); 795 796 return ret; 797 } 798 799 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 800 struct iov_iter *from) 801 { 802 struct inode *inode = file_inode(iocb->ki_filp); 803 struct zonefs_inode_info *zi = ZONEFS_I(inode); 804 ssize_t ret; 805 806 /* 807 * Direct IO writes are mandatory for sequential zone files so that the 808 * write IO issuing order is preserved. 809 */ 810 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 811 return -EIO; 812 813 if (iocb->ki_flags & IOCB_NOWAIT) { 814 if (!inode_trylock(inode)) 815 return -EAGAIN; 816 } else { 817 inode_lock(inode); 818 } 819 820 ret = generic_write_checks(iocb, from); 821 if (ret <= 0) 822 goto inode_unlock; 823 824 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 825 826 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 827 if (ret > 0) 828 iocb->ki_pos += ret; 829 else if (ret == -EIO) 830 zonefs_io_error(inode, true); 831 832 inode_unlock: 833 inode_unlock(inode); 834 if (ret > 0) 835 ret = generic_write_sync(iocb, ret); 836 837 return ret; 838 } 839 840 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 841 { 842 struct inode *inode = file_inode(iocb->ki_filp); 843 844 if (unlikely(IS_IMMUTABLE(inode))) 845 return -EPERM; 846 847 if (sb_rdonly(inode->i_sb)) 848 return -EROFS; 849 850 /* Write operations beyond the zone size are not allowed */ 851 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 852 return -EFBIG; 853 854 if (iocb->ki_flags & IOCB_DIRECT) { 855 ssize_t ret = zonefs_file_dio_write(iocb, from); 856 if (ret != -ENOTBLK) 857 return ret; 858 } 859 860 return zonefs_file_buffered_write(iocb, from); 861 } 862 863 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 864 int error, unsigned int flags) 865 { 866 if (error) { 867 zonefs_io_error(file_inode(iocb->ki_filp), false); 868 return error; 869 } 870 871 return 0; 872 } 873 874 static const struct iomap_dio_ops zonefs_read_dio_ops = { 875 .end_io = zonefs_file_read_dio_end_io, 876 }; 877 878 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 879 { 880 struct inode *inode = file_inode(iocb->ki_filp); 881 struct zonefs_inode_info *zi = ZONEFS_I(inode); 882 struct super_block *sb = inode->i_sb; 883 loff_t isize; 884 ssize_t ret; 885 886 /* Offline zones cannot be read */ 887 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 888 return -EPERM; 889 890 if (iocb->ki_pos >= zi->i_max_size) 891 return 0; 892 893 if (iocb->ki_flags & IOCB_NOWAIT) { 894 if (!inode_trylock_shared(inode)) 895 return -EAGAIN; 896 } else { 897 inode_lock_shared(inode); 898 } 899 900 /* Limit read operations to written data */ 901 mutex_lock(&zi->i_truncate_mutex); 902 isize = i_size_read(inode); 903 if (iocb->ki_pos >= isize) { 904 mutex_unlock(&zi->i_truncate_mutex); 905 ret = 0; 906 goto inode_unlock; 907 } 908 iov_iter_truncate(to, isize - iocb->ki_pos); 909 mutex_unlock(&zi->i_truncate_mutex); 910 911 if (iocb->ki_flags & IOCB_DIRECT) { 912 size_t count = iov_iter_count(to); 913 914 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 915 ret = -EINVAL; 916 goto inode_unlock; 917 } 918 file_accessed(iocb->ki_filp); 919 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 920 &zonefs_read_dio_ops, is_sync_kiocb(iocb)); 921 } else { 922 ret = generic_file_read_iter(iocb, to); 923 if (ret == -EIO) 924 zonefs_io_error(inode, false); 925 } 926 927 inode_unlock: 928 inode_unlock_shared(inode); 929 930 return ret; 931 } 932 933 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 934 { 935 struct zonefs_inode_info *zi = ZONEFS_I(inode); 936 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 937 938 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 939 return false; 940 941 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 942 return false; 943 944 if (!