xref: /linux/fs/zonefs/file.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset,
129 				   unsigned int len)
130 {
131 	struct zonefs_zone *z = zonefs_inode_zone(inode);
132 
133 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
134 		return -EIO;
135 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
136 		return -EIO;
137 
138 	/* If the mapping is already OK, nothing needs to be done */
139 	if (offset >= wpc->iomap.offset &&
140 	    offset < wpc->iomap.offset + wpc->iomap.length)
141 		return 0;
142 
143 	return zonefs_write_iomap_begin(inode, offset,
144 					z->z_capacity - offset,
145 					IOMAP_WRITE, &wpc->iomap, NULL);
146 }
147 
148 static const struct iomap_writeback_ops zonefs_writeback_ops = {
149 	.map_blocks		= zonefs_write_map_blocks,
150 };
151 
152 static int zonefs_writepages(struct address_space *mapping,
153 			     struct writeback_control *wbc)
154 {
155 	struct iomap_writepage_ctx wpc = { };
156 
157 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
158 }
159 
160 static int zonefs_swap_activate(struct swap_info_struct *sis,
161 				struct file *swap_file, sector_t *span)
162 {
163 	struct inode *inode = file_inode(swap_file);
164 
165 	if (zonefs_inode_is_seq(inode)) {
166 		zonefs_err(inode->i_sb,
167 			   "swap file: not a conventional zone file\n");
168 		return -EINVAL;
169 	}
170 
171 	return iomap_swapfile_activate(sis, swap_file, span,
172 				       &zonefs_read_iomap_ops);
173 }
174 
175 const struct address_space_operations zonefs_file_aops = {
176 	.read_folio		= zonefs_read_folio,
177 	.readahead		= zonefs_readahead,
178 	.writepages		= zonefs_writepages,
179 	.dirty_folio		= iomap_dirty_folio,
180 	.release_folio		= iomap_release_folio,
181 	.invalidate_folio	= iomap_invalidate_folio,
182 	.migrate_folio		= filemap_migrate_folio,
183 	.is_partially_uptodate	= iomap_is_partially_uptodate,
184 	.error_remove_folio	= generic_error_remove_folio,
185 	.swap_activate		= zonefs_swap_activate,
186 };
187 
188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 	struct zonefs_zone *z = zonefs_inode_zone(inode);
192 	loff_t old_isize;
193 	enum req_op op;
194 	int ret = 0;
195 
196 	/*
197 	 * Only sequential zone files can be truncated and truncation is allowed
198 	 * only down to a 0 size, which is equivalent to a zone reset, and to
199 	 * the maximum file size, which is equivalent to a zone finish.
200 	 */
201 	if (!zonefs_zone_is_seq(z))
202 		return -EPERM;
203 
204 	if (!isize)
205 		op = REQ_OP_ZONE_RESET;
206 	else if (isize == z->z_capacity)
207 		op = REQ_OP_ZONE_FINISH;
208 	else
209 		return -EPERM;
210 
211 	inode_dio_wait(inode);
212 
213 	/* Serialize against page faults */
214 	filemap_invalidate_lock(inode->i_mapping);
215 
216 	/* Serialize against zonefs_iomap_begin() */
217 	mutex_lock(&zi->i_truncate_mutex);
218 
219 	old_isize = i_size_read(inode);
220 	if (isize == old_isize)
221 		goto unlock;
222 
223 	ret = zonefs_inode_zone_mgmt(inode, op);
224 	if (ret)
225 		goto unlock;
226 
227 	/*
228 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 	 * take care of open zones.
230 	 */
231 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 		/*
233 		 * Truncating a zone to EMPTY or FULL is the equivalent of
234 		 * closing the zone. For a truncation to 0, we need to
235 		 * re-open the zone to ensure new writes can be processed.
236 		 * For a truncation to the maximum file size, the zone is
237 		 * closed and writes cannot be accepted anymore, so clear
238 		 * the open flag.
