1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2022 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/iomap.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/blkdev.h> 13 #include <linux/statfs.h> 14 #include <linux/writeback.h> 15 #include <linux/quotaops.h> 16 #include <linux/seq_file.h> 17 #include <linux/parser.h> 18 #include <linux/uio.h> 19 #include <linux/mman.h> 20 #include <linux/sched/mm.h> 21 #include <linux/task_io_accounting_ops.h> 22 23 #include "zonefs.h" 24 25 #include "trace.h" 26 27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 28 loff_t length, unsigned int flags, 29 struct iomap *iomap, struct iomap *srcmap) 30 { 31 struct zonefs_inode_info *zi = ZONEFS_I(inode); 32 struct zonefs_zone *z = zonefs_inode_zone(inode); 33 struct super_block *sb = inode->i_sb; 34 loff_t isize; 35 36 /* 37 * All blocks are always mapped below EOF. If reading past EOF, 38 * act as if there is a hole up to the file maximum size. 39 */ 40 mutex_lock(&zi->i_truncate_mutex); 41 iomap->bdev = inode->i_sb->s_bdev; 42 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 43 isize = i_size_read(inode); 44 if (iomap->offset >= isize) { 45 iomap->type = IOMAP_HOLE; 46 iomap->addr = IOMAP_NULL_ADDR; 47 iomap->length = length; 48 } else { 49 iomap->type = IOMAP_MAPPED; 50 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 51 iomap->length = isize - iomap->offset; 52 } 53 mutex_unlock(&zi->i_truncate_mutex); 54 55 trace_zonefs_iomap_begin(inode, iomap); 56 57 return 0; 58 } 59 60 static const struct iomap_ops zonefs_read_iomap_ops = { 61 .iomap_begin = zonefs_read_iomap_begin, 62 }; 63 64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 65 loff_t length, unsigned int flags, 66 struct iomap *iomap, struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct zonefs_zone *z = zonefs_inode_zone(inode); 70 struct super_block *sb = inode->i_sb; 71 loff_t isize; 72 73 /* All write I/Os should always be within the file maximum size */ 74 if (WARN_ON_ONCE(offset + length > z->z_capacity)) 75 return -EIO; 76 77 /* 78 * Sequential zones can only accept direct writes. This is already 79 * checked when writes are issued, so warn if we see a page writeback 80 * operation. 81 */ 82 if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 iomap->bdev = inode->i_sb->s_bdev; 92 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 93 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 94 isize = i_size_read(inode); 95 if (iomap->offset >= isize) { 96 iomap->type = IOMAP_UNWRITTEN; 97 iomap->length = z->z_capacity - iomap->offset; 98 } else { 99 iomap->type = IOMAP_MAPPED; 100 iomap->length = isize - iomap->offset; 101 } 102 mutex_unlock(&zi->i_truncate_mutex); 103 104 trace_zonefs_iomap_begin(inode, iomap); 105 106 return 0; 107 } 108 109 static const struct iomap_ops zonefs_write_iomap_ops = { 110 .iomap_begin = zonefs_write_iomap_begin, 111 }; 112 113 static int zonefs_read_folio(struct file *unused, struct folio *folio) 114 { 115 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 116 } 117 118 static void zonefs_readahead(struct readahead_control *rac) 119 { 120 iomap_readahead(rac, &zonefs_read_iomap_ops); 121 } 122 123 /* 124 * Map blocks for page writeback. This is used only on conventional zone files, 125 * which implies that the page range can only be within the fixed inode size. 126 */ 127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 128 struct inode *inode, loff_t offset, 129 unsigned int len) 130 { 131 struct zonefs_zone *z = zonefs_inode_zone(inode); 132 133 if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) 134 return -EIO; 135 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 136 return -EIO; 137 138 /* If the mapping is already OK, nothing needs to be done */ 139 if (offset >= wpc->iomap.offset && 140 offset < wpc->iomap.offset + wpc->iomap.length) 141 return 0; 142 143 return zonefs_write_iomap_begin(inode, offset, 144 z->z_capacity - offset, 145 IOMAP_WRITE, &wpc->iomap, NULL); 