(file->f_mode & FMODE_WRITE)) 945 return false; 946 947 return true; 948 } 949 950 static int zonefs_open_zone(struct inode *inode) 951 { 952 struct zonefs_inode_info *zi = ZONEFS_I(inode); 953 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 954 int ret = 0; 955 956 mutex_lock(&zi->i_truncate_mutex); 957 958 zi->i_wr_refcnt++; 959 if (zi->i_wr_refcnt == 1) { 960 961 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 962 atomic_dec(&sbi->s_open_zones); 963 ret = -EBUSY; 964 goto unlock; 965 } 966 967 if (i_size_read(inode) < zi->i_max_size) { 968 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 969 if (ret) { 970 zi->i_wr_refcnt--; 971 atomic_dec(&sbi->s_open_zones); 972 goto unlock; 973 } 974 zi->i_flags |= ZONEFS_ZONE_OPEN; 975 } 976 } 977 978 unlock: 979 mutex_unlock(&zi->i_truncate_mutex); 980 981 return ret; 982 } 983 984 static int zonefs_file_open(struct inode *inode, struct file *file) 985 { 986 int ret; 987 988 ret = generic_file_open(inode, file); 989 if (ret) 990 return ret; 991 992 if (zonefs_file_use_exp_open(inode, file)) 993 return zonefs_open_zone(inode); 994 995 return 0; 996 } 997 998 static void zonefs_close_zone(struct inode *inode) 999 { 1000 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1001 int ret = 0; 1002 1003 mutex_lock(&zi->i_truncate_mutex); 1004 zi->i_wr_refcnt--; 1005 if (!zi->i_wr_refcnt) { 1006 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1007 struct super_block *sb = inode->i_sb; 1008 1009 /* 1010 * If the file zone is full, it is not open anymore and we only 1011 * need to decrement the open count. 1012 */ 1013 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1014 goto dec; 1015 1016 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1017 if (ret) { 1018 __zonefs_io_error(inode, false); 1019 /* 1020 * Leaving zones explicitly open may lead to a state 1021 * where most zones cannot be written (zone resources 1022 * exhausted). So take preventive action by remounting 1023 * read-only. 1024 */ 1025 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1026 !(sb->s_flags & SB_RDONLY)) { 1027 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1028 sb->s_flags |= SB_RDONLY; 1029 } 1030 } 1031 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1032 dec: 1033 atomic_dec(&sbi->s_open_zones); 1034 } 1035 mutex_unlock(&zi->i_truncate_mutex); 1036 } 1037 1038 static int zonefs_file_release(struct inode *inode, struct file *file) 1039 { 1040 /* 1041 * If we explicitly open a zone we must close it again as well, but the 1042 * zone management operation can fail (either due to an IO error or as 1043 * the zone has gone offline or read-only). Make sure we don't fail the 1044 * close(2) for user-space. 1045 */ 1046 if (zonefs_file_use_exp_open(inode, file)) 1047 zonefs_close_zone(inode); 1048 1049 return 0; 1050 } 1051 1052 static const struct file_operations zonefs_file_operations = { 1053 .open = zonefs_file_open, 1054 .release = zonefs_file_release, 1055 .fsync = zonefs_file_fsync, 1056 .mmap = zonefs_file_mmap, 1057 .llseek = zonefs_file_llseek, 1058 .read_iter = zonefs_file_read_iter, 1059 .write_iter = zonefs_file_write_iter, 1060 .splice_read = generic_file_splice_read, 1061 .splice_write = iter_file_splice_write, 1062 .iopoll = iomap_dio_iopoll, 1063 }; 1064 1065 static struct kmem_cache *zonefs_inode_cachep; 1066 1067 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1068 { 1069 struct zonefs_inode_info *zi; 1070 1071 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 1072 if (!zi) 1073 return NULL; 1074 1075 inode_init_once(&zi->i_vnode); 1076 mutex_init(&zi->i_truncate_mutex); 1077 init_rwsem(&zi->i_mmap_sem); 1078 zi->i_wr_refcnt = 0; 1079 1080 return &zi->i_vnode; 1081 } 1082 1083 static void zonefs_free_inode(struct inode *inode) 1084 { 1085 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1086 } 1087 1088 /* 1089 * File system stat. 1090 */ 1091 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1092 { 1093 struct super_block *sb = dentry->d_sb; 1094 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1095 enum zonefs_ztype t; 1096 u64 fsid; 1097 1098 buf->f_type = ZONEFS_MAGIC; 1099 buf->f_bsize = sb->s_blocksize; 1100 buf->f_namelen = ZONEFS_NAME_MAX; 1101 1102 spin_lock(&sbi->s_lock); 1103 1104 buf->f_blocks = sbi->s_blocks; 1105 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1106 buf->f_bfree = 0; 1107 else 1108 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1109 buf->f_bavail = buf->f_bfree; 1110 1111 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1112 if (sbi->s_nr_files[t]) 1113 buf->f_files += sbi->s_nr_files[t] + 1; 1114 } 1115 buf->f_ffree = 0; 1116 1117 spin_unlock(&sbi->s_lock); 