239 		 */
240 		if (!isize)
241 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 		else
243 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 	}
245 
246 	zonefs_update_stats(inode, isize);
247 	truncate_setsize(inode, isize);
248 	z->z_wpoffset = isize;
249 	zonefs_inode_account_active(inode);
250 
251 unlock:
252 	mutex_unlock(&zi->i_truncate_mutex);
253 	filemap_invalidate_unlock(inode->i_mapping);
254 
255 	return ret;
256 }
257 
258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 			     int datasync)
260 {
261 	struct inode *inode = file_inode(file);
262 	int ret = 0;
263 
264 	if (unlikely(IS_IMMUTABLE(inode)))
265 		return -EPERM;
266 
267 	/*
268 	 * Since only direct writes are allowed in sequential files, page cache
269 	 * flush is needed only for conventional zone files.
270 	 */
271 	if (zonefs_inode_is_cnv(inode))
272 		ret = file_write_and_wait_range(file, start, end);
273 	if (!ret)
274 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275 
276 	if (ret)
277 		zonefs_io_error(inode, true);
278 
279 	return ret;
280 }
281 
282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 	struct inode *inode = file_inode(vmf->vma->vm_file);
285 	vm_fault_t ret;
286 
287 	if (unlikely(IS_IMMUTABLE(inode)))
288 		return VM_FAULT_SIGBUS;
289 
290 	/*
291 	 * Sanity check: only conventional zone files can have shared
292 	 * writeable mappings.
293 	 */
294 	if (zonefs_inode_is_seq(inode))
295 		return VM_FAULT_NOPAGE;
296 
297 	sb_start_pagefault(inode->i_sb);
298 	file_update_time(vmf->vma->vm_file);
299 
300 	/* Serialize against truncates */
301 	filemap_invalidate_lock_shared(inode->i_mapping);
302 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303 	filemap_invalidate_unlock_shared(inode->i_mapping);
304 
305 	sb_end_pagefault(inode->i_sb);
306 	return ret;
307 }
308 
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 	.fault		= filemap_fault,
311 	.map_pages	= filemap_map_pages,
312 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313 };
314 
315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316 {
317 	/*
318 	 * Conventional zones accept random writes, so their files can support
319 	 * shared writable mappings. For sequential zone files, only read
320 	 * mappings are possible since there are no guarantees for write
321 	 * ordering between msync() and page cache writeback.
322 	 */
323 	if (zonefs_inode_is_seq(file_inode(file)) &&
324 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325 		return -EINVAL;
326 
327 	file_accessed(file);
328 	vma->vm_ops = &zonefs_file_vm_ops;
329 
330 	return 0;
331 }
332 
333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334 {
335 	loff_t isize = i_size_read(file_inode(file));
336 
337 	/*
338 	 * Seeks are limited to below the zone size for conventional zones
339 	 * and below the zone write pointer for sequential zones. In both
340 	 * cases, this limit is the inode size.
341 	 */
342 	return generic_file_llseek_size(file, offset, whence, isize, isize);
343 }
344 
345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346 					int error, unsigned int flags)
347 {
348 	struct inode *inode = file_inode(iocb->ki_filp);
349 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
350 
351 	if (error) {
352 		/*
353 		 * For Sync IOs, error recovery is called from
354 		 * zonefs_file_dio_write().
355 		 */
356 		if (!is_sync_kiocb(iocb))
357 			zonefs_io_error(inode, true);
358 		return error;
359 	}
360 
361 	if (size && zonefs_inode_is_seq(inode)) {
362 		/*
363 		 * Note that we may be seeing completions out of order,
364 		 * but that is not a problem since a write completed
365 		 * successfully necessarily means that all preceding writes
366 		 * were also successful. So we can safely increase the inode
367 		 * size to the write end location.
