xref: /linux/fs/zonefs/file.c (revision add07519ea6b6c2ba2b7842225eb87e0f08f2b0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset,
129 				   unsigned int len)
130 {
131 	struct zonefs_zone *z = zonefs_inode_zone(inode);
132 
133 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
134 		return -EIO;
135 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
136 		return -EIO;
137 
138 	/* If the mapping is already OK, nothing needs to be done */
139 	if (offset >= wpc->iomap.offset &&
140 	    offset < wpc->iomap.offset + wpc->iomap.length)
141 		return 0;
142 
143 	return zonefs_write_iomap_begin(inode, offset,
144 					z->z_capacity - offset,
145 					IOMAP_WRITE, &wpc->iomap, NULL);
146 }
147 
148 static const struct iomap_writeback_ops zonefs_writeback_ops = {
149 	.map_blocks		= zonefs_write_map_blocks,
150 };
151 
152 static int zonefs_writepages(struct address_space *mapping,
153 			     struct writeback_control *wbc)
154 {
155 	struct iomap_writepage_ctx wpc = { };
156 
157 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
158 }
159 
160 static int zonefs_swap_activate(struct swap_info_struct *sis,
161 				struct file *swap_file, sector_t *span)
162 {
163 	struct inode *inode = file_inode(swap_file);
164 
165 	if (zonefs_inode_is_seq(inode)) {
166 		zonefs_err(inode->i_sb,
167 			   "swap file: not a conventional zone file\n");
168 		return -EINVAL;
169 	}
170 
171 	return iomap_swapfile_activate(sis, swap_file, span,
172 				       &zonefs_read_iomap_ops);
173 }
174 
175 const struct address_space_operations zonefs_file_aops = {
176 	.read_folio		= zonefs_read_folio,
177 	.readahead		= zonefs_readahead,
178 	.writepages		= zonefs_writepages,
179 	.dirty_folio		= iomap_dirty_folio,
180 	.release_folio		= iomap_release_folio,
181 	.invalidate_folio	= iomap_invalidate_folio,
182 	.migrate_folio		= filemap_migrate_folio,
183 	.is_partially_uptodate	= iomap_is_partially_uptodate,
184 	.error_remove_folio	= generic_error_remove_folio,
185 	.swap_activate		= zonefs_swap_activate,
186 };
187 
188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 	struct zonefs_zone *z = zonefs_inode_zone(inode);
192 	loff_t old_isize;
193 	enum req_op op;
194 	int ret = 0;
195 
196 	/*
197 	 * Only sequential zone files can be truncated and truncation is allowed
198 	 * only down to a 0 size, which is equivalent to a zone reset, and to
199 	 * the maximum file size, which is equivalent to a zone finish.
200 	 */
201 	if (!zonefs_zone_is_seq(z))
202 		return -EPERM;
203 
204 	if (!isize)
205 		op = REQ_OP_ZONE_RESET;
206 	else if (isize == z->z_capacity)
207 		op = REQ_OP_ZONE_FINISH;
208 	else
209 		return -EPERM;
210 
211 	inode_dio_wait(inode);
212 
213 	/* Serialize against page faults */
214 	filemap_invalidate_lock(inode->i_mapping);
215 
216 	/* Serialize against zonefs_iomap_begin() */
217 	mutex_lock(&zi->i_truncate_mutex);
218 
219 	old_isize = i_size_read(inode);
220 	if (isize == old_isize)
221 		goto unlock;
222 
223 	ret = zonefs_inode_zone_mgmt(inode, op);
224 	if (ret)
225 		goto unlock;
226 
227 	/*
228 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 	 * take care of open zones.
230 	 */
231 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 		/*
233 		 * Truncating a zone to EMPTY or FULL is the equivalent of
234 		 * closing the zone. For a truncation to 0, we need to
235 		 * re-open the zone to ensure new writes can be processed.
236 		 * For a truncation to the maximum file size, the zone is
237 		 * closed and writes cannot be accepted anymore, so clear
238 		 * the open flag.