146 } 147 148 static const struct iomap_writeback_ops zonefs_writeback_ops = { 149 .map_blocks = zonefs_write_map_blocks, 150 }; 151 152 static int zonefs_writepages(struct address_space *mapping, 153 struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_swap_activate(struct swap_info_struct *sis, 161 struct file *swap_file, sector_t *span) 162 { 163 struct inode *inode = file_inode(swap_file); 164 165 if (zonefs_inode_is_seq(inode)) { 166 zonefs_err(inode->i_sb, 167 "swap file: not a conventional zone file\n"); 168 return -EINVAL; 169 } 170 171 return iomap_swapfile_activate(sis, swap_file, span, 172 &zonefs_read_iomap_ops); 173 } 174 175 const struct address_space_operations zonefs_file_aops = { 176 .read_folio = zonefs_read_folio, 177 .readahead = zonefs_readahead, 178 .writepages = zonefs_writepages, 179 .dirty_folio = iomap_dirty_folio, 180 .release_folio = iomap_release_folio, 181 .invalidate_folio = iomap_invalidate_folio, 182 .migrate_folio = filemap_migrate_folio, 183 .is_partially_uptodate = iomap_is_partially_uptodate, 184 .error_remove_folio = generic_error_remove_folio, 185 .swap_activate = zonefs_swap_activate, 186 }; 187 188 int zonefs_file_truncate(struct inode *inode, loff_t isize) 189 { 190 struct zonefs_inode_info *zi = ZONEFS_I(inode); 191 struct zonefs_zone *z = zonefs_inode_zone(inode); 192 loff_t old_isize; 193 enum req_op op; 194 int ret = 0; 195 196 /* 197 * Only sequential zone files can be truncated and truncation is allowed 198 * only down to a 0 size, which is equivalent to a zone reset, and to 199 * the maximum file size, which is equivalent to a zone finish. 200 */ 201 if (!zonefs_zone_is_seq(z)) 202 return -EPERM; 203 204 if (!isize) 205 op = REQ_OP_ZONE_RESET; 206 else if (isize == z->z_capacity) 207 op = REQ_OP_ZONE_FINISH; 208 else 209 return -EPERM; 210 211 inode_dio_wait(inode); 212 213 /* Serialize against page faults */ 214 filemap_invalidate_lock(inode->i_mapping); 215 216 /* Serialize against zonefs_iomap_begin() */ 217 mutex_lock(&zi->i_truncate_mutex); 218 219 old_isize = i_size_read(inode); 220 if (isize == old_isize) 221 goto unlock; 222 223 ret = zonefs_inode_zone_mgmt(inode, op); 224 if (ret) 225 goto unlock; 226 227 /* 228 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 229 * take care of open zones. 230 */ 231 if (z->z_flags & ZONEFS_ZONE_OPEN) { 232 /* 233 * Truncating a zone to EMPTY or FULL is the equivalent of 234 * closing the zone. For a truncation to 0, we need to 235 * re-open the zone to ensure new writes can be processed. 236 * For a truncation to the maximum file size, the zone is 237 * closed and writes cannot be accepted anymore, so clear 238 * the open flag. 239 */ 240 if (!isize) 241 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 242 else 243 z->z_flags &= ~ZONEFS_ZONE_OPEN; 244 } 245 246 zonefs_update_stats(inode, isize); 247 truncate_setsize(inode, isize); 248 z->z_wpoffset = isize; 249 zonefs_inode_account_active(inode); 250 251 unlock: 252 mutex_unlock(&zi->i_truncate_mutex); 253 filemap_invalidate_unlock(inode->i_mapping); 254 255 return ret; 256 } 257 258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 259 int datasync) 260 { 261 struct inode *inode = file_inode(file); 262 int ret = 0; 263 264 if (unlikely(IS_IMMUTABLE(inode))) 265 return -EPERM; 266 267 /* 268 * Since only direct writes are allowed in sequential files, page cache 269 * flush is needed only for conventional zone files. 270 */ 271 if (zonefs_inode_is_cnv(inode)) 272 ret = file_write_and_wait_range(file, start, end); 273 if (!ret) 274 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 275 276 if (ret) 277 zonefs_io_error(inode, true); 278 279 return ret; 280 } 281 282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 283 { 284 struct inode *inode = file_inode(vmf->vma->vm_file); 285 vm_fault_t ret; 286 287 if (unlikely(IS_IMMUTABLE(inode))) 288 return VM_FAULT_SIGBUS; 289 290 /* 291 * Sanity check: only conventional zone files can have shared 292 * writeable mappings. 