xref: /linux/fs/zonefs/file.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static ssize_t zonefs_writeback_range(struct iomap_writepage_ctx *wpc,
128 		struct folio *folio, u64 offset, unsigned len, u64 end_pos)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(wpc->inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(wpc->inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset < wpc->iomap.offset ||
139 	    offset >= wpc->iomap.offset + wpc->iomap.length) {
140 		int error;
141 
142 		error = zonefs_write_iomap_begin(wpc->inode, offset,
143 				z->z_capacity - offset, IOMAP_WRITE,
144 				&wpc->iomap, NULL);
145 		if (error)
146 			return error;
147 	}
148 
149 	return iomap_add_to_ioend(wpc, folio, offset, end_pos, len);
150 }
151 
152 static const struct iomap_writeback_ops zonefs_writeback_ops = {
153 	.writeback_range	= zonefs_writeback_range,
154 };
155 
156 static int zonefs_writepages(struct address_space *mapping,
157 			     struct writeback_control *wbc)
158 {
159 	struct iomap_writepage_ctx wpc = {
160 		.inode		= mapping->host,
161 		.wbc		= wbc,
162 		.ops		= &zonefs_writeback_ops,
163 	};
164 
165 	return iomap_writepages(&wpc);
166 }
167 
168 static int zonefs_swap_activate(struct swap_info_struct *sis,
169 				struct file *swap_file, sector_t *span)
170 {
171 	struct inode *inode = file_inode(swap_file);
172 
173 	if (zonefs_inode_is_seq(inode)) {
174 		zonefs_err(inode->i_sb,
175 			   "swap file: not a conventional zone file\n");
176 		return -EINVAL;
177 	}
178 
179 	return iomap_swapfile_activate(sis, swap_file, span,
180 				       &zonefs_read_iomap_ops);
181 }
182 
183 const struct address_space_operations zonefs_file_aops = {
184 	.read_folio		= zonefs_read_folio,
185 	.readahead		= zonefs_readahead,
186 	.writepages		= zonefs_writepages,
187 	.dirty_folio		= iomap_dirty_folio,
188 	.release_folio		= iomap_release_folio,
189 	.invalidate_folio	= iomap_invalidate_folio,
190 	.migrate_folio		= filemap_migrate_folio,
191 	.is_partially_uptodate	= iomap_is_partially_uptodate,
192 	.error_remove_folio	= generic_error_remove_folio,
193 	.swap_activate		= zonefs_swap_activate,
194 };
195 
196 int zonefs_file_truncate(struct inode *inode, loff_t isize)
197 {
198 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
199 	struct zonefs_zone *z = zonefs_inode_zone(inode);
200 	loff_t old_isize;
201 	enum req_op op;
202 	int ret = 0;
203 
204 	/*
205 	 * Only sequential zone files can be truncated and truncation is allowed
206 	 * only down to a 0 size, which is equivalent to a zone reset, and to
207 	 * the maximum file size, which is equivalent to a zone finish.
208 	 */
209 	if (!zonefs_zone_is_seq(z))
210 		return -EPERM;
211 
212 	if (!isize)
213 		op = REQ_OP_ZONE_RESET;
214 	else if (isize == z->z_capacity)
215 		op = REQ_OP_ZONE_FINISH;
216 	else
217 		return -EPERM;
218 
219 	inode_dio_wait(inode);
220 
221 	/* Serialize against page faults */
222 	filemap_invalidate_lock(inode->i_mapping);
223 
224 	/* Serialize against zonefs_iomap_begin() */
225 	mutex_lock(&zi->i_truncate_mutex);
226 
227 	old_isize = i_size_read(inode);
228 	if (isize == old_isize)
229 		goto unlock;
230 
231 	ret = zonefs_inode_zone_mgmt(inode, op);
232 	if (ret)
233 		goto unlock;
234 
235 	/*
236 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
237 	 * take care of open zones.