239 		 */
240 		if (!isize)
241 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 		else
243 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 	}
245 
246 	zonefs_update_stats(inode, isize);
247 	truncate_setsize(inode, isize);
248 	z->z_wpoffset = isize;
249 	zonefs_inode_account_active(inode);
250 
251 unlock:
252 	mutex_unlock(&zi->i_truncate_mutex);
253 	filemap_invalidate_unlock(inode->i_mapping);
254 
255 	return ret;
256 }
257 
258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 			     int datasync)
260 {
261 	struct inode *inode = file_inode(file);
262 	int ret = 0;
263 
264 	if (unlikely(IS_IMMUTABLE(inode)))
265 		return -EPERM;
266 
267 	/*
268 	 * Since only direct writes are allowed in sequential files, page cache
269 	 * flush is needed only for conventional zone files.
270 	 */
271 	if (zonefs_inode_is_cnv(inode))
272 		ret = file_write_and_wait_range(file, start, end);
273 	if (!ret)
274 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275 
276 	if (ret)
277 		zonefs_io_error(inode, true);
278 
279 	return ret;
280 }
281 
282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 	struct inode *inode = file_inode(vmf->vma->vm_file);
285 	vm_fault_t ret;
286 
287 	if (unlikely(IS_IMMUTABLE(inode)))
288 		return VM_FAULT_SIGBUS;
289 
290 	/*
291 	 * Sanity check: only conventional zone files can have shared
292 	 * writeable mappings.
293 	 */
294 	if (zonefs_inode_is_seq(inode))
295 		return VM_FAULT_NOPAGE;
296 
297 	sb_start_pagefault(inode->i_sb);
298 	file_update_time(vmf->vma->vm_file);
299 
300 	/* Serialize against truncates */
301 	filemap_invalidate_lock_shared(inode->i_mapping);
302 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops, NULL);
303 	filemap_invalidate_unlock_shared(inode->i_mapping);
304 
305 	sb_end_pagefault(inode->i_sb);
306 	return ret;
307 }
308 
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 	.fault		= filemap_fault,
311 	.map_pages	= filemap_map_pages,
312 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313 };
314 
315 static int zonefs_file_mmap_prepare(struct vm_area_desc *desc)
316 {
317 	struct file *file = desc->file;
318 
319 	/*
320 	 * Conventional zones accept random writes, so their files can support
321 	 * shared writable mappings. For sequential zone files, only read
322 	 * mappings are possible since there are no guarantees for write
323 	 * ordering between msync() and page cache writeback.
324 	 */
325 	if (zonefs_inode_is_seq(file_inode(file)) &&
326 	    (desc->vm_flags & VM_SHARED) && (desc->vm_flags & VM_MAYWRITE))
327 		return -EINVAL;
328 
329 	file_accessed(file);
330 	desc->vm_ops = &zonefs_file_vm_ops;
331 
332 	return 0;
333 }
334 
335 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
336 {
337 	loff_t isize = i_size_read(file_inode(file));
338 
339 	/*
340 	 * Seeks are limited to below the zone size for conventional zones
341 	 * and below the zone write pointer for sequential zones. In both
342 	 * cases, this limit is the inode size.
343 	 */
344 	return generic_file_llseek_size(file, offset, whence, isize, isize);
345 }
346 
347 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
348 					int error, unsigned int flags)
349 {
350 	struct inode *inode = file_inode(iocb->ki_filp);
351 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
352 
353 	if (error) {
354 		/*
355 		 * For Sync IOs, error recovery is called from
356 		 * zonefs_file_dio_write().
357 		 */
358 		if (!is_sync_kiocb(iocb))
359 			zonefs_io_error(inode, true);
360 		return error;
361 	}
362 
363 	if (size && zonefs_inode_is_seq(inode)) {
364 		/*
365 		 * Note that we may be seeing completions out of order,
366 		 * but that is not a problem since a write completed
367 		 * successfully necessarily means that all preceding writes
368 		 * were also successful. So we can safely increase the inode
369 		 * size to the write end location.