293 */ 294 if (zonefs_inode_is_seq(inode)) 295 return VM_FAULT_NOPAGE; 296 297 sb_start_pagefault(inode->i_sb); 298 file_update_time(vmf->vma->vm_file); 299 300 /* Serialize against truncates */ 301 filemap_invalidate_lock_shared(inode->i_mapping); 302 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 303 filemap_invalidate_unlock_shared(inode->i_mapping); 304 305 sb_end_pagefault(inode->i_sb); 306 return ret; 307 } 308 309 static const struct vm_operations_struct zonefs_file_vm_ops = { 310 .fault = filemap_fault, 311 .map_pages = filemap_map_pages, 312 .page_mkwrite = zonefs_filemap_page_mkwrite, 313 }; 314 315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 316 { 317 /* 318 * Conventional zones accept random writes, so their files can support 319 * shared writable mappings. For sequential zone files, only read 320 * mappings are possible since there are no guarantees for write 321 * ordering between msync() and page cache writeback. 322 */ 323 if (zonefs_inode_is_seq(file_inode(file)) && 324 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 325 return -EINVAL; 326 327 file_accessed(file); 328 vma->vm_ops = &zonefs_file_vm_ops; 329 330 return 0; 331 } 332 333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 334 { 335 loff_t isize = i_size_read(file_inode(file)); 336 337 /* 338 * Seeks are limited to below the zone size for conventional zones 339 * and below the zone write pointer for sequential zones. In both 340 * cases, this limit is the inode size. 341 */ 342 return generic_file_llseek_size(file, offset, whence, isize, isize); 343 } 344 345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 346 int error, unsigned int flags) 347 { 348 struct inode *inode = file_inode(iocb->ki_filp); 349 struct zonefs_inode_info *zi = ZONEFS_I(inode); 350 351 if (error) { 352 /* 353 * For Sync IOs, error recovery is called from 354 * zonefs_file_dio_write(). 355 */ 356 if (!is_sync_kiocb(iocb)) 357 zonefs_io_error(inode, true); 358 return error; 359 } 360 361 if (size && zonefs_inode_is_seq(inode)) { 362 /* 363 * Note that we may be seeing completions out of order, 364 * but that is not a problem since a write completed 365 * successfully necessarily means that all preceding writes 366 * were also successful. So we can safely increase the inode 367 * size to the write end location. 368 */ 369 mutex_lock(&zi->i_truncate_mutex); 370 if (i_size_read(inode) < iocb->ki_pos + size) { 371 zonefs_update_stats(inode, iocb->ki_pos + size); 372 zonefs_i_size_write(inode, iocb->ki_pos + size); 373 } 374 mutex_unlock(&zi->i_truncate_mutex); 375 } 376 377 return 0; 378 } 379 380 static const struct iomap_dio_ops zonefs_write_dio_ops = { 381 .end_io = zonefs_file_write_dio_end_io, 382 }; 383 384 /* 385 * Do not exceed the LFS limits nor the file zone size. If pos is under the 386 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 387 */ 388 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 389 loff_t count) 390 { 391 struct inode *inode = file_inode(file); 392 struct zonefs_zone *z = zonefs_inode_zone(inode); 393 loff_t limit = rlimit(RLIMIT_FSIZE); 394 loff_t max_size = z->z_capacity; 395 396 if (limit != RLIM_INFINITY) { 397 if (pos >= limit) { 398 send_sig(SIGXFSZ, current, 0); 399 return -EFBIG; 400 } 401 count = min(count, limit - pos); 402 } 403 404 if (!(file->f_flags & O_LARGEFILE)) 405 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 406 407 if (unlikely(pos >= max_size)) 408 return -EFBIG; 409 410 return min(count, max_size - pos); 411 } 412 413 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 414 { 415 struct file *file = iocb->ki_filp; 416 struct inode *inode = file_inode(file); 417 struct zonefs_inode_info *zi = ZONEFS_I(inode); 418 struct zonefs_zone *z = zonefs_inode_zone(inode); 419 loff_t count; 420 421 if (IS_SWAPFILE(inode)) 422 return -ETXTBSY; 423 424 if (!iov_iter_count(from)) 425 return 0; 426 427 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 