368 		 */
369 		mutex_lock(&zi->i_truncate_mutex);
370 		if (i_size_read(inode) < iocb->ki_pos + size) {
371 			zonefs_update_stats(inode, iocb->ki_pos + size);
372 			zonefs_i_size_write(inode, iocb->ki_pos + size);
373 		}
374 		mutex_unlock(&zi->i_truncate_mutex);
375 	}
376 
377 	return 0;
378 }
379 
380 static const struct iomap_dio_ops zonefs_write_dio_ops = {
381 	.end_io		= zonefs_file_write_dio_end_io,
382 };
383 
384 /*
385  * Do not exceed the LFS limits nor the file zone size. If pos is under the
386  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
387  */
388 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
389 					loff_t count)
390 {
391 	struct inode *inode = file_inode(file);
392 	struct zonefs_zone *z = zonefs_inode_zone(inode);
393 	loff_t limit = rlimit(RLIMIT_FSIZE);
394 	loff_t max_size = z->z_capacity;
395 
396 	if (limit != RLIM_INFINITY) {
397 		if (pos >= limit) {
398 			send_sig(SIGXFSZ, current, 0);
399 			return -EFBIG;
400 		}
401 		count = min(count, limit - pos);
402 	}
403 
404 	if (!(file->f_flags & O_LARGEFILE))
405 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
406 
407 	if (unlikely(pos >= max_size))
408 		return -EFBIG;
409 
410 	return min(count, max_size - pos);
411 }
412 
413 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
414 {
415 	struct file *file = iocb->ki_filp;
416 	struct inode *inode = file_inode(file);
417 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
418 	struct zonefs_zone *z = zonefs_inode_zone(inode);
419 	loff_t count;
420 
421 	if (IS_SWAPFILE(inode))
422 		return -ETXTBSY;
423 
424 	if (!iov_iter_count(from))
425 		return 0;
426 
427 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
428 		return -EINVAL;
429 
430 	if (iocb->ki_flags & IOCB_APPEND) {
431 		if (zonefs_zone_is_cnv(z))
432 			return -EINVAL;
433 		mutex_lock(&zi->i_truncate_mutex);
434 		iocb->ki_pos = z->z_wpoffset;
435 		mutex_unlock(&zi->i_truncate_mutex);
436 	}
437 
438 	count = zonefs_write_check_limits(file, iocb->ki_pos,
439 					  iov_iter_count(from));
440 	if (count < 0)
441 		return count;
442 
443 	iov_iter_truncate(from, count);
444 	return iov_iter_count(from);
445 }
446 
447 /*
448  * Handle direct writes. For sequential zone files, this is the only possible
449  * write path. For these files, check that the user is issuing writes
450  * sequentially from the end of the file. This code assumes that the block layer
451  * delivers write requests to the device in sequential order. This is always the
452  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
453  * elevator feature is being used (e.g. mq-deadline). The block layer always
454  * automatically select such an elevator for zoned block devices during the
455  * device initialization.
456  */
457 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
458 {
459 	struct inode *inode = file_inode(iocb->ki_filp);
460 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
461 	struct zonefs_zone *z = zonefs_inode_zone(inode);
462 	struct super_block *sb = inode->i_sb;
463 	ssize_t ret, count;
464 
465 	/*
466 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
467 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
468 	 * on the inode lock but the second goes through but is now unaligned).
469 	 */
470 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
471 	    (iocb->ki_flags & IOCB_NOWAIT))
472 		return -EOPNOTSUPP;
473 
474 	if (iocb->ki_flags & IOCB_NOWAIT) {
475 		if (!inode_trylock(inode))
476 			return -EAGAIN;
477 	} else {
478 		inode_lock(inode);
479 	}
480 
481 	count = zonefs_write_checks(iocb, from);
482 	if (count <= 0) {
483 		ret = count;
484 		goto inode_unlock;
485 	}
486 
487 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
488 		ret = -EINVAL;
489 		goto inode_unlock;
490 	}
491 
492 	/* Enforce sequential writes (append only) in sequential zones */
493 	if (zonefs_zone_is_seq(z)) {
494 		mutex_lock(&zi->i_truncate_mutex);
495 		if (iocb->ki_pos != z->z_wpoffset) {
496 			mutex_unlock(&zi->i_truncate_mutex);
497 			ret = -EINVAL;
498 			goto inode_unlock;
499 		}
500 		/*
501 		 * Advance the zone write pointer offset. This assumes that the
502 		 * IO will succeed, which is OK to do because we do not allow
503 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
504 		 * fails, the error path will correct the write pointer offset.