370 		 */
371 		mutex_lock(&zi->i_truncate_mutex);
372 		if (i_size_read(inode) < iocb->ki_pos + size) {
373 			zonefs_update_stats(inode, iocb->ki_pos + size);
374 			zonefs_i_size_write(inode, iocb->ki_pos + size);
375 		}
376 		mutex_unlock(&zi->i_truncate_mutex);
377 	}
378 
379 	return 0;
380 }
381 
382 static const struct iomap_dio_ops zonefs_write_dio_ops = {
383 	.end_io		= zonefs_file_write_dio_end_io,
384 };
385 
386 /*
387  * Do not exceed the LFS limits nor the file zone size. If pos is under the
388  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
389  */
390 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
391 					loff_t count)
392 {
393 	struct inode *inode = file_inode(file);
394 	struct zonefs_zone *z = zonefs_inode_zone(inode);
395 	loff_t limit = rlimit(RLIMIT_FSIZE);
396 	loff_t max_size = z->z_capacity;
397 
398 	if (limit != RLIM_INFINITY) {
399 		if (pos >= limit) {
400 			send_sig(SIGXFSZ, current, 0);
401 			return -EFBIG;
402 		}
403 		count = min(count, limit - pos);
404 	}
405 
406 	if (!(file->f_flags & O_LARGEFILE))
407 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
408 
409 	if (unlikely(pos >= max_size))
410 		return -EFBIG;
411 
412 	return min(count, max_size - pos);
413 }
414 
415 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
416 {
417 	struct file *file = iocb->ki_filp;
418 	struct inode *inode = file_inode(file);
419 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
420 	struct zonefs_zone *z = zonefs_inode_zone(inode);
421 	loff_t count;
422 
423 	if (IS_SWAPFILE(inode))
424 		return -ETXTBSY;
425 
426 	if (!iov_iter_count(from))
427 		return 0;
428 
429 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
430 		return -EINVAL;
431 
432 	if (iocb->ki_flags & IOCB_APPEND) {
433 		if (zonefs_zone_is_cnv(z))
434 			return -EINVAL;
435 		mutex_lock(&zi->i_truncate_mutex);
436 		iocb->ki_pos = z->z_wpoffset;
437 		mutex_unlock(&zi->i_truncate_mutex);
438 	}
439 
440 	count = zonefs_write_check_limits(file, iocb->ki_pos,
441 					  iov_iter_count(from));
442 	if (count < 0)
443 		return count;
444 
445 	iov_iter_truncate(from, count);
446 	return iov_iter_count(from);
447 }
448 
449 /*
450  * Handle direct writes. For sequential zone files, this is the only possible
451  * write path. For these files, check that the user is issuing writes
452  * sequentially from the end of the file. This code assumes that the block layer
453  * delivers write requests to the device in sequential order. This is always the
454  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
455  * elevator feature is being used (e.g. mq-deadline). The block layer always
456  * automatically select such an elevator for zoned block devices during the
457  * device initialization.
458  */
459 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
460 {
461 	struct inode *inode = file_inode(iocb->ki_filp);
462 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
463 	struct zonefs_zone *z = zonefs_inode_zone(inode);
464 	struct super_block *sb = inode->i_sb;
465 	ssize_t ret, count;
466 
467 	/*
468 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
469 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
470 	 * on the inode lock but the second goes through but is now unaligned).