1118 1119 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 1120 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 1121 buf->f_fsid = u64_to_fsid(fsid); 1122 1123 return 0; 1124 } 1125 1126 enum { 1127 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1128 Opt_explicit_open, Opt_err, 1129 }; 1130 1131 static const match_table_t tokens = { 1132 { Opt_errors_ro, "errors=remount-ro"}, 1133 { Opt_errors_zro, "errors=zone-ro"}, 1134 { Opt_errors_zol, "errors=zone-offline"}, 1135 { Opt_errors_repair, "errors=repair"}, 1136 { Opt_explicit_open, "explicit-open" }, 1137 { Opt_err, NULL} 1138 }; 1139 1140 static int zonefs_parse_options(struct super_block *sb, char *options) 1141 { 1142 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1143 substring_t args[MAX_OPT_ARGS]; 1144 char *p; 1145 1146 if (!options) 1147 return 0; 1148 1149 while ((p = strsep(&options, ",")) != NULL) { 1150 int token; 1151 1152 if (!*p) 1153 continue; 1154 1155 token = match_token(p, tokens, args); 1156 switch (token) { 1157 case Opt_errors_ro: 1158 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1159 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1160 break; 1161 case Opt_errors_zro: 1162 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1163 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1164 break; 1165 case Opt_errors_zol: 1166 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1167 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1168 break; 1169 case Opt_errors_repair: 1170 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1171 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1172 break; 1173 case Opt_explicit_open: 1174 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1175 break; 1176 default: 1177 return -EINVAL; 1178 } 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1185 { 1186 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1187 1188 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1189 seq_puts(seq, ",errors=remount-ro"); 1190 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1191 seq_puts(seq, ",errors=zone-ro"); 1192 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1193 seq_puts(seq, ",errors=zone-offline"); 1194 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1195 seq_puts(seq, ",errors=repair"); 1196 1197 return 0; 1198 } 1199 1200 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1201 { 1202 sync_filesystem(sb); 1203 1204 return zonefs_parse_options(sb, data); 1205 } 1206 1207 static const struct super_operations zonefs_sops = { 1208 .alloc_inode = zonefs_alloc_inode, 1209 .free_inode = zonefs_free_inode, 1210 .statfs = zonefs_statfs, 1211 .remount_fs = zonefs_remount, 1212 .show_options = zonefs_show_options, 1213 }; 1214 1215 static const struct inode_operations zonefs_dir_inode_operations = { 1216 .lookup = simple_lookup, 1217 .setattr = zonefs_inode_setattr, 1218 }; 1219 1220 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1221 enum zonefs_ztype type) 1222 { 1223 struct super_block *sb = parent->i_sb; 1224 1225 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1226 inode_init_owner(inode, parent, S_IFDIR | 0555); 1227 inode->i_op = &zonefs_dir_inode_operations; 1228 inode->i_fop = &simple_dir_operations; 1229 set_nlink(inode, 2); 1230 inc_nlink(parent); 1231 } 1232 1233 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1234 enum zonefs_ztype type) 1235 { 1236 struct super_block *sb = inode->i_sb; 1237 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1238 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1239 1240 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1241 inode->i_mode = S_IFREG | sbi->s_perm; 1242 1243 zi->i_ztype = type; 1244 zi->i_zsector = zone->start; 1245 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1246 1247 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1248 zone->capacity << SECTOR_SHIFT); 1249 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1250 1251 inode->i_uid = sbi->s_uid; 1252 inode->i_gid = sbi->s_gid; 1253 inode->i_size = zi->i_wpoffset; 1254 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1255 1256 inode->i_op = &zonefs_file_inode_operations; 1257 inode->i_fop = &zonefs_file_operations; 1258 