xref: /linux/fs/zonefs/file.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwritten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	iomap_bio_read_folio(folio, &zonefs_read_iomap_ops);
116 	return 0;
117 }
118 
119 static void zonefs_readahead(struct readahead_control *rac)
120 {
121 	iomap_bio_readahead(rac, &zonefs_read_iomap_ops);
122 }
123 
124 /*
125  * Map blocks for page writeback. This is used only on conventional zone files,
126  * which implies that the page range can only be within the fixed inode size.
127  */
128 static ssize_t zonefs_writeback_range(struct iomap_writepage_ctx *wpc,
129 		struct folio *folio, u64 offset, unsigned len, u64 end_pos)
130 {
131 	struct zonefs_zone *z = zonefs_inode_zone(wpc->inode);
132 
133 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
134 		return -EIO;
135 	if (WARN_ON_ONCE(offset >= i_size_read(wpc->inode)))
136 		return -EIO;
137 
138 	/* If the mapping is already OK, nothing needs to be done */
139 	if (offset < wpc->iomap.offset ||
140 	    offset >= wpc->iomap.offset + wpc->iomap.length) {
141 		int error;
142 
143 		error = zonefs_write_iomap_begin(wpc->inode, offset,
144 				z->z_capacity - offset, IOMAP_WRITE,
145 				&wpc->iomap, NULL);
146 		if (error)
147 			return error;
148 	}
149 
150 	return iomap_add_to_ioend(wpc, folio, offset, end_pos, len);
151 }
152 
153 static const struct iomap_writeback_ops zonefs_writeback_ops = {
154 	.writeback_range	= zonefs_writeback_range,
155 	.writeback_submit	= iomap_ioend_writeback_submit,
156 };
157 
158 static int zonefs_writepages(struct address_space *mapping,
159 			     struct writeback_control *wbc)
160 {
161 	struct iomap_writepage_ctx wpc = {
162 		.inode		= mapping->host,
163 		.wbc		= wbc,
164 		.ops		= &zonefs_writeback_ops,
165 	};
166 
167 	return iomap_writepages(&wpc);
168 }
169 
170 static int zonefs_swap_activate(struct swap_info_struct *sis,
171 				struct file *swap_file, sector_t *span)
172 {
173 	struct inode *inode = file_inode(swap_file);
174 
175 	if (zonefs_inode_is_seq(inode)) {
176 		zonefs_err(inode->i_sb,
177 			   "swap file: not a conventional zone file\n");
178 		return -EINVAL;
179 	}
180 
181 	return iomap_swapfile_activate(sis, swap_file, span,
182 				       &zonefs_read_iomap_ops);
183 }
184 
185 const struct address_space_operations zonefs_file_aops = {
186 	.read_folio		= zonefs_read_folio,
187 	.readahead		= zonefs_readahead,
188 	.writepages		= zonefs_writepages,
189 	.dirty_folio		= iomap_dirty_folio,
190 	.release_folio		= iomap_release_folio,
191 	.invalidate_folio	= iomap_invalidate_folio,
192 	.migrate_folio		= filemap_migrate_folio,
193 	.is_partially_uptodate	= iomap_is_partially_uptodate,
194 	.error_remove_folio	= generic_error_remove_folio,
195 	.swap_activate		= zonefs_swap_activate,
196 };
197 
198 int zonefs_file_truncate(struct inode *inode, loff_t isize)
199 {
200 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
201 	struct zonefs_zone *z = zonefs_inode_zone(inode);
202 	loff_t old_isize;
203 	enum req_op op;
204 	int ret = 0;
205 
206 	/*
207 	 * Only sequential zone files can be truncated and truncation is allowed
208 	 * only down to a 0 size, which is equivalent to a zone reset, and to
209 	 * the maximum file size, which is equivalent to a zone finish.