471 	 */
472 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
473 	    (iocb->ki_flags & IOCB_NOWAIT))
474 		return -EOPNOTSUPP;
475 
476 	if (iocb->ki_flags & IOCB_NOWAIT) {
477 		if (!inode_trylock(inode))
478 			return -EAGAIN;
479 	} else {
480 		inode_lock(inode);
481 	}
482 
483 	count = zonefs_write_checks(iocb, from);
484 	if (count <= 0) {
485 		ret = count;
486 		goto inode_unlock;
487 	}
488 
489 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
490 		ret = -EINVAL;
491 		goto inode_unlock;
492 	}
493 
494 	/* Enforce sequential writes (append only) in sequential zones */
495 	if (zonefs_zone_is_seq(z)) {
496 		mutex_lock(&zi->i_truncate_mutex);
497 		if (iocb->ki_pos != z->z_wpoffset) {
498 			mutex_unlock(&zi->i_truncate_mutex);
499 			ret = -EINVAL;
500 			goto inode_unlock;
501 		}
502 		/*
503 		 * Advance the zone write pointer offset. This assumes that the
504 		 * IO will succeed, which is OK to do because we do not allow
505 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
506 		 * fails, the error path will correct the write pointer offset.
507 		 */
508 		z->z_wpoffset += count;
509 		zonefs_inode_account_active(inode);
510 		mutex_unlock(&zi->i_truncate_mutex);
511 	}
512 
513 	/*
514 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
515 	 * page invalidation. Overwrite that error code with EBUSY so that
516 	 * the user can make sense of the error.
517 	 */
518 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
519 			   &zonefs_write_dio_ops, 0, NULL, 0);
520 	if (ret == -ENOTBLK)
521 		ret = -EBUSY;
522 
523 	/*
524 	 * For a failed IO or partial completion, trigger error recovery
525 	 * to update the zone write pointer offset to a correct value.
526 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
527 	 * have executed error recovery if the IO already completed when we
528 	 * reach here. However, we cannot know that and execute error recovery
529 	 * again (that will not change anything).
530 	 */
531 	if (zonefs_zone_is_seq(z)) {
532 		if (ret > 0 && ret != count)
533 			ret = -EIO;
534 		if (ret < 0 && ret != -EIOCBQUEUED)
535 			zonefs_io_error(inode, true);
536 	}
537 
538 inode_unlock:
539 	inode_unlock(inode);
540 
541 	return ret;
542 }
543 
544 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
545 					  struct iov_iter *from)
546 {
547 	struct inode *inode = file_inode(iocb->ki_filp);
548 	ssize_t ret;
549 
550 	/*
551 	 * Direct IO writes are mandatory for sequential zone files so that the
552 	 * write IO issuing order is preserved.
553 	 */
554 	if (zonefs_inode_is_seq(inode))
555 		return -EIO;
556 
557 	if (iocb->ki_flags & IOCB_NOWAIT) {
558 		if (!inode_trylock(inode))
559 			return -EAGAIN;
560 	} else {
561 		inode_lock(inode);
562 	}
563 
564 	ret = zonefs_write_checks(iocb, from);
565 	if (ret <= 0)
566 		goto inode_unlock;
567 
568 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops, NULL);
569 	if (ret == -EIO)
570 		zonefs_io_error(inode, true);
571 
572 inode_unlock:
573 	inode_unlock(inode);
574 	if (ret > 0)
575 		ret = generic_write_sync(iocb, ret);
576 
577 	return ret;
578 }
579 
580 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
581 {
582 	struct inode *inode = file_inode(iocb->ki_filp);
583 	struct zonefs_zone *z = zonefs_inode_zone(inode);
584 
585 	if (unlikely(IS_IMMUTABLE(inode)))
586 		return -EPERM;
587 
588 	if (sb_rdonly(inode->i_sb))
589 		return -EROFS;