238 	 */
239 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
240 		/*
241 		 * Truncating a zone to EMPTY or FULL is the equivalent of
242 		 * closing the zone. For a truncation to 0, we need to
243 		 * re-open the zone to ensure new writes can be processed.
244 		 * For a truncation to the maximum file size, the zone is
245 		 * closed and writes cannot be accepted anymore, so clear
246 		 * the open flag.
247 		 */
248 		if (!isize)
249 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
250 		else
251 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
252 	}
253 
254 	zonefs_update_stats(inode, isize);
255 	truncate_setsize(inode, isize);
256 	z->z_wpoffset = isize;
257 	zonefs_inode_account_active(inode);
258 
259 unlock:
260 	mutex_unlock(&zi->i_truncate_mutex);
261 	filemap_invalidate_unlock(inode->i_mapping);
262 
263 	return ret;
264 }
265 
266 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
267 			     int datasync)
268 {
269 	struct inode *inode = file_inode(file);
270 	int ret = 0;
271 
272 	if (unlikely(IS_IMMUTABLE(inode)))
273 		return -EPERM;
274 
275 	/*
276 	 * Since only direct writes are allowed in sequential files, page cache
277 	 * flush is needed only for conventional zone files.
278 	 */
279 	if (zonefs_inode_is_cnv(inode))
280 		ret = file_write_and_wait_range(file, start, end);
281 	if (!ret)
282 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
283 
284 	if (ret)
285 		zonefs_io_error(inode, true);
286 
287 	return ret;
288 }
289 
290 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
291 {
292 	struct inode *inode = file_inode(vmf->vma->vm_file);
293 	vm_fault_t ret;
294 
295 	if (unlikely(IS_IMMUTABLE(inode)))
296 		return VM_FAULT_SIGBUS;
297 
298 	/*
299 	 * Sanity check: only conventional zone files can have shared
300 	 * writeable mappings.
301 	 */
302 	if (zonefs_inode_is_seq(inode))
303 		return VM_FAULT_NOPAGE;
304 
305 	sb_start_pagefault(inode->i_sb);
306 	file_update_time(vmf->vma->vm_file);
307 
308 	/* Serialize against truncates */
309 	filemap_invalidate_lock_shared(inode->i_mapping);
310 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops, NULL);
311 	filemap_invalidate_unlock_shared(inode->i_mapping);
312 
313 	sb_end_pagefault(inode->i_sb);
314 	return ret;
315 }
316 
317 static const struct vm_operations_struct zonefs_file_vm_ops = {
318 	.fault		= filemap_fault,
319 	.map_pages	= filemap_map_pages,
320 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
321 };
322 
323 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
324 {
325 	/*
326 	 * Conventional zones accept random writes, so their files can support
327 	 * shared writable mappings. For sequential zone files, only read
328 	 * mappings are possible since there are no guarantees for write
329 	 * ordering between msync() and page cache writeback.
330 	 */
331 	if (zonefs_inode_is_seq(file_inode(file)) &&
332 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
333 		return -EINVAL;
334 
335 	file_accessed(file);
336 	vma->vm_ops = &zonefs_file_vm_ops;
337 
338 	return 0;
339 }
340 
341 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
342 {
343 	loff_t isize = i_size_read(file_inode(file));
344 
345 	/*
346 	 * Seeks are limited to below the zone size for conventional zones
347 	 * and below the zone write pointer for sequential zones. In both
348 	 * cases, this limit is the inode size.
349 	 */
350 	return generic_file_llseek_size(file, offset, whence, isize, isize);
351 }
352 
353 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
354 					int error, unsigned int flags)
355 {
356 	struct inode *inode = file_inode(iocb->ki_filp);
357 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
358 
359 	if (error) {
360 		/*
361 		 * For Sync IOs, error recovery is called from
362 		 * zonefs_file_dio_write().
363 		 */
364 		if (!is_sync_kiocb(iocb))
365 			zonefs_io_error(inode, true);
366 		return error;
367 	}
368 
369 	if (size && zonefs_inode_is_seq(inode)) {
370 		/*
371 		 * Note that we may be seeing completions out of order,
372 		 * but that is not a problem since a write completed
373 		 * successfully necessarily means that all preceding writes
374 		 * were also successful. So we can safely increase the inode
375 		 * size to the write end location.