210 	 */
211 	if (!zonefs_zone_is_seq(z))
212 		return -EPERM;
213 
214 	if (!isize)
215 		op = REQ_OP_ZONE_RESET;
216 	else if (isize == z->z_capacity)
217 		op = REQ_OP_ZONE_FINISH;
218 	else
219 		return -EPERM;
220 
221 	inode_dio_wait(inode);
222 
223 	/* Serialize against page faults */
224 	filemap_invalidate_lock(inode->i_mapping);
225 
226 	/* Serialize against zonefs_iomap_begin() */
227 	mutex_lock(&zi->i_truncate_mutex);
228 
229 	old_isize = i_size_read(inode);
230 	if (isize == old_isize)
231 		goto unlock;
232 
233 	ret = zonefs_inode_zone_mgmt(inode, op);
234 	if (ret)
235 		goto unlock;
236 
237 	/*
238 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
239 	 * take care of open zones.
240 	 */
241 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
242 		/*
243 		 * Truncating a zone to EMPTY or FULL is the equivalent of
244 		 * closing the zone. For a truncation to 0, we need to
245 		 * re-open the zone to ensure new writes can be processed.
246 		 * For a truncation to the maximum file size, the zone is
247 		 * closed and writes cannot be accepted anymore, so clear
248 		 * the open flag.
249 		 */
250 		if (!isize)
251 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
252 		else
253 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
254 	}
255 
256 	zonefs_update_stats(inode, isize);
257 	truncate_setsize(inode, isize);
258 	z->z_wpoffset = isize;
259 	zonefs_inode_account_active(inode);
260 
261 unlock:
262 	mutex_unlock(&zi->i_truncate_mutex);
263 	filemap_invalidate_unlock(inode->i_mapping);
264 
265 	return ret;
266 }
267 
268 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
269 			     int datasync)
270 {
271 	struct inode *inode = file_inode(file);
272 	int ret = 0;
273 
274 	if (unlikely(IS_IMMUTABLE(inode)))
275 		return -EPERM;
276 
277 	/*
278 	 * Since only direct writes are allowed in sequential files, page cache
279 	 * flush is needed only for conventional zone files.
280 	 */
281 	if (zonefs_inode_is_cnv(inode))
282 		ret = file_write_and_wait_range(file, start, end);
283 	if (!ret)
284 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
285 
286 	if (ret)
287 		zonefs_io_error(inode, true);
288 
289 	return ret;
290 }
291 
292 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
293 {
294 	struct inode *inode = file_inode(vmf->vma->vm_file);
295 	vm_fault_t ret;
296 
297 	if (unlikely(IS_IMMUTABLE(inode)))
298 		return VM_FAULT_SIGBUS;
299 
300 	/*
301 	 * Sanity check: only conventional zone files can have shared
302 	 * writeable mappings.
303 	 */
304 	if (zonefs_inode_is_seq(inode))
305 		return VM_FAULT_NOPAGE;
306 
307 	sb_start_pagefault(inode->i_sb);
308 	file_update_time(vmf->vma->vm_file);
309 
310 	/* Serialize against truncates */
311 	filemap_invalidate_lock_shared(inode->i_mapping);
312 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops, NULL);
313 	filemap_invalidate_unlock_shared(inode->i_mapping);
314 
315 	sb_end_pagefault(inode->i_sb);
316 	return ret;
317 }
318 
319 static const struct vm_operations_struct zonefs_file_vm_ops = {
320 	.fault		= filemap_fault,
321 	.map_pages	= filemap_map_pages,
322 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
323 };
324 
325 static int zonefs_file_mmap_prepare(struct vm_area_desc *desc)
326 {
327 	struct file *file = desc->file;
328 
329 	/*
330 	 * Conventional zones accept random writes, so their files can support
331 	 * shared writable mappings. For sequential zone files, only read
332 	 * mappings are possible since there are no guarantees for write
333 	 * ordering between msync() and page cache writeback.
334 	 */
335 	if (zonefs_inode_is_seq(file_inode(file)) &&
336 	    (desc->vm_flags & VM_SHARED) && (desc->vm_flags & VM_MAYWRITE))
337 		return -EINVAL;
338 
339 	file_accessed(file);
340 	desc->vm_ops = &zonefs_file_vm_ops;
341 
342 	return 0;
343 }
344 
345 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
346 {
347 	loff_t isize = i_size_read(file_inode(file));
348 
349 	/*
350 	 * Seeks are limited to below the zone size for conventional zones
351 	 * and below the zone write pointer for sequential zones. In both
352 	 * cases, this limit is the inode size.
