xref: /linux/fs/zonefs/file.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= iomap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_folio	= generic_error_remove_folio,
184 	.swap_activate		= zonefs_swap_activate,
185 };
186 
187 int zonefs_file_truncate(struct inode *inode, loff_t isize)
188 {
189 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
190 	struct zonefs_zone *z = zonefs_inode_zone(inode);
191 	loff_t old_isize;
192 	enum req_op op;
193 	int ret = 0;
194 
195 	/*
196 	 * Only sequential zone files can be truncated and truncation is allowed
197 	 * only down to a 0 size, which is equivalent to a zone reset, and to
198 	 * the maximum file size, which is equivalent to a zone finish.
199 	 */
200 	if (!zonefs_zone_is_seq(z))
201 		return -EPERM;
202 
203 	if (!isize)
204 		op = REQ_OP_ZONE_RESET;
205 	else if (isize == z->z_capacity)
206 		op = REQ_OP_ZONE_FINISH;
207 	else
208 		return -EPERM;
209 
210 	inode_dio_wait(inode);
211 
212 	/* Serialize against page faults */
213 	filemap_invalidate_lock(inode->i_mapping);
214 
215 	/* Serialize against zonefs_iomap_begin() */
216 	mutex_lock(&zi->i_truncate_mutex);
217 
218 	old_isize = i_size_read(inode);
219 	if (isize == old_isize)
220 		goto unlock;
221 
222 	ret = zonefs_inode_zone_mgmt(inode, op);
223 	if (ret)
224 		goto unlock;
225 
226 	/*
227 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
228 	 * take care of open zones.
229 	 */
230 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
231 		/*
232 		 * Truncating a zone to EMPTY or FULL is the equivalent of
233 		 * closing the zone. For a truncation to 0, we need to
234 		 * re-open the zone to ensure new writes can be processed.
235 		 * For a truncation to the maximum file size, the zone is
236 		 * closed and writes cannot be accepted anymore, so clear
237 		 * the open flag.
238 		 */
239 		if (!isize)
240 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
241 		else
242 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
243 	}
244 
245 	zonefs_update_stats(inode, isize);
246 	truncate_setsize(inode, isize);
247 	z->z_wpoffset = isize;
248 	zonefs_inode_account_active(inode);
249 
250 unlock:
251 	mutex_unlock(&zi->i_truncate_mutex);
252 	filemap_invalidate_unlock(inode->i_mapping);
253 
254 	return ret;
255 }
256 
257 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
258 			     int datasync)
259 {
260 	struct inode *inode = file_inode(file);
261 	int ret = 0;
262 
263 	if (unlikely(IS_IMMUTABLE(inode)))
264 		return -EPERM;
265 
266 	/*
267 	 * Since only direct writes are allowed in sequential files, page cache
268 	 * flush is needed only for conventional zone files.
269 	 */
270 	if (zonefs_inode_is_cnv(inode))
271 		ret = file_write_and_wait_range(file, start, end);
272 	if (!ret)
273 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
274 
275 	if (ret)
276 		zonefs_io_error(inode, true);
277 
278 	return ret;
279 }
280 
281 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
282 {
283 	struct inode *inode = file_inode(vmf->vma->vm_file);
284 	vm_fault_t ret;
285 
286 	if (unlikely(IS_IMMUTABLE(inode)))
287 		return VM_FAULT_SIGBUS;
288 
289 	/*
290 	 * Sanity check: only conventional zone files can have shared
291 	 * writeable mappings.
292 	 */
293 	if (zonefs_inode_is_seq(inode))
294 		return VM_FAULT_NOPAGE;
295 
296 	sb_start_pagefault(inode->i_sb);
297 	file_update_time(vmf->vma->vm_file);
298 
299 	/* Serialize against truncates */
300 	filemap_invalidate_lock_shared(inode->i_mapping);
301 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
302 	filemap_invalidate_unlock_shared(inode->i_mapping);
303 
304 	sb_end_pagefault(inode->i_sb);
305 	return ret;
306 }
307 
308 static const struct vm_operations_struct zonefs_file_vm_ops = {
309 	.fault		= filemap_fault,
310 	.map_pages	= filemap_map_pages,
311 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
312 };
313 
314 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
315 {
316 	/*
317 	 * Conventional zones accept random writes, so their files can support
318 	 * shared writable mappings. For sequential zone files, only read
319 	 * mappings are possible since there are no guarantees for write
320 	 * ordering between msync() and page cache writeback.