428 return -EINVAL; 429 430 if (iocb->ki_flags & IOCB_APPEND) { 431 if (zonefs_zone_is_cnv(z)) 432 return -EINVAL; 433 mutex_lock(&zi->i_truncate_mutex); 434 iocb->ki_pos = z->z_wpoffset; 435 mutex_unlock(&zi->i_truncate_mutex); 436 } 437 438 count = zonefs_write_check_limits(file, iocb->ki_pos, 439 iov_iter_count(from)); 440 if (count < 0) 441 return count; 442 443 iov_iter_truncate(from, count); 444 return iov_iter_count(from); 445 } 446 447 /* 448 * Handle direct writes. For sequential zone files, this is the only possible 449 * write path. For these files, check that the user is issuing writes 450 * sequentially from the end of the file. This code assumes that the block layer 451 * delivers write requests to the device in sequential order. This is always the 452 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 453 * elevator feature is being used (e.g. mq-deadline). The block layer always 454 * automatically select such an elevator for zoned block devices during the 455 * device initialization. 456 */ 457 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 458 { 459 struct inode *inode = file_inode(iocb->ki_filp); 460 struct zonefs_inode_info *zi = ZONEFS_I(inode); 461 struct zonefs_zone *z = zonefs_inode_zone(inode); 462 struct super_block *sb = inode->i_sb; 463 ssize_t ret, count; 464 465 /* 466 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 467 * as this can cause write reordering (e.g. the first aio gets EAGAIN 468 * on the inode lock but the second goes through but is now unaligned). 469 */ 470 if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) && 471 (iocb->ki_flags & IOCB_NOWAIT)) 472 return -EOPNOTSUPP; 473 474 if (iocb->ki_flags & IOCB_NOWAIT) { 475 if (!inode_trylock(inode)) 476 return -EAGAIN; 477 } else { 478 inode_lock(inode); 479 } 480 481 count = zonefs_write_checks(iocb, from); 482 if (count <= 0) { 483 ret = count; 484 goto inode_unlock; 485 } 486 487 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 488 ret = -EINVAL; 489 goto inode_unlock; 490 } 491 492 /* Enforce sequential writes (append only) in sequential zones */ 493 if (zonefs_zone_is_seq(z)) { 494 mutex_lock(&zi->i_truncate_mutex); 495 if (iocb->ki_pos != z->z_wpoffset) { 496 mutex_unlock(&zi->i_truncate_mutex); 497 ret = -EINVAL; 498 goto inode_unlock; 499 } 500 /* 501 * Advance the zone write pointer offset. This assumes that the 502 * IO will succeed, which is OK to do because we do not allow 503 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO 504 * fails, the error path will correct the write pointer offset. 505 */ 506 z->z_wpoffset += count; 507 zonefs_inode_account_active(inode); 508 mutex_unlock(&zi->i_truncate_mutex); 509 } 510 511 /* 512 * iomap_dio_rw() may return ENOTBLK if there was an issue with 513 * page invalidation. Overwrite that error code with EBUSY so that 514 * the user can make sense of the error. 515 */ 516 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 517 &zonefs_write_dio_ops, 0, NULL, 0); 518 if (ret == -ENOTBLK) 519 ret = -EBUSY; 520 521 /* 522 * For a failed IO or partial completion, trigger error recovery 523 * to update the zone write pointer offset to a correct value. 524 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already 525 * have executed error recovery if the IO already completed when we 526 * reach here. However, we cannot know that and execute error recovery 527 * again (that will not change anything). 528 */ 529 if (zonefs_zone_is_seq(z)) { 530 if (ret > 0 && ret != count) 531 ret = -EIO; 532 if (ret < 0 && ret != -EIOCBQUEUED) 533 zonefs_io_error(inode, true); 534 } 535 536 inode_unlock: 537 inode_unlock(inode); 538 539 return ret; 540 } 541 542 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 543 struct iov_iter *from) 544 { 545 struct inode *inode = file_inode(iocb->ki_filp); 546 ssize_t ret; 547 548 /* 549 * Direct IO writes are mandatory for sequential zone files so that the 550 * write IO issuing order is preserved. 