inode->i_mapping->a_ops = &zonefs_file_aops; 1259 1260 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1261 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1262 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1263 } 1264 1265 static struct dentry *zonefs_create_inode(struct dentry *parent, 1266 const char *name, struct blk_zone *zone, 1267 enum zonefs_ztype type) 1268 { 1269 struct inode *dir = d_inode(parent); 1270 struct dentry *dentry; 1271 struct inode *inode; 1272 1273 dentry = d_alloc_name(parent, name); 1274 if (!dentry) 1275 return NULL; 1276 1277 inode = new_inode(parent->d_sb); 1278 if (!inode) 1279 goto dput; 1280 1281 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1282 if (zone) 1283 zonefs_init_file_inode(inode, zone, type); 1284 else 1285 zonefs_init_dir_inode(dir, inode, type); 1286 d_add(dentry, inode); 1287 dir->i_size++; 1288 1289 return dentry; 1290 1291 dput: 1292 dput(dentry); 1293 1294 return NULL; 1295 } 1296 1297 struct zonefs_zone_data { 1298 struct super_block *sb; 1299 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1300 struct blk_zone *zones; 1301 }; 1302 1303 /* 1304 * Create a zone group and populate it with zone files. 1305 */ 1306 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1307 enum zonefs_ztype type) 1308 { 1309 struct super_block *sb = zd->sb; 1310 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1311 struct blk_zone *zone, *next, *end; 1312 const char *zgroup_name; 1313 char *file_name; 1314 struct dentry *dir; 1315 unsigned int n = 0; 1316 int ret; 1317 1318 /* If the group is empty, there is nothing to do */ 1319 if (!zd->nr_zones[type]) 1320 return 0; 1321 1322 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1323 if (!file_name) 1324 return -ENOMEM; 1325 1326 if (type == ZONEFS_ZTYPE_CNV) 1327 zgroup_name = "cnv"; 1328 else 1329 zgroup_name = "seq"; 1330 1331 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1332 if (!dir) { 1333 ret = -ENOMEM; 1334 goto free; 1335 } 1336 1337 /* 1338 * The first zone contains the super block: skip it. 1339 */ 1340 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1341 for (zone = &zd->zones[1]; zone < end; zone = next) { 1342 1343 next = zone + 1; 1344 if (zonefs_zone_type(zone) != type) 1345 continue; 1346 1347 /* 1348 * For conventional zones, contiguous zones can be aggregated 1349 * together to form larger files. Note that this overwrites the 1350 * length of the first zone of the set of contiguous zones 1351 * aggregated together. If one offline or read-only zone is 1352 * found, assume that all zones aggregated have the same 1353 * condition. 1354 */ 1355 if (type == ZONEFS_ZTYPE_CNV && 1356 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1357 for (; next < end; next++) { 1358 if (zonefs_zone_type(next) != type) 1359 break; 1360 zone->len += next->len; 1361 zone->capacity += next->capacity; 1362 if (next->cond == BLK_ZONE_COND_READONLY && 1363 zone->cond != BLK_ZONE_COND_OFFLINE) 1364 zone->cond = BLK_ZONE_COND_READONLY; 1365 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1366 zone->cond = BLK_ZONE_COND_OFFLINE; 1367 } 1368 if (zone->capacity != zone->len) { 1369 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1370 ret = -EINVAL; 1371 goto free; 1372 } 1373 } 1374 1375 /* 1376 * Use the file number within its group as file name. 1377 */ 1378 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1379 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1380 ret = -ENOMEM; 1381 goto free; 1382 } 1383 1384 n++; 1385 } 1386 1387 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1388 zgroup_name, n, n > 1 ? "s" : ""); 1389 1390 sbi->s_nr_files[type] = n; 1391 ret = 0; 1392 1393 free: 1394 kfree(file_name); 1395 1396 return ret; 1397 } 1398 1399 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1400 void *data) 1401 { 1402 struct zonefs_zone_data *zd = data; 1403 1404 /* 1405 * Count the number of usable zones: the first zone at index 0 contains 1406 * the super block and is ignored. 