376 		 */
377 		mutex_lock(&zi->i_truncate_mutex);
378 		if (i_size_read(inode) < iocb->ki_pos + size) {
379 			zonefs_update_stats(inode, iocb->ki_pos + size);
380 			zonefs_i_size_write(inode, iocb->ki_pos + size);
381 		}
382 		mutex_unlock(&zi->i_truncate_mutex);
383 	}
384 
385 	return 0;
386 }
387 
388 static const struct iomap_dio_ops zonefs_write_dio_ops = {
389 	.end_io		= zonefs_file_write_dio_end_io,
390 };
391 
392 /*
393  * Do not exceed the LFS limits nor the file zone size. If pos is under the
394  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
395  */
396 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
397 					loff_t count)
398 {
399 	struct inode *inode = file_inode(file);
400 	struct zonefs_zone *z = zonefs_inode_zone(inode);
401 	loff_t limit = rlimit(RLIMIT_FSIZE);
402 	loff_t max_size = z->z_capacity;
403 
404 	if (limit != RLIM_INFINITY) {
405 		if (pos >= limit) {
406 			send_sig(SIGXFSZ, current, 0);
407 			return -EFBIG;
408 		}
409 		count = min(count, limit - pos);
410 	}
411 
412 	if (!(file->f_flags & O_LARGEFILE))
413 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
414 
415 	if (unlikely(pos >= max_size))
416 		return -EFBIG;
417 
418 	return min(count, max_size - pos);
419 }
420 
421 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
422 {
423 	struct file *file = iocb->ki_filp;
424 	struct inode *inode = file_inode(file);
425 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
426 	struct zonefs_zone *z = zonefs_inode_zone(inode);
427 	loff_t count;
428 
429 	if (IS_SWAPFILE(inode))
430 		return -ETXTBSY;
431 
432 	if (!iov_iter_count(from))
433 		return 0;
434 
435 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
436 		return -EINVAL;
437 
438 	if (iocb->ki_flags & IOCB_APPEND) {
439 		if (zonefs_zone_is_cnv(z))
440 			return -EINVAL;
441 		mutex_lock(&zi->i_truncate_mutex);
442 		iocb->ki_pos = z->z_wpoffset;
443 		mutex_unlock(&zi->i_truncate_mutex);
444 	}
445 
446 	count = zonefs_write_check_limits(file, iocb->ki_pos,
447 					  iov_iter_count(from));
448 	if (count < 0)
449 		return count;
450 
451 	iov_iter_truncate(from, count);
452 	return iov_iter_count(from);
453 }
454 
455 /*
456  * Handle direct writes. For sequential zone files, this is the only possible
457  * write path. For these files, check that the user is issuing writes
458  * sequentially from the end of the file. This code assumes that the block layer
459  * delivers write requests to the device in sequential order. This is always the
460  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
461  * elevator feature is being used (e.g. mq-deadline). The block layer always
462  * automatically select such an elevator for zoned block devices during the
463  * device initialization.
464  */
465 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
466 {
467 	struct inode *inode = file_inode(iocb->ki_filp);
468 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
469 	struct zonefs_zone *z = zonefs_inode_zone(inode);
470 	struct super_block *sb = inode->i_sb;
471 	ssize_t ret, count;
472 
473 	/*
474 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
475 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
476 	 * on the inode lock but the second goes through but is now unaligned).