551 */ 552 if (zonefs_inode_is_seq(inode)) 553 return -EIO; 554 555 if (iocb->ki_flags & IOCB_NOWAIT) { 556 if (!inode_trylock(inode)) 557 return -EAGAIN; 558 } else { 559 inode_lock(inode); 560 } 561 562 ret = zonefs_write_checks(iocb, from); 563 if (ret <= 0) 564 goto inode_unlock; 565 566 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 567 if (ret == -EIO) 568 zonefs_io_error(inode, true); 569 570 inode_unlock: 571 inode_unlock(inode); 572 if (ret > 0) 573 ret = generic_write_sync(iocb, ret); 574 575 return ret; 576 } 577 578 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 579 { 580 struct inode *inode = file_inode(iocb->ki_filp); 581 struct zonefs_zone *z = zonefs_inode_zone(inode); 582 583 if (unlikely(IS_IMMUTABLE(inode))) 584 return -EPERM; 585 586 if (sb_rdonly(inode->i_sb)) 587 return -EROFS; 588 589 /* Write operations beyond the zone capacity are not allowed */ 590 if (iocb->ki_pos >= z->z_capacity) 591 return -EFBIG; 592 593 if (iocb->ki_flags & IOCB_DIRECT) { 594 ssize_t ret = zonefs_file_dio_write(iocb, from); 595 596 if (ret != -ENOTBLK) 597 return ret; 598 } 599 600 return zonefs_file_buffered_write(iocb, from); 601 } 602 603 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 604 int error, unsigned int flags) 605 { 606 if (error) { 607 zonefs_io_error(file_inode(iocb->ki_filp), false); 608 return error; 609 } 610 611 return 0; 612 } 613 614 static const struct iomap_dio_ops zonefs_read_dio_ops = { 615 .end_io = zonefs_file_read_dio_end_io, 616 }; 617 618 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 619 { 620 struct inode *inode = file_inode(iocb->ki_filp); 621 struct zonefs_inode_info *zi = ZONEFS_I(inode); 622 struct zonefs_zone *z = zonefs_inode_zone(inode); 623 struct super_block *sb = inode->i_sb; 624 loff_t isize; 625 ssize_t ret; 626 627 /* Offline zones cannot be read */ 628 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 629 return -EPERM; 630 631 if (iocb->ki_pos >= z->z_capacity) 632 return 0; 633 634 if (iocb->ki_flags & IOCB_NOWAIT) { 635 if (!inode_trylock_shared(inode)) 636 return -EAGAIN; 637 } else { 638 inode_lock_shared(inode); 639 } 640 641 /* Limit read operations to written data */ 642 mutex_lock(&zi->i_truncate_mutex); 643 isize = i_size_read(inode); 644 if (iocb->ki_pos >= isize) { 645 mutex_unlock(&zi->i_truncate_mutex); 646 ret = 0; 647 goto inode_unlock; 648 } 649 iov_iter_truncate(to, isize - iocb->ki_pos); 650 mutex_unlock(&zi->i_truncate_mutex); 651 652 if (iocb->ki_flags & IOCB_DIRECT) { 653 size_t count = iov_iter_count(to); 654 655 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 656 ret = -EINVAL; 657 goto inode_unlock; 658 } 659 file_accessed(iocb->ki_filp); 660 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 661 &zonefs_read_dio_ops, 0, NULL, 0); 662 } else { 663 ret = generic_file_read_iter(iocb, to); 664 if (ret == -EIO) 665 zonefs_io_error(inode, false); 666 } 667 668 inode_unlock: 669 inode_unlock_shared(inode); 670 671 return ret; 672 } 673 674 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos, 675 struct pipe_inode_info *pipe, 676 size_t len, unsigned int flags) 677 { 678 struct inode *inode = file_inode(in); 679 struct zonefs_inode_info *zi = ZONEFS_I(inode); 680 struct zonefs_zone *z = zonefs_inode_zone(inode); 681 loff_t isize; 682 ssize_t ret = 0; 683 684 /* Offline zones cannot be read */ 685 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 686 return -EPERM; 687 688 if (*ppos >= z->z_capacity) 689 return 0; 690 691 inode_lock_shared(inode); 692 693 /* Limit read operations to written data */ 694 mutex_lock(&zi->i_truncate_mutex); 695 isize = i_size_read(inode); 696 if (*ppos >= isize) 697 len = 0; 698 else 699 len = min_t(loff_t, len, isize - *ppos); 700 mutex_unlock(&zi->i_truncate_mutex); 701 702 if (len > 0) { 703 ret = filemap_splice_read(in, ppos, pipe, len, flags); 704 if (ret == -EIO) 705 zonefs_io_error(inode, false); 706 } 707 708 inode_unlock_shared(inode); 709 return ret; 710 } 711 712 /* 713 * Write open accounting is done only for sequential files. 