353 	 */
354 	return generic_file_llseek_size(file, offset, whence, isize, isize);
355 }
356 
357 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
358 					int error, unsigned int flags)
359 {
360 	struct inode *inode = file_inode(iocb->ki_filp);
361 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
362 
363 	if (error) {
364 		/*
365 		 * For Sync IOs, error recovery is called from
366 		 * zonefs_file_dio_write().
367 		 */
368 		if (!is_sync_kiocb(iocb))
369 			zonefs_io_error(inode, true);
370 		return error;
371 	}
372 
373 	if (size && zonefs_inode_is_seq(inode)) {
374 		/*
375 		 * Note that we may be seeing completions out of order,
376 		 * but that is not a problem since a write completed
377 		 * successfully necessarily means that all preceding writes
378 		 * were also successful. So we can safely increase the inode
379 		 * size to the write end location.
380 		 */
381 		mutex_lock(&zi->i_truncate_mutex);
382 		if (i_size_read(inode) < iocb->ki_pos + size) {
383 			zonefs_update_stats(inode, iocb->ki_pos + size);
384 			zonefs_i_size_write(inode, iocb->ki_pos + size);
385 		}
386 		mutex_unlock(&zi->i_truncate_mutex);
387 	}
388 
389 	return 0;
390 }
391 
392 static const struct iomap_dio_ops zonefs_write_dio_ops = {
393 	.end_io		= zonefs_file_write_dio_end_io,
394 };
395 
396 /*
397  * Do not exceed the LFS limits nor the file zone size. If pos is under the
398  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
399  */
400 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
401 					loff_t count)
402 {
403 	struct inode *inode = file_inode(file);
404 	struct zonefs_zone *z = zonefs_inode_zone(inode);
405 	loff_t limit = rlimit(RLIMIT_FSIZE);
406 	loff_t max_size = z->z_capacity;
407 
408 	if (limit != RLIM_INFINITY) {
409 		if (pos >= limit) {
410 			send_sig(SIGXFSZ, current, 0);
411 			return -EFBIG;
412 		}
413 		count = min(count, limit - pos);
414 	}
415 
416 	if (!(file->f_flags & O_LARGEFILE))
417 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
418 
419 	if (unlikely(pos >= max_size))
420 		return -EFBIG;
421 
422 	return min(count, max_size - pos);
423 }
424 
425 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
426 {
427 	struct file *file = iocb->ki_filp;
428 	struct inode *inode = file_inode(file);
429 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
430 	struct zonefs_zone *z = zonefs_inode_zone(inode);
431 	loff_t count;
432 
433 	if (IS_SWAPFILE(inode))
434 		return -ETXTBSY;
435 
436 	if (!iov_iter_count(from))
437 		return 0;
438 
439 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
440 		return -EINVAL;
441 
442 	if (iocb->ki_flags & IOCB_APPEND) {
443 		if (zonefs_zone_is_cnv(z))
444 			return -EINVAL;
445 		mutex_lock(&zi->i_truncate_mutex);
446 		iocb->ki_pos = z->z_wpoffset;
447 		mutex_unlock(&zi->i_truncate_mutex);
448 	}
449 
450 	count = zonefs_write_check_limits(file, iocb->ki_pos,
451 					  iov_iter_count(from));
452 	if (count < 0)
453 		return count;
454 
455 	iov_iter_truncate(from, count);
456 	return iov_iter_count(from);
457 }
458 
459 /*
460  * Handle direct writes. For sequential zone files, this is the only possible
461  * write path. For these files, check that the user is issuing writes
462  * sequentially from the end of the file. This code assumes that the block layer
463  * delivers write requests to the device in sequential order. This is always the
464  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
465  * elevator feature is being used (e.g. mq-deadline). The block layer always
466  * automatically select such an elevator for zoned block devices during the
467  * device initialization.
468  */
469 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
470 {
471 	struct inode *inode = file_inode(iocb->ki_filp);
472 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
473 	struct zonefs_zone *z = zonefs_inode_zone(inode);
474 	struct super_block *sb = inode->i_sb;
475 	ssize_t ret, count;
476 
477 	/*
478 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
479 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
480 	 * on the inode lock but the second goes through but is now unaligned).