1407 */ 1408 switch (zone->type) { 1409 case BLK_ZONE_TYPE_CONVENTIONAL: 1410 zone->wp = zone->start + zone->len; 1411 if (idx) 1412 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1413 break; 1414 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1415 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1416 if (idx) 1417 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1418 break; 1419 default: 1420 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1421 zone->type); 1422 return -EIO; 1423 } 1424 1425 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1426 1427 return 0; 1428 } 1429 1430 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1431 { 1432 struct block_device *bdev = zd->sb->s_bdev; 1433 int ret; 1434 1435 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1436 sizeof(struct blk_zone), GFP_KERNEL); 1437 if (!zd->zones) 1438 return -ENOMEM; 1439 1440 /* Get zones information from the device */ 1441 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1442 zonefs_get_zone_info_cb, zd); 1443 if (ret < 0) { 1444 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1445 return ret; 1446 } 1447 1448 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1449 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1450 ret, blkdev_nr_zones(bdev->bd_disk)); 1451 return -EIO; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1458 { 1459 kvfree(zd->zones); 1460 } 1461 1462 /* 1463 * Read super block information from the device. 1464 */ 1465 static int zonefs_read_super(struct super_block *sb) 1466 { 1467 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1468 struct zonefs_super *super; 1469 u32 crc, stored_crc; 1470 struct page *page; 1471 struct bio_vec bio_vec; 1472 struct bio bio; 1473 int ret; 1474 1475 page = alloc_page(GFP_KERNEL); 1476 if (!page) 1477 return -ENOMEM; 1478 1479 bio_init(&bio, &bio_vec, 1); 1480 bio.bi_iter.bi_sector = 0; 1481 bio.bi_opf = REQ_OP_READ; 1482 bio_set_dev(&bio, sb->s_bdev); 1483 bio_add_page(&bio, page, PAGE_SIZE, 0); 1484 1485 ret = submit_bio_wait(&bio); 1486 if (ret) 1487 goto free_page; 1488 1489 super = kmap(page); 1490 1491 ret = -EINVAL; 1492 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1493 goto unmap; 1494 1495 stored_crc = le32_to_cpu(super->s_crc); 1496 super->s_crc = 0; 1497 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1498 if (crc != stored_crc) { 1499 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1500 crc, stored_crc); 1501 goto unmap; 1502 } 1503 1504 sbi->s_features = le64_to_cpu(super->s_features); 1505 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1506 zonefs_err(sb, "Unknown features set 0x%llx\n", 1507 sbi->s_features); 1508 goto unmap; 1509 } 1510 1511 if (sbi->s_features & ZONEFS_F_UID) { 1512 sbi->s_uid = make_kuid(current_user_ns(), 1513 le32_to_cpu(super->s_uid)); 1514 if (!uid_valid(sbi->s_uid)) { 1515 zonefs_err(sb, "Invalid UID feature\n"); 1516 goto unmap; 1517 } 1518 } 1519 1520 if (sbi->s_features & ZONEFS_F_GID) { 1521 sbi->s_gid = make_kgid(current_user_ns(), 1522 le32_to_cpu(super->s_gid)); 1523 if (!gid_valid(sbi->s_gid)) { 1524 zonefs_err(sb, "Invalid GID feature\n"); 1525 goto unmap; 1526 } 1527 } 1528 1529 if (sbi->s_features & ZONEFS_F_PERM) 1530 sbi->s_perm = le32_to_cpu(super->s_perm); 1531 1532 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1533 zonefs_err(sb, "Reserved area is being used\n"); 1534 goto unmap; 1535 } 1536 1537 import_uuid(&sbi->s_uuid, super->s_uuid); 1538 ret = 0; 1539 1540 unmap: 1541 kunmap(page); 1542 free_page: 1543 __free_page(page); 1544 1545 return ret; 1546 } 1547 1548 /* 1549 * Check that the device is zoned. If it is, get the list of zones and create 1550 * sub-directories and files according to the device zone configuration and 1551 * format options. 1552 */ 1553 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1554 { 1555 struct zonefs_zone_data zd; 1556 struct zonefs_sb_info *sbi; 1557 struct inode *inode; 1558 enum zonefs_ztype t; 1559 int ret; 1560 1561 if (!bdev_is_zoned(sb->s_bdev)) { 1562 zonefs_err(sb, "Not a zoned block device\n"); 1563 return -EINVAL; 1564 } 1565 1566 /* 1567 * Initialize super block information: the maximum file size is updated 1568 * when the zone files are created so that the format option 1569 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1570 * beyond the zone size is taken into account. 