590 
591 	/* Write operations beyond the zone capacity are not allowed */
592 	if (iocb->ki_pos >= z->z_capacity)
593 		return -EFBIG;
594 
595 	if (iocb->ki_flags & IOCB_DIRECT) {
596 		ssize_t ret = zonefs_file_dio_write(iocb, from);
597 
598 		if (ret != -ENOTBLK)
599 			return ret;
600 	}
601 
602 	return zonefs_file_buffered_write(iocb, from);
603 }
604 
605 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
606 				       int error, unsigned int flags)
607 {
608 	if (error) {
609 		zonefs_io_error(file_inode(iocb->ki_filp), false);
610 		return error;
611 	}
612 
613 	return 0;
614 }
615 
616 static const struct iomap_dio_ops zonefs_read_dio_ops = {
617 	.end_io			= zonefs_file_read_dio_end_io,
618 };
619 
620 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
621 {
622 	struct inode *inode = file_inode(iocb->ki_filp);
623 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
624 	struct zonefs_zone *z = zonefs_inode_zone(inode);
625 	struct super_block *sb = inode->i_sb;
626 	loff_t isize;
627 	ssize_t ret;
628 
629 	/* Offline zones cannot be read */
630 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
631 		return -EPERM;
632 
633 	if (iocb->ki_pos >= z->z_capacity)
634 		return 0;
635 
636 	if (iocb->ki_flags & IOCB_NOWAIT) {
637 		if (!inode_trylock_shared(inode))
638 			return -EAGAIN;
639 	} else {
640 		inode_lock_shared(inode);
641 	}
642 
643 	/* Limit read operations to written data */
644 	mutex_lock(&zi->i_truncate_mutex);
645 	isize = i_size_read(inode);
646 	if (iocb->ki_pos >= isize) {
647 		mutex_unlock(&zi->i_truncate_mutex);
648 		ret = 0;
649 		goto inode_unlock;
650 	}
651 	iov_iter_truncate(to, isize - iocb->ki_pos);
652 	mutex_unlock(&zi->i_truncate_mutex);
653 
654 	if (iocb->ki_flags & IOCB_DIRECT) {
655 		size_t count = iov_iter_count(to);
656 
657 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
658 			ret = -EINVAL;
659 			goto inode_unlock;
660 		}
661 		file_accessed(iocb->ki_filp);
662 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
663 				   &zonefs_read_dio_ops, 0, NULL, 0);
664 	} else {
665 		ret = generic_file_read_iter(iocb, to);
666 		if (ret == -EIO)
667 			zonefs_io_error(inode, false);
668 	}
669 
670 inode_unlock:
671 	inode_unlock_shared(inode);
672 
673 	return ret;
674 }
675 
676 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
677 				       struct pipe_inode_info *pipe,
678 				       size_t len, unsigned int flags)
679 {
680 	struct inode *inode = file_inode(in);
681 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
682 	struct zonefs_zone *z = zonefs_inode_zone(inode);
683 	loff_t isize;
684 	ssize_t ret = 0;
685 
686 	/* Offline zones cannot be read */
687 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
688 		return -EPERM;
689 
690 	if (*ppos >= z->z_capacity)
691 		return 0;
692 
693 	inode_lock_shared(inode);
694 
695 	/* Limit read operations to written data */
696 	mutex_lock(&zi->i_truncate_mutex);
697 	isize = i_size_read(inode);
698 	if (*ppos >= isize)
699 		len = 0;
700 	else
701 		len = min_t(loff_t, len, isize - *ppos);
702 	mutex_unlock(&zi->i_truncate_mutex);
703 
704 	if (len > 0) {
705 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
706 		if (ret == -EIO)
707 			zonefs_io_error(inode, false);
708 	}
709 
710 	inode_unlock_shared(inode);
711 	return ret;
712 }
713 
714 /*
715  * Write open accounting is done only for sequential files.