321 	 */
322 	if (zonefs_inode_is_seq(file_inode(file)) &&
323 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
324 		return -EINVAL;
325 
326 	file_accessed(file);
327 	vma->vm_ops = &zonefs_file_vm_ops;
328 
329 	return 0;
330 }
331 
332 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
333 {
334 	loff_t isize = i_size_read(file_inode(file));
335 
336 	/*
337 	 * Seeks are limited to below the zone size for conventional zones
338 	 * and below the zone write pointer for sequential zones. In both
339 	 * cases, this limit is the inode size.
340 	 */
341 	return generic_file_llseek_size(file, offset, whence, isize, isize);
342 }
343 
344 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
345 					int error, unsigned int flags)
346 {
347 	struct inode *inode = file_inode(iocb->ki_filp);
348 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
349 
350 	if (error) {
351 		/*
352 		 * For Sync IOs, error recovery is called from
353 		 * zonefs_file_dio_write().
354 		 */
355 		if (!is_sync_kiocb(iocb))
356 			zonefs_io_error(inode, true);
357 		return error;
358 	}
359 
360 	if (size && zonefs_inode_is_seq(inode)) {
361 		/*
362 		 * Note that we may be seeing completions out of order,
363 		 * but that is not a problem since a write completed
364 		 * successfully necessarily means that all preceding writes
365 		 * were also successful. So we can safely increase the inode
366 		 * size to the write end location.
367 		 */
368 		mutex_lock(&zi->i_truncate_mutex);
369 		if (i_size_read(inode) < iocb->ki_pos + size) {
370 			zonefs_update_stats(inode, iocb->ki_pos + size);
371 			zonefs_i_size_write(inode, iocb->ki_pos + size);
372 		}
373 		mutex_unlock(&zi->i_truncate_mutex);
374 	}
375 
376 	return 0;
377 }
378 
379 static const struct iomap_dio_ops zonefs_write_dio_ops = {
380 	.end_io		= zonefs_file_write_dio_end_io,
381 };
382 
383 /*
384  * Do not exceed the LFS limits nor the file zone size. If pos is under the
385  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
386  */
387 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
388 					loff_t count)
389 {
390 	struct inode *inode = file_inode(file);
391 	struct zonefs_zone *z = zonefs_inode_zone(inode);
392 	loff_t limit = rlimit(RLIMIT_FSIZE);
393 	loff_t max_size = z->z_capacity;
394 
395 	if (limit != RLIM_INFINITY) {
396 		if (pos >= limit) {
397 			send_sig(SIGXFSZ, current, 0);
398 			return -EFBIG;
399 		}
400 		count = min(count, limit - pos);
401 	}
402 
403 	if (!(file->f_flags & O_LARGEFILE))
404 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
405 
406 	if (unlikely(pos >= max_size))
407 		return -EFBIG;
408 
409 	return min(count, max_size - pos);
410 }
411 
412 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
413 {
414 	struct file *file = iocb->ki_filp;
415 	struct inode *inode = file_inode(file);
416 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
417 	struct zonefs_zone *z = zonefs_inode_zone(inode);
418 	loff_t count;
419 
420 	if (IS_SWAPFILE(inode))
421 		return -ETXTBSY;
422 
423 	if (!iov_iter_count(from))
424 		return 0;
425 
426 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
427 		return -EINVAL;
428 
429 	if (iocb->ki_flags & IOCB_APPEND) {
430 		if (zonefs_zone_is_cnv(z))
431 			return -EINVAL;
432 		mutex_lock(&zi->i_truncate_mutex);
433 		iocb->ki_pos = z->z_wpoffset;
434 		mutex_unlock(&zi->i_truncate_mutex);
435 	}
436 
437 	count = zonefs_write_check_limits(file, iocb->ki_pos,
438 					  iov_iter_count(from));
439 	if (count < 0)
440 		return count;
441 
442 	iov_iter_truncate(from, count);
443 	return iov_iter_count(from);
444 }
445 
446 /*
447  * Handle direct writes. For sequential zone files, this is the only possible
448  * write path. For these files, check that the user is issuing writes
449  * sequentially from the end of the file. This code assumes that the block layer
450  * delivers write requests to the device in sequential order. This is always the
451  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
452  * elevator feature is being used (e.g. mq-deadline). The block layer always
453  * automatically select such an elevator for zoned block devices during the
454  * device initialization.