505 		 */
506 		z->z_wpoffset += count;
507 		zonefs_inode_account_active(inode);
508 		mutex_unlock(&zi->i_truncate_mutex);
509 	}
510 
511 	/*
512 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
513 	 * page invalidation. Overwrite that error code with EBUSY so that
514 	 * the user can make sense of the error.
515 	 */
516 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
517 			   &zonefs_write_dio_ops, 0, NULL, 0);
518 	if (ret == -ENOTBLK)
519 		ret = -EBUSY;
520 
521 	/*
522 	 * For a failed IO or partial completion, trigger error recovery
523 	 * to update the zone write pointer offset to a correct value.
524 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
525 	 * have executed error recovery if the IO already completed when we
526 	 * reach here. However, we cannot know that and execute error recovery
527 	 * again (that will not change anything).
528 	 */
529 	if (zonefs_zone_is_seq(z)) {
530 		if (ret > 0 && ret != count)
531 			ret = -EIO;
532 		if (ret < 0 && ret != -EIOCBQUEUED)
533 			zonefs_io_error(inode, true);
534 	}
535 
536 inode_unlock:
537 	inode_unlock(inode);
538 
539 	return ret;
540 }
541 
542 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
543 					  struct iov_iter *from)
544 {
545 	struct inode *inode = file_inode(iocb->ki_filp);
546 	ssize_t ret;
547 
548 	/*
549 	 * Direct IO writes are mandatory for sequential zone files so that the
550 	 * write IO issuing order is preserved.
551 	 */
552 	if (zonefs_inode_is_seq(inode))
553 		return -EIO;
554 
555 	if (iocb->ki_flags & IOCB_NOWAIT) {
556 		if (!inode_trylock(inode))
557 			return -EAGAIN;
558 	} else {
559 		inode_lock(inode);
560 	}
561 
562 	ret = zonefs_write_checks(iocb, from);
563 	if (ret <= 0)
564 		goto inode_unlock;
565 
566 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
567 	if (ret == -EIO)
568 		zonefs_io_error(inode, true);
569 
570 inode_unlock:
571 	inode_unlock(inode);
572 	if (ret > 0)
573 		ret = generic_write_sync(iocb, ret);
574 
575 	return ret;
576 }
577 
578 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
579 {
580 	struct inode *inode = file_inode(iocb->ki_filp);
581 	struct zonefs_zone *z = zonefs_inode_zone(inode);
582 
583 	if (unlikely(IS_IMMUTABLE(inode)))
584 		return -EPERM;
585 
586 	if (sb_rdonly(inode->i_sb))
587 		return -EROFS;
588 
589 	/* Write operations beyond the zone capacity are not allowed */
590 	if (iocb->ki_pos >= z->z_capacity)
591 		return -EFBIG;
592 
593 	if (iocb->ki_flags & IOCB_DIRECT) {
594 		ssize_t ret = zonefs_file_dio_write(iocb, from);
595 
596 		if (ret != -ENOTBLK)
597 			return ret;
598 	}
599 
600 	return zonefs_file_buffered_write(iocb, from);
601 }
602 
603 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
604 				       int error, unsigned int flags)
605 {
606 	if (error) {
607 		zonefs_io_error(file_inode(iocb->ki_filp), false);