477 	 */
478 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
479 	    (iocb->ki_flags & IOCB_NOWAIT))
480 		return -EOPNOTSUPP;
481 
482 	if (iocb->ki_flags & IOCB_NOWAIT) {
483 		if (!inode_trylock(inode))
484 			return -EAGAIN;
485 	} else {
486 		inode_lock(inode);
487 	}
488 
489 	count = zonefs_write_checks(iocb, from);
490 	if (count <= 0) {
491 		ret = count;
492 		goto inode_unlock;
493 	}
494 
495 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
496 		ret = -EINVAL;
497 		goto inode_unlock;
498 	}
499 
500 	/* Enforce sequential writes (append only) in sequential zones */
501 	if (zonefs_zone_is_seq(z)) {
502 		mutex_lock(&zi->i_truncate_mutex);
503 		if (iocb->ki_pos != z->z_wpoffset) {
504 			mutex_unlock(&zi->i_truncate_mutex);
505 			ret = -EINVAL;
506 			goto inode_unlock;
507 		}
508 		/*
509 		 * Advance the zone write pointer offset. This assumes that the
510 		 * IO will succeed, which is OK to do because we do not allow
511 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
512 		 * fails, the error path will correct the write pointer offset.
513 		 */
514 		z->z_wpoffset += count;
515 		zonefs_inode_account_active(inode);
516 		mutex_unlock(&zi->i_truncate_mutex);
517 	}
518 
519 	/*
520 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
521 	 * page invalidation. Overwrite that error code with EBUSY so that
522 	 * the user can make sense of the error.
523 	 */
524 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
525 			   &zonefs_write_dio_ops, 0, NULL, 0);
526 	if (ret == -ENOTBLK)
527 		ret = -EBUSY;
528 
529 	/*
530 	 * For a failed IO or partial completion, trigger error recovery
531 	 * to update the zone write pointer offset to a correct value.
532 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
533 	 * have executed error recovery if the IO already completed when we
534 	 * reach here. However, we cannot know that and execute error recovery
535 	 * again (that will not change anything).
536 	 */
537 	if (zonefs_zone_is_seq(z)) {
538 		if (ret > 0 && ret != count)
539 			ret = -EIO;
540 		if (ret < 0 && ret != -EIOCBQUEUED)
541 			zonefs_io_error(inode, true);
542 	}
543 
544 inode_unlock:
545 	inode_unlock(inode);
546 
547 	return ret;
548 }
549 
550 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
551 					  struct iov_iter *from)
552 {
553 	struct inode *inode = file_inode(iocb->ki_filp);
554 	ssize_t ret;
555 
556 	/*
557 	 * Direct IO writes are mandatory for sequential zone files so that the
558 	 * write IO issuing order is preserved.
559 	 */
560 	if (zonefs_inode_is_seq(inode))
561 		return -EIO;
562 
563 	if (iocb->ki_flags & IOCB_NOWAIT) {
564 		if (!inode_trylock(inode))
565 			return -EAGAIN;
566 	} else {
567 		inode_lock(inode);
568 	}
569 
570 	ret = zonefs_write_checks(iocb, from);
571 	if (ret <= 0)
572 		goto inode_unlock;
573 
574 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops, NULL);
575 	if (ret == -EIO)
576 		zonefs_io_error(inode, true);
577 
578 inode_unlock:
579 	inode_unlock(inode);
580 	if (ret > 0)
581 		ret = generic_write_sync(iocb, ret);
582 
583 	return ret;
584 }
585 
586 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
587 {
588 	struct inode *inode = file_inode(iocb->ki_filp);
589 	struct zonefs_zone *z = zonefs_inode_zone(inode);
590 
591 	if (unlikely(IS_IMMUTABLE(inode)))
592 		return -EPERM;
593 
594 	if (sb_rdonly(inode->i_sb))
595 		return -EROFS;