481 	 */
482 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
483 	    (iocb->ki_flags & IOCB_NOWAIT))
484 		return -EOPNOTSUPP;
485 
486 	if (iocb->ki_flags & IOCB_NOWAIT) {
487 		if (!inode_trylock(inode))
488 			return -EAGAIN;
489 	} else {
490 		inode_lock(inode);
491 	}
492 
493 	count = zonefs_write_checks(iocb, from);
494 	if (count <= 0) {
495 		ret = count;
496 		goto inode_unlock;
497 	}
498 
499 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
500 		ret = -EINVAL;
501 		goto inode_unlock;
502 	}
503 
504 	/* Enforce sequential writes (append only) in sequential zones */
505 	if (zonefs_zone_is_seq(z)) {
506 		mutex_lock(&zi->i_truncate_mutex);
507 		if (iocb->ki_pos != z->z_wpoffset) {
508 			mutex_unlock(&zi->i_truncate_mutex);
509 			ret = -EINVAL;
510 			goto inode_unlock;
511 		}
512 		/*
513 		 * Advance the zone write pointer offset. This assumes that the
514 		 * IO will succeed, which is OK to do because we do not allow
515 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
516 		 * fails, the error path will correct the write pointer offset.
517 		 */
518 		z->z_wpoffset += count;
519 		zonefs_inode_account_active(inode);
520 		mutex_unlock(&zi->i_truncate_mutex);
521 	}
522 
523 	/*
524 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
525 	 * page invalidation. Overwrite that error code with EBUSY so that
526 	 * the user can make sense of the error.
527 	 */
528 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
529 			   &zonefs_write_dio_ops, 0, NULL, 0);
530 	if (ret == -ENOTBLK)
531 		ret = -EBUSY;
532 
533 	/*
534 	 * For a failed IO or partial completion, trigger error recovery
535 	 * to update the zone write pointer offset to a correct value.
536 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
537 	 * have executed error recovery if the IO already completed when we
538 	 * reach here. However, we cannot know that and execute error recovery
539 	 * again (that will not change anything).
540 	 */
541 	if (zonefs_zone_is_seq(z)) {
542 		if (ret > 0 && ret != count)
543 			ret = -EIO;
544 		if (ret < 0 && ret != -EIOCBQUEUED)
545 			zonefs_io_error(inode, true);
546 	}
547 
548 inode_unlock:
549 	inode_unlock(inode);
550 
551 	return ret;
552 }
553 
554 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
555 					  struct iov_iter *from)
556 {
557 	struct inode *inode = file_inode(iocb->ki_filp);
558 	ssize_t ret;
559 
560 	/*
561 	 * Direct IO writes are mandatory for sequential zone files so that the
562 	 * write IO issuing order is preserved.
563 	 */
564 	if (zonefs_inode_is_seq(inode))
565 		return -EIO;
566 
567 	if (iocb->ki_flags & IOCB_NOWAIT) {
568 		if (!inode_trylock(inode))
569 			return -EAGAIN;
570 	} else {
571 		inode_lock(inode);
572 	}
573 
574 	ret = zonefs_write_checks(iocb, from);
575 	if (ret <= 0)
576 		goto inode_unlock;
577 
578 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops,
579 			NULL, NULL);
580 	if (ret == -EIO)
581 		zonefs_io_error(inode, true);
582 
583 inode_unlock:
584 	inode_unlock(inode);
585 	if (ret > 0)
586 		ret = generic_write_sync(iocb, ret);
587 
588 	return ret;
589 }
590 
591 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
592 {
593 	struct inode *inode = file_inode(iocb->ki_filp);
594 	struct zonefs_zone *z = zonefs_inode_zone(inode);
595 
596 	if (unlikely(IS_IMMUTABLE(inode)))
597 		return -EPERM;
598 
599 	if (sb_rdonly(inode->i_sb))