455  */
456 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
457 {
458 	struct inode *inode = file_inode(iocb->ki_filp);
459 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
460 	struct zonefs_zone *z = zonefs_inode_zone(inode);
461 	struct super_block *sb = inode->i_sb;
462 	ssize_t ret, count;
463 
464 	/*
465 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
466 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
467 	 * on the inode lock but the second goes through but is now unaligned).
468 	 */
469 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
470 	    (iocb->ki_flags & IOCB_NOWAIT))
471 		return -EOPNOTSUPP;
472 
473 	if (iocb->ki_flags & IOCB_NOWAIT) {
474 		if (!inode_trylock(inode))
475 			return -EAGAIN;
476 	} else {
477 		inode_lock(inode);
478 	}
479 
480 	count = zonefs_write_checks(iocb, from);
481 	if (count <= 0) {
482 		ret = count;
483 		goto inode_unlock;
484 	}
485 
486 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
487 		ret = -EINVAL;
488 		goto inode_unlock;
489 	}
490 
491 	/* Enforce sequential writes (append only) in sequential zones */
492 	if (zonefs_zone_is_seq(z)) {
493 		mutex_lock(&zi->i_truncate_mutex);
494 		if (iocb->ki_pos != z->z_wpoffset) {
495 			mutex_unlock(&zi->i_truncate_mutex);
496 			ret = -EINVAL;
497 			goto inode_unlock;
498 		}
499 		/*
500 		 * Advance the zone write pointer offset. This assumes that the
501 		 * IO will succeed, which is OK to do because we do not allow
502 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
503 		 * fails, the error path will correct the write pointer offset.
504 		 */
505 		z->z_wpoffset += count;
506 		zonefs_inode_account_active(inode);
507 		mutex_unlock(&zi->i_truncate_mutex);
508 	}
509 
510 	/*
511 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
512 	 * page invalidation. Overwrite that error code with EBUSY so that
513 	 * the user can make sense of the error.
514 	 */
515 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
516 			   &zonefs_write_dio_ops, 0, NULL, 0);
517 	if (ret == -ENOTBLK)
518 		ret = -EBUSY;
519 
520 	/*
521 	 * For a failed IO or partial completion, trigger error recovery
522 	 * to update the zone write pointer offset to a correct value.
523 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
524 	 * have executed error recovery if the IO already completed when we
525 	 * reach here. However, we cannot know that and execute error recovery
526 	 * again (that will not change anything).
527 	 */
528 	if (zonefs_zone_is_seq(z)) {
529 		if (ret > 0 && ret != count)
530 			ret = -EIO;
531 		if (ret < 0 && ret != -EIOCBQUEUED)
532 			zonefs_io_error(inode, true);
533 	}
534 
535 inode_unlock:
536 	inode_unlock(inode);
537 
538 	return ret;
539 }
540 
541 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
542 					  struct iov_iter *from)
543 {
544 	struct inode *inode = file_inode(iocb->ki_filp);
545 	ssize_t ret;
546 
547 	/*
548 	 * Direct IO writes are mandatory for sequential zone files so that the
549 	 * write IO issuing order is preserved.