596 
597 	/* Write operations beyond the zone capacity are not allowed */
598 	if (iocb->ki_pos >= z->z_capacity)
599 		return -EFBIG;
600 
601 	if (iocb->ki_flags & IOCB_DIRECT) {
602 		ssize_t ret = zonefs_file_dio_write(iocb, from);
603 
604 		if (ret != -ENOTBLK)
605 			return ret;
606 	}
607 
608 	return zonefs_file_buffered_write(iocb, from);
609 }
610 
611 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
612 				       int error, unsigned int flags)
613 {
614 	if (error) {
615 		zonefs_io_error(file_inode(iocb->ki_filp), false);
616 		return error;
617 	}
618 
619 	return 0;
620 }
621 
622 static const struct iomap_dio_ops zonefs_read_dio_ops = {
623 	.end_io			= zonefs_file_read_dio_end_io,
624 };
625 
626 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
627 {
628 	struct inode *inode = file_inode(iocb->ki_filp);
629 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
630 	struct zonefs_zone *z = zonefs_inode_zone(inode);
631 	struct super_block *sb = inode->i_sb;
632 	loff_t isize;
633 	ssize_t ret;
634 
635 	/* Offline zones cannot be read */
636 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
637 		return -EPERM;
638 
639 	if (iocb->ki_pos >= z->z_capacity)
640 		return 0;
641 
642 	if (iocb->ki_flags & IOCB_NOWAIT) {
643 		if (!inode_trylock_shared(inode))
644 			return -EAGAIN;
645 	} else {
646 		inode_lock_shared(inode);
647 	}
648 
649 	/* Limit read operations to written data */
650 	mutex_lock(&zi->i_truncate_mutex);
651 	isize = i_size_read(inode);
652 	if (iocb->ki_pos >= isize) {
653 		mutex_unlock(&zi->i_truncate_mutex);
654 		ret = 0;
655 		goto inode_unlock;
656 	}
657 	iov_iter_truncate(to, isize - iocb->ki_pos);
658 	mutex_unlock(&zi->i_truncate_mutex);
659 
660 	if (iocb->ki_flags & IOCB_DIRECT) {
661 		size_t count = iov_iter_count(to);
662 
663 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
664 			ret = -EINVAL;
665 			goto inode_unlock;
666 		}
667 		file_accessed(iocb->ki_filp);
668 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
669 				   &zonefs_read_dio_ops, 0, NULL, 0);
670 	} else {
671 		ret = generic_file_read_iter(iocb, to);
672 		if (ret == -EIO)
673 			zonefs_io_error(inode, false);
674 	}
675 
676 inode_unlock:
677 	inode_unlock_shared(inode);
678 
679 	return ret;
680 }
681 
682 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
683 				       struct pipe_inode_info *pipe,
684 				       size_t len, unsigned int flags)
685 {
686 	struct inode *inode = file_inode(in);
687 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
688 	struct zonefs_zone *z = zonefs_inode_zone(inode);
689 	loff_t isize;
690 	ssize_t ret = 0;
691 
692 	/* Offline zones cannot be read */
693 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
694 		return -EPERM;
695 
696 	if (*ppos >= z->z_capacity)
697 		return 0;
698 
699 	inode_lock_shared(inode);
700 
701 	/* Limit read operations to written data */
702 	mutex_lock(&zi->i_truncate_mutex);
703 	isize = i_size_read(inode);
704 	if (*ppos >= isize)
705 		len = 0;
706 	else
707 		len = min_t(loff_t, len, isize - *ppos);
708 	mutex_unlock(&zi->i_truncate_mutex);
709 
710 	if (len > 0) {
711 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
712 		if (ret == -EIO)
713 			zonefs_io_error(inode, false);
714 	}
715 
716 	inode_unlock_shared(inode);
717 	return ret;
718 }
719 
720 /*
721  * Write open accounting is done only for sequential files.