600 		return -EROFS;
601 
602 	/* Write operations beyond the zone capacity are not allowed */
603 	if (iocb->ki_pos >= z->z_capacity)
604 		return -EFBIG;
605 
606 	if (iocb->ki_flags & IOCB_DIRECT) {
607 		ssize_t ret = zonefs_file_dio_write(iocb, from);
608 
609 		if (ret != -ENOTBLK)
610 			return ret;
611 	}
612 
613 	return zonefs_file_buffered_write(iocb, from);
614 }
615 
616 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
617 				       int error, unsigned int flags)
618 {
619 	if (error) {
620 		zonefs_io_error(file_inode(iocb->ki_filp), false);
621 		return error;
622 	}
623 
624 	return 0;
625 }
626 
627 static const struct iomap_dio_ops zonefs_read_dio_ops = {
628 	.end_io			= zonefs_file_read_dio_end_io,
629 };
630 
631 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
632 {
633 	struct inode *inode = file_inode(iocb->ki_filp);
634 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
635 	struct zonefs_zone *z = zonefs_inode_zone(inode);
636 	struct super_block *sb = inode->i_sb;
637 	loff_t isize;
638 	ssize_t ret;
639 
640 	/* Offline zones cannot be read */
641 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
642 		return -EPERM;
643 
644 	if (iocb->ki_pos >= z->z_capacity)
645 		return 0;
646 
647 	if (iocb->ki_flags & IOCB_NOWAIT) {
648 		if (!inode_trylock_shared(inode))
649 			return -EAGAIN;
650 	} else {
651 		inode_lock_shared(inode);
652 	}
653 
654 	/* Limit read operations to written data */
655 	mutex_lock(&zi->i_truncate_mutex);
656 	isize = i_size_read(inode);
657 	if (iocb->ki_pos >= isize) {
658 		mutex_unlock(&zi->i_truncate_mutex);
659 		ret = 0;
660 		goto inode_unlock;
661 	}
662 	iov_iter_truncate(to, isize - iocb->ki_pos);
663 	mutex_unlock(&zi->i_truncate_mutex);
664 
665 	if (iocb->ki_flags & IOCB_DIRECT) {
666 		size_t count = iov_iter_count(to);
667 
668 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
669 			ret = -EINVAL;
670 			goto inode_unlock;
671 		}
672 		file_accessed(iocb->ki_filp);
673 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
674 				   &zonefs_read_dio_ops, 0, NULL, 0);
675 	} else {
676 		ret = generic_file_read_iter(iocb, to);
677 		if (ret == -EIO)
678 			zonefs_io_error(inode, false);
679 	}
680 
681 inode_unlock:
682 	inode_unlock_shared(inode);
683 
684 	return ret;
685 }
686 
687 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
688 				       struct pipe_inode_info *pipe,
689 				       size_t len, unsigned int flags)
690 {
691 	struct inode *inode = file_inode(in);
692 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
693 	struct zonefs_zone *z = zonefs_inode_zone(inode);
694 	loff_t isize;
695 	ssize_t ret = 0;
696 
697 	/* Offline zones cannot be read */
698 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
699 		return -EPERM;
700 
701 	if (*ppos >= z->z_capacity)
702 		return 0;
703 
704 	inode_lock_shared(inode);
705 
706 	/* Limit read operations to written data */
707 	mutex_lock(&zi->i_truncate_mutex);
708 	isize = i_size_read(inode);
709 	if (*ppos >= isize)
710 		len = 0;
711 	else
712 		len = min_t(loff_t, len, isize - *ppos);
713 	mutex_unlock(&zi->i_truncate_mutex);
714 
715 	if (len > 0) {
716 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
717 		if (ret == -EIO)
718 			zonefs_io_error(inode, false);
719 	}
720 
721 	inode_unlock_shared(inode);
722 	return ret;
723 }
724 
725 /*
726  * Write open accounting is done only for sequential files.