714 */ 715 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 716 struct file *file) 717 { 718 if (zonefs_inode_is_cnv(inode)) 719 return false; 720 721 if (!(file->f_mode & FMODE_WRITE)) 722 return false; 723 724 return true; 725 } 726 727 static int zonefs_seq_file_write_open(struct inode *inode) 728 { 729 struct zonefs_inode_info *zi = ZONEFS_I(inode); 730 struct zonefs_zone *z = zonefs_inode_zone(inode); 731 int ret = 0; 732 733 mutex_lock(&zi->i_truncate_mutex); 734 735 if (!zi->i_wr_refcnt) { 736 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 737 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 738 739 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 740 741 if (sbi->s_max_wro_seq_files 742 && wro > sbi->s_max_wro_seq_files) { 743 atomic_dec(&sbi->s_wro_seq_files); 744 ret = -EBUSY; 745 goto unlock; 746 } 747 748 if (i_size_read(inode) < z->z_capacity) { 749 ret = zonefs_inode_zone_mgmt(inode, 750 REQ_OP_ZONE_OPEN); 751 if (ret) { 752 atomic_dec(&sbi->s_wro_seq_files); 753 goto unlock; 754 } 755 z->z_flags |= ZONEFS_ZONE_OPEN; 756 zonefs_inode_account_active(inode); 757 } 758 } 759 } 760 761 zi->i_wr_refcnt++; 762 763 unlock: 764 mutex_unlock(&zi->i_truncate_mutex); 765 766 return ret; 767 } 768 769 static int zonefs_file_open(struct inode *inode, struct file *file) 770 { 771 int ret; 772 773 file->f_mode |= FMODE_CAN_ODIRECT; 774 ret = generic_file_open(inode, file); 775 if (ret) 776 return ret; 777 778 if (zonefs_seq_file_need_wro(inode, file)) 779 return zonefs_seq_file_write_open(inode); 780 781 return 0; 782 } 783 784 static void zonefs_seq_file_write_close(struct inode *inode) 785 { 786 struct zonefs_inode_info *zi = ZONEFS_I(inode); 787 struct zonefs_zone *z = zonefs_inode_zone(inode); 788 struct super_block *sb = inode->i_sb; 789 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 790 int ret = 0; 791 792 mutex_lock(&zi->i_truncate_mutex); 793 794 zi->i_wr_refcnt--; 795 if (zi->i_wr_refcnt) 796 goto unlock; 797 798 /* 799 * The file zone may not be open anymore (e.g. the file was truncated to 800 * its maximum size or it was fully written). For this case, we only 801 * need to decrement the write open count. 802 */ 803 if (z->z_flags & ZONEFS_ZONE_OPEN) { 804 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 805 if (ret) { 806 __zonefs_io_error(inode, false); 807 /* 808 * Leaving zones explicitly open may lead to a state 809 * where most zones cannot be written (zone resources 810 * exhausted). So take preventive action by remounting 811 * read-only. 812 */ 813 if (z->z_flags & ZONEFS_ZONE_OPEN && 814 !(sb->s_flags & SB_RDONLY)) { 815 zonefs_warn(sb, 816 "closing zone at %llu failed %d\n", 817 z->z_sector, ret); 818 zonefs_warn(sb, 819 "remounting filesystem read-only\n"); 820 sb->s_flags |= SB_RDONLY; 821 } 822 goto unlock; 823 } 824 825 z->z_flags &= ~ZONEFS_ZONE_OPEN; 826 zonefs_inode_account_active(inode); 827 } 828 829 atomic_dec(&sbi->s_wro_seq_files); 830 831 unlock: 832 mutex_unlock(&zi->i_truncate_mutex); 833 } 834 835 static int zonefs_file_release(struct inode *inode, struct file *file) 836 { 837 /* 838 * If we explicitly open a zone we must close it again as well, but the 839 * zone management operation can fail (either due to an IO error or as 840 * the zone has gone offline or read-only). Make sure we don't fail the 841 * close(2) for user-space. 842 */ 843 if (zonefs_seq_file_need_wro(inode, file)) 844 zonefs_seq_file_write_close(inode); 845 846 return 0; 847 } 848 849 const struct file_operations zonefs_file_operations = { 850 .open = zonefs_file_open, 851 .release = zonefs_file_release, 852 .fsync = zonefs_file_fsync, 853 .mmap = zonefs_file_mmap, 854 .llseek = zonefs_file_llseek, 855 .read_iter = zonefs_file_read_iter, 856 .write_iter = zonefs_file_write_iter, 857 .splice_read = zonefs_file_splice_read, 858 .splice_write = iter_file_splice_write, 859 .iopoll = iocb_bio_iopoll, 860 }; 861