716  */
717 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
718 					    struct file *file)
719 {
720 	if (zonefs_inode_is_cnv(inode))
721 		return false;
722 
723 	if (!(file->f_mode & FMODE_WRITE))
724 		return false;
725 
726 	return true;
727 }
728 
729 static int zonefs_seq_file_write_open(struct inode *inode)
730 {
731 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
732 	struct zonefs_zone *z = zonefs_inode_zone(inode);
733 	int ret = 0;
734 
735 	mutex_lock(&zi->i_truncate_mutex);
736 
737 	if (!zi->i_wr_refcnt) {
738 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
739 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
740 
741 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
742 
743 			if (sbi->s_max_wro_seq_files
744 			    && wro > sbi->s_max_wro_seq_files) {
745 				atomic_dec(&sbi->s_wro_seq_files);
746 				ret = -EBUSY;
747 				goto unlock;
748 			}
749 
750 			if (i_size_read(inode) < z->z_capacity) {
751 				ret = zonefs_inode_zone_mgmt(inode,
752 							     REQ_OP_ZONE_OPEN);
753 				if (ret) {
754 					atomic_dec(&sbi->s_wro_seq_files);
755 					goto unlock;
756 				}
757 				z->z_flags |= ZONEFS_ZONE_OPEN;
758 				zonefs_inode_account_active(inode);
759 			}
760 		}
761 	}
762 
763 	zi->i_wr_refcnt++;
764 
765 unlock:
766 	mutex_unlock(&zi->i_truncate_mutex);
767 
768 	return ret;
769 }
770 
771 static int zonefs_file_open(struct inode *inode, struct file *file)
772 {
773 	int ret;
774 
775 	file->f_mode |= FMODE_CAN_ODIRECT;
776 	ret = generic_file_open(inode, file);
777 	if (ret)
778 		return ret;
779 
780 	if (zonefs_seq_file_need_wro(inode, file))
781 		return zonefs_seq_file_write_open(inode);
782 
783 	return 0;
784 }
785 
786 static void zonefs_seq_file_write_close(struct inode *inode)
787 {
788 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
789 	struct zonefs_zone *z = zonefs_inode_zone(inode);
790 	struct super_block *sb = inode->i_sb;
791 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
792 	int ret = 0;
793 
794 	mutex_lock(&zi->i_truncate_mutex);
795 
796 	zi->i_wr_refcnt--;
797 	if (zi->i_wr_refcnt)
798 		goto unlock;
799 
800 	/*
801 	 * The file zone may not be open anymore (e.g. the file was truncated to
802 	 * its maximum size or it was fully written). For this case, we only
803 	 * need to decrement the write open count.
804 	 */
805 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
806 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
807 		if (ret) {
808 			__zonefs_io_error(inode, false);
809 			/*
810 			 * Leaving zones explicitly open may lead to a state
811 			 * where most zones cannot be written (zone resources
812 			 * exhausted). So take preventive action by remounting
813 			 * read-only.
814 			 */
815 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
816 			    !(sb->s_flags & SB_RDONLY)) {
817 				zonefs_warn(sb,
818 					"closing zone at %llu failed %d\n",
819 					z->z_sector, ret);
820 				zonefs_warn(sb,
821 					"remounting filesystem read-only\n");
822 				sb->s_flags |= SB_RDONLY;
823 			}
824 			goto unlock;
825 		}
826 
827 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
828 		zonefs_inode_account_active(inode);
829 	}
830 
831 	atomic_dec(&sbi->s_wro_seq_files);
832 
833 unlock:
834 	mutex_unlock(&zi->i_truncate_mutex);
835 }
836 
837 static int zonefs_file_release(struct inode *inode, struct file *file)
838 {
839 	/*
840 	 * If we explicitly open a zone we must close it again as well, but the
841 	 * zone management operation can fail (either due to an IO error or as
842 	 * the zone has gone offline or read-only). Make sure we don't fail the
843 	 * close(2) for user-space.
844 	 */
845 	if (zonefs_seq_file_need_wro(inode, file))
846 		zonefs_seq_file_write_close(inode);
847 
848 	return 0;
849 }
850 
851 const struct file_operations zonefs_file_operations = {
852 	.open		= zonefs_file_open,
853 	.release	= zonefs_file_release,
854 	.fsync		= zonefs_file_fsync,
855 	.mmap_prepare	= zonefs_file_mmap_prepare,
856 	.llseek		= zonefs_file_llseek,
857 	.read_iter	= zonefs_file_read_iter,
858 	.write_iter	= zonefs_file_write_iter,
859 	.splice_read	= zonefs_file_splice_read,
860 	.splice_write	= iter_file_splice_write,
861 	.iopoll		= iocb_bio_iopoll,
862 };
863