727  */
728 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
729 					    struct file *file)
730 {
731 	if (zonefs_inode_is_cnv(inode))
732 		return false;
733 
734 	if (!(file->f_mode & FMODE_WRITE))
735 		return false;
736 
737 	return true;
738 }
739 
740 static int zonefs_seq_file_write_open(struct inode *inode)
741 {
742 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
743 	struct zonefs_zone *z = zonefs_inode_zone(inode);
744 	int ret = 0;
745 
746 	mutex_lock(&zi->i_truncate_mutex);
747 
748 	if (!zi->i_wr_refcnt) {
749 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
750 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
751 
752 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
753 
754 			if (sbi->s_max_wro_seq_files
755 			    && wro > sbi->s_max_wro_seq_files) {
756 				atomic_dec(&sbi->s_wro_seq_files);
757 				ret = -EBUSY;
758 				goto unlock;
759 			}
760 
761 			if (i_size_read(inode) < z->z_capacity) {
762 				ret = zonefs_inode_zone_mgmt(inode,
763 							     REQ_OP_ZONE_OPEN);
764 				if (ret) {
765 					atomic_dec(&sbi->s_wro_seq_files);
766 					goto unlock;
767 				}
768 				z->z_flags |= ZONEFS_ZONE_OPEN;
769 				zonefs_inode_account_active(inode);
770 			}
771 		}
772 	}
773 
774 	zi->i_wr_refcnt++;
775 
776 unlock:
777 	mutex_unlock(&zi->i_truncate_mutex);
778 
779 	return ret;
780 }
781 
782 static int zonefs_file_open(struct inode *inode, struct file *file)
783 {
784 	int ret;
785 
786 	file->f_mode |= FMODE_CAN_ODIRECT;
787 	ret = generic_file_open(inode, file);
788 	if (ret)
789 		return ret;
790 
791 	if (zonefs_seq_file_need_wro(inode, file))
792 		return zonefs_seq_file_write_open(inode);
793 
794 	return 0;
795 }
796 
797 static void zonefs_seq_file_write_close(struct inode *inode)
798 {
799 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
800 	struct zonefs_zone *z = zonefs_inode_zone(inode);
801 	struct super_block *sb = inode->i_sb;
802 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
803 	int ret = 0;
804 
805 	mutex_lock(&zi->i_truncate_mutex);
806 
807 	zi->i_wr_refcnt--;
808 	if (zi->i_wr_refcnt)
809 		goto unlock;
810 
811 	/*
812 	 * The file zone may not be open anymore (e.g. the file was truncated to
813 	 * its maximum size or it was fully written). For this case, we only
814 	 * need to decrement the write open count.
815 	 */
816 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
817 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
818 		if (ret) {
819 			__zonefs_io_error(inode, false);
820 			/*
821 			 * Leaving zones explicitly open may lead to a state
822 			 * where most zones cannot be written (zone resources
823 			 * exhausted). So take preventive action by remounting
824 			 * read-only.
825 			 */
826 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
827 			    !(sb->s_flags & SB_RDONLY)) {
828 				zonefs_warn(sb,
829 					"closing zone at %llu failed %d\n",
830 					z->z_sector, ret);
831 				zonefs_warn(sb,
832 					"remounting filesystem read-only\n");
833 				sb->s_flags |= SB_RDONLY;
834 			}
835 			goto unlock;
836 		}
837 
838 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
839 		zonefs_inode_account_active(inode);
840 	}
841 
842 	atomic_dec(&sbi->s_wro_seq_files);
843 
844 unlock:
845 	mutex_unlock(&zi->i_truncate_mutex);
846 }
847 
848 static int zonefs_file_release(struct inode *inode, struct file *file)
849 {
850 	/*
851 	 * If we explicitly open a zone we must close it again as well, but the
852 	 * zone management operation can fail (either due to an IO error or as
853 	 * the zone has gone offline or read-only). Make sure we don't fail the
854 	 * close(2) for user-space.
855 	 */
856 	if (zonefs_seq_file_need_wro(inode, file))
857 		zonefs_seq_file_write_close(inode);
858 
859 	return 0;
860 }
861 
862 const struct file_operations zonefs_file_operations = {
863 	.open		= zonefs_file_open,
864 	.release	= zonefs_file_release,
865 	.fsync		= zonefs_file_fsync,
866 	.mmap_prepare	= zonefs_file_mmap_prepare,
867 	.llseek		= zonefs_file_llseek,
868 	.read_iter	= zonefs_file_read_iter,
869 	.write_iter	= zonefs_file_write_iter,
870 	.splice_read	= zonefs_file_splice_read,
871 	.splice_write	= iter_file_splice_write,
872 	.iopoll		= iocb_bio_iopoll,
873 };
874