1571 */ 1572 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1573 if (!sbi) 1574 return -ENOMEM; 1575 1576 spin_lock_init(&sbi->s_lock); 1577 sb->s_fs_info = sbi; 1578 sb->s_magic = ZONEFS_MAGIC; 1579 sb->s_maxbytes = 0; 1580 sb->s_op = &zonefs_sops; 1581 sb->s_time_gran = 1; 1582 1583 /* 1584 * The block size is set to the device physical sector size to ensure 1585 * that write operations on 512e devices (512B logical block and 4KB 1586 * physical block) are always aligned to the device physical blocks, 1587 * as mandated by the ZBC/ZAC specifications. 1588 */ 1589 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev)); 1590 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1591 sbi->s_uid = GLOBAL_ROOT_UID; 1592 sbi->s_gid = GLOBAL_ROOT_GID; 1593 sbi->s_perm = 0640; 1594 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1595 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1596 atomic_set(&sbi->s_open_zones, 0); 1597 if (!sbi->s_max_open_zones && 1598 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1599 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1600 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1601 } 1602 1603 ret = zonefs_read_super(sb); 1604 if (ret) 1605 return ret; 1606 1607 ret = zonefs_parse_options(sb, data); 1608 if (ret) 1609 return ret; 1610 1611 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1612 zd.sb = sb; 1613 ret = zonefs_get_zone_info(&zd); 1614 if (ret) 1615 goto cleanup; 1616 1617 zonefs_info(sb, "Mounting %u zones", 1618 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1619 1620 /* Create root directory inode */ 1621 ret = -ENOMEM; 1622 inode = new_inode(sb); 1623 if (!inode) 1624 goto cleanup; 1625 1626 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1627 inode->i_mode = S_IFDIR | 0555; 1628 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1629 inode->i_op = &zonefs_dir_inode_operations; 1630 inode->i_fop = &simple_dir_operations; 1631 set_nlink(inode, 2); 1632 1633 sb->s_root = d_make_root(inode); 1634 if (!sb->s_root) 1635 goto cleanup; 1636 1637 /* Create and populate files in zone groups directories */ 1638 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1639 ret = zonefs_create_zgroup(&zd, t); 1640 if (ret) 1641 break; 1642 } 1643 1644 cleanup: 1645 zonefs_cleanup_zone_info(&zd); 1646 1647 return ret; 1648 } 1649 1650 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1651 int flags, const char *dev_name, void *data) 1652 { 1653 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1654 } 1655 1656 static void zonefs_kill_super(struct super_block *sb) 1657 { 1658 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1659 1660 if (sb->s_root) 1661 d_genocide(sb->s_root); 1662 kill_block_super(sb); 1663 kfree(sbi); 1664 } 1665 1666 /* 1667 * File system definition and registration. 1668 */ 1669 static struct file_system_type zonefs_type = { 1670 .owner = THIS_MODULE, 1671 .name = "zonefs", 1672 .mount = zonefs_mount, 1673 .kill_sb = zonefs_kill_super, 1674 .fs_flags = FS_REQUIRES_DEV, 1675 }; 1676 1677 static int __init zonefs_init_inodecache(void) 1678 { 1679 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1680 sizeof(struct zonefs_inode_info), 0, 1681 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1682 NULL); 1683 if (zonefs_inode_cachep == NULL) 1684 return -ENOMEM; 1685 return 0; 1686 } 1687 1688 static void zonefs_destroy_inodecache(void) 1689 { 1690 /* 1691 * Make sure all delayed rcu free inodes are flushed before we 1692 * destroy the inode cache. 1693 */ 1694 rcu_barrier(); 1695 kmem_cache_destroy(zonefs_inode_cachep); 1696 } 1697 1698 static int __init zonefs_init(void) 1699 { 1700 int ret; 1701 1702 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1703 1704 ret = zonefs_init_inodecache(); 1705 if (ret) 1706 return ret; 1707 1708 ret = register_filesystem(&zonefs_type); 1709 if (ret) { 1710 zonefs_destroy_inodecache(); 1711 return ret; 1712 } 1713 1714 return 0; 1715 } 1716 1717 static void __exit zonefs_exit(void) 1718 { 1719 zonefs_destroy_inodecache(); 1720 unregister_filesystem(&zonefs_type); 1721 } 1722 1723 MODULE_AUTHOR("Damien Le Moal"); 1724 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1725 MODULE_LICENSE("GPL"); 1726 module_init(zonefs_init); 1727 module_exit(zonefs_exit); 1728