608 		return error;
609 	}
610 
611 	return 0;
612 }
613 
614 static const struct iomap_dio_ops zonefs_read_dio_ops = {
615 	.end_io			= zonefs_file_read_dio_end_io,
616 };
617 
618 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
619 {
620 	struct inode *inode = file_inode(iocb->ki_filp);
621 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
622 	struct zonefs_zone *z = zonefs_inode_zone(inode);
623 	struct super_block *sb = inode->i_sb;
624 	loff_t isize;
625 	ssize_t ret;
626 
627 	/* Offline zones cannot be read */
628 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
629 		return -EPERM;
630 
631 	if (iocb->ki_pos >= z->z_capacity)
632 		return 0;
633 
634 	if (iocb->ki_flags & IOCB_NOWAIT) {
635 		if (!inode_trylock_shared(inode))
636 			return -EAGAIN;
637 	} else {
638 		inode_lock_shared(inode);
639 	}
640 
641 	/* Limit read operations to written data */
642 	mutex_lock(&zi->i_truncate_mutex);
643 	isize = i_size_read(inode);
644 	if (iocb->ki_pos >= isize) {
645 		mutex_unlock(&zi->i_truncate_mutex);
646 		ret = 0;
647 		goto inode_unlock;
648 	}
649 	iov_iter_truncate(to, isize - iocb->ki_pos);
650 	mutex_unlock(&zi->i_truncate_mutex);
651 
652 	if (iocb->ki_flags & IOCB_DIRECT) {
653 		size_t count = iov_iter_count(to);
654 
655 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
656 			ret = -EINVAL;
657 			goto inode_unlock;
658 		}
659 		file_accessed(iocb->ki_filp);
660 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
661 				   &zonefs_read_dio_ops, 0, NULL, 0);
662 	} else {
663 		ret = generic_file_read_iter(iocb, to);
664 		if (ret == -EIO)
665 			zonefs_io_error(inode, false);
666 	}
667 
668 inode_unlock:
669 	inode_unlock_shared(inode);
670 
671 	return ret;
672 }
673 
674 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
675 				       struct pipe_inode_info *pipe,
676 				       size_t len, unsigned int flags)
677 {
678 	struct inode *inode = file_inode(in);
679 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
680 	struct zonefs_zone *z = zonefs_inode_zone(inode);
681 	loff_t isize;
682 	ssize_t ret = 0;
683 
684 	/* Offline zones cannot be read */
685 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
686 		return -EPERM;
687 
688 	if (*ppos >= z->z_capacity)
689 		return 0;
690 
691 	inode_lock_shared(inode);
692 
693 	/* Limit read operations to written data */
694 	mutex_lock(&zi->i_truncate_mutex);
695 	isize = i_size_read(inode);
696 	if (*ppos >= isize)
697 		len = 0;
698 	else
699 		len = min_t(loff_t, len, isize - *ppos);
700 	mutex_unlock(&zi->i_truncate_mutex);
701 
702 	if (len > 0) {
703 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
704 		if (ret == -EIO)
705 			zonefs_io_error(inode, false);
706 	}
707 
708 	inode_unlock_shared(inode);
709 	return ret;
710 }
711 
712 /*
713  * Write open accounting is done only for sequential files.