722  */
723 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
724 					    struct file *file)
725 {
726 	if (zonefs_inode_is_cnv(inode))
727 		return false;
728 
729 	if (!(file->f_mode & FMODE_WRITE))
730 		return false;
731 
732 	return true;
733 }
734 
735 static int zonefs_seq_file_write_open(struct inode *inode)
736 {
737 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
738 	struct zonefs_zone *z = zonefs_inode_zone(inode);
739 	int ret = 0;
740 
741 	mutex_lock(&zi->i_truncate_mutex);
742 
743 	if (!zi->i_wr_refcnt) {
744 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
745 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
746 
747 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
748 
749 			if (sbi->s_max_wro_seq_files
750 			    && wro > sbi->s_max_wro_seq_files) {
751 				atomic_dec(&sbi->s_wro_seq_files);
752 				ret = -EBUSY;
753 				goto unlock;
754 			}
755 
756 			if (i_size_read(inode) < z->z_capacity) {
757 				ret = zonefs_inode_zone_mgmt(inode,
758 							     REQ_OP_ZONE_OPEN);
759 				if (ret) {
760 					atomic_dec(&sbi->s_wro_seq_files);
761 					goto unlock;
762 				}
763 				z->z_flags |= ZONEFS_ZONE_OPEN;
764 				zonefs_inode_account_active(inode);
765 			}
766 		}
767 	}
768 
769 	zi->i_wr_refcnt++;
770 
771 unlock:
772 	mutex_unlock(&zi->i_truncate_mutex);
773 
774 	return ret;
775 }
776 
777 static int zonefs_file_open(struct inode *inode, struct file *file)
778 {
779 	int ret;
780 
781 	file->f_mode |= FMODE_CAN_ODIRECT;
782 	ret = generic_file_open(inode, file);
783 	if (ret)
784 		return ret;
785 
786 	if (zonefs_seq_file_need_wro(inode, file))
787 		return zonefs_seq_file_write_open(inode);
788 
789 	return 0;
790 }
791 
792 static void zonefs_seq_file_write_close(struct inode *inode)
793 {
794 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
795 	struct zonefs_zone *z = zonefs_inode_zone(inode);
796 	struct super_block *sb = inode->i_sb;
797 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
798 	int ret = 0;
799 
800 	mutex_lock(&zi->i_truncate_mutex);
801 
802 	zi->i_wr_refcnt--;
803 	if (zi->i_wr_refcnt)
804 		goto unlock;
805 
806 	/*
807 	 * The file zone may not be open anymore (e.g. the file was truncated to
808 	 * its maximum size or it was fully written). For this case, we only
809 	 * need to decrement the write open count.
810 	 */
811 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
812 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
813 		if (ret) {
814 			__zonefs_io_error(inode, false);
815 			/*
816 			 * Leaving zones explicitly open may lead to a state
817 			 * where most zones cannot be written (zone resources
818 			 * exhausted). So take preventive action by remounting
819 			 * read-only.
820 			 */
821 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
822 			    !(sb->s_flags & SB_RDONLY)) {
823 				zonefs_warn(sb,
824 					"closing zone at %llu failed %d\n",
825 					z->z_sector, ret);
826 				zonefs_warn(sb,
827 					"remounting filesystem read-only\n");
828 				sb->s_flags |= SB_RDONLY;
829 			}
830 			goto unlock;
831 		}
832 
833 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
834 		zonefs_inode_account_active(inode);
835 	}
836 
837 	atomic_dec(&sbi->s_wro_seq_files);
838 
839 unlock:
840 	mutex_unlock(&zi->i_truncate_mutex);
841 }
842 
843 static int zonefs_file_release(struct inode *inode, struct file *file)
844 {
845 	/*
846 	 * If we explicitly open a zone we must close it again as well, but the
847 	 * zone management operation can fail (either due to an IO error or as
848 	 * the zone has gone offline or read-only). Make sure we don't fail the
849 	 * close(2) for user-space.
850 	 */
851 	if (zonefs_seq_file_need_wro(inode, file))
852 		zonefs_seq_file_write_close(inode);
853 
854 	return 0;
855 }
856 
857 const struct file_operations zonefs_file_operations = {
858 	.open		= zonefs_file_open,
859 	.release	= zonefs_file_release,
860 	.fsync		= zonefs_file_fsync,
861 	.mmap		= zonefs_file_mmap,
862 	.llseek		= zonefs_file_llseek,
863 	.read_iter	= zonefs_file_read_iter,
864 	.write_iter	= zonefs_file_write_iter,
865 	.splice_read	= zonefs_file_splice_read,
866 	.splice_write	= iter_file_splice_write,
867 	.iopoll		= iocb_bio_iopoll,
868 };
869