714  */
715 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
716 					    struct file *file)
717 {
718 	if (zonefs_inode_is_cnv(inode))
719 		return false;
720 
721 	if (!(file->f_mode & FMODE_WRITE))
722 		return false;
723 
724 	return true;
725 }
726 
727 static int zonefs_seq_file_write_open(struct inode *inode)
728 {
729 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
730 	struct zonefs_zone *z = zonefs_inode_zone(inode);
731 	int ret = 0;
732 
733 	mutex_lock(&zi->i_truncate_mutex);
734 
735 	if (!zi->i_wr_refcnt) {
736 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
737 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
738 
739 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
740 
741 			if (sbi->s_max_wro_seq_files
742 			    && wro > sbi->s_max_wro_seq_files) {
743 				atomic_dec(&sbi->s_wro_seq_files);
744 				ret = -EBUSY;
745 				goto unlock;
746 			}
747 
748 			if (i_size_read(inode) < z->z_capacity) {
749 				ret = zonefs_inode_zone_mgmt(inode,
750 							     REQ_OP_ZONE_OPEN);
751 				if (ret) {
752 					atomic_dec(&sbi->s_wro_seq_files);
753 					goto unlock;
754 				}
755 				z->z_flags |= ZONEFS_ZONE_OPEN;
756 				zonefs_inode_account_active(inode);
757 			}
758 		}
759 	}
760 
761 	zi->i_wr_refcnt++;
762 
763 unlock:
764 	mutex_unlock(&zi->i_truncate_mutex);
765 
766 	return ret;
767 }
768 
769 static int zonefs_file_open(struct inode *inode, struct file *file)
770 {
771 	int ret;
772 
773 	file->f_mode |= FMODE_CAN_ODIRECT;
774 	ret = generic_file_open(inode, file);
775 	if (ret)
776 		return ret;
777 
778 	if (zonefs_seq_file_need_wro(inode, file))
779 		return zonefs_seq_file_write_open(inode);
780 
781 	return 0;
782 }
783 
784 static void zonefs_seq_file_write_close(struct inode *inode)
785 {
786 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
787 	struct zonefs_zone *z = zonefs_inode_zone(inode);
788 	struct super_block *sb = inode->i_sb;
789 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
790 	int ret = 0;
791 
792 	mutex_lock(&zi->i_truncate_mutex);
793 
794 	zi->i_wr_refcnt--;
795 	if (zi->i_wr_refcnt)
796 		goto unlock;
797 
798 	/*
799 	 * The file zone may not be open anymore (e.g. the file was truncated to
800 	 * its maximum size or it was fully written). For this case, we only
801 	 * need to decrement the write open count.
802 	 */
803 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
804 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
805 		if (ret) {
806 			__zonefs_io_error(inode, false);
807 			/*
808 			 * Leaving zones explicitly open may lead to a state
809 			 * where most zones cannot be written (zone resources
810 			 * exhausted). So take preventive action by remounting
811 			 * read-only.
812 			 */
813 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
814 			    !(sb->s_flags & SB_RDONLY)) {
815 				zonefs_warn(sb,
816 					"closing zone at %llu failed %d\n",
817 					z->z_sector, ret);
818 				zonefs_warn(sb,
819 					"remounting filesystem read-only\n");
820 				sb->s_flags |= SB_RDONLY;
821 			}
822 			goto unlock;
823 		}
824 
825 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
826 		zonefs_inode_account_active(inode);
827 	}
828 
829 	atomic_dec(&sbi->s_wro_seq_files);
830 
831 unlock:
832 	mutex_unlock(&zi->i_truncate_mutex);
833 }
834 
835 static int zonefs_file_release(struct inode *inode, struct file *file)
836 {
837 	/*
838 	 * If we explicitly open a zone we must close it again as well, but the
839 	 * zone management operation can fail (either due to an IO error or as
840 	 * the zone has gone offline or read-only). Make sure we don't fail the
841 	 * close(2) for user-space.
842 	 */
843 	if (zonefs_seq_file_need_wro(inode, file))
844 		zonefs_seq_file_write_close(inode);
845 
846 	return 0;
847 }
848 
849 const struct file_operations zonefs_file_operations = {
850 	.open		= zonefs_file_open,
851 	.release	= zonefs_file_release,
852 	.fsync		= zonefs_file_fsync,
853 	.mmap		= zonefs_file_mmap,
854 	.llseek		= zonefs_file_llseek,
855 	.read_iter	= zonefs_file_read_iter,
856 	.write_iter	= zonefs_file_write_iter,
857 	.splice_read	= zonefs_file_splice_read,
858 	.splice_write	= iter_file_splice_write,
859 	.iopoll		= iocb_bio_iopoll,
860 };
861