550 	 */
551 	if (zonefs_inode_is_seq(inode))
552 		return -EIO;
553 
554 	if (iocb->ki_flags & IOCB_NOWAIT) {
555 		if (!inode_trylock(inode))
556 			return -EAGAIN;
557 	} else {
558 		inode_lock(inode);
559 	}
560 
561 	ret = zonefs_write_checks(iocb, from);
562 	if (ret <= 0)
563 		goto inode_unlock;
564 
565 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
566 	if (ret == -EIO)
567 		zonefs_io_error(inode, true);
568 
569 inode_unlock:
570 	inode_unlock(inode);
571 	if (ret > 0)
572 		ret = generic_write_sync(iocb, ret);
573 
574 	return ret;
575 }
576 
577 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
578 {
579 	struct inode *inode = file_inode(iocb->ki_filp);
580 	struct zonefs_zone *z = zonefs_inode_zone(inode);
581 
582 	if (unlikely(IS_IMMUTABLE(inode)))
583 		return -EPERM;
584 
585 	if (sb_rdonly(inode->i_sb))
586 		return -EROFS;
587 
588 	/* Write operations beyond the zone capacity are not allowed */
589 	if (iocb->ki_pos >= z->z_capacity)
590 		return -EFBIG;
591 
592 	if (iocb->ki_flags & IOCB_DIRECT) {
593 		ssize_t ret = zonefs_file_dio_write(iocb, from);
594 
595 		if (ret != -ENOTBLK)
596 			return ret;
597 	}
598 
599 	return zonefs_file_buffered_write(iocb, from);
600 }
601 
602 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
603 				       int error, unsigned int flags)
604 {
605 	if (error) {
606 		zonefs_io_error(file_inode(iocb->ki_filp), false);
607 		return error;
608 	}
609 
610 	return 0;
611 }
612 
613 static const struct iomap_dio_ops zonefs_read_dio_ops = {
614 	.end_io			= zonefs_file_read_dio_end_io,
615 };
616 
617 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
618 {
619 	struct inode *inode = file_inode(iocb->ki_filp);
620 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
621 	struct zonefs_zone *z = zonefs_inode_zone(inode);
622 	struct super_block *sb = inode->i_sb;
623 	loff_t isize;
624 	ssize_t ret;
625 
626 	/* Offline zones cannot be read */
627 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
628 		return -EPERM;
629 
630 	if (iocb->ki_pos >= z->z_capacity)
631 		return 0;
632 
633 	if (iocb->ki_flags & IOCB_NOWAIT) {
634 		if (!inode_trylock_shared(inode))
635 			return -EAGAIN;
636 	} else {
637 		inode_lock_shared(inode);
638 	}
639 
640 	/* Limit read operations to written data */
641 	mutex_lock(&zi->i_truncate_mutex);
642 	isize = i_size_read(inode);
643 	if (iocb->ki_pos >= isize) {
644 		mutex_unlock(&zi->i_truncate_mutex);
645 		ret = 0;
646 		goto inode_unlock;
647 	}
648 	iov_iter_truncate(to, isize - iocb->ki_pos);
649 	mutex_unlock(&zi->i_truncate_mutex);
650 
651 	if (iocb->ki_flags & IOCB_DIRECT) {
652 		size_t count = iov_iter_count(to);
653 
654 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
655 			ret = -EINVAL;
656 			goto inode_unlock;
657 		}
658 		file_accessed(iocb->ki_filp);
659 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
660 				   &zonefs_read_dio_ops, 0, NULL, 0);
661 	} else {
662 		ret = generic_file_read_iter(iocb, to);
663 		if (ret == -EIO)
664 			zonefs_io_error(inode, false);
665 	}
666 
667 inode_unlock:
668 	inode_unlock_shared(inode);
669 
670 	return ret;
671 }
672 
673 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
674 				       struct pipe_inode_info *pipe,
675 				       size_t len, unsigned int flags)
676 {
677 	struct inode *inode = file_inode(in);
678 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
679 	struct zonefs_zone *z = zonefs_inode_zone(inode);
680 	loff_t isize;
681 	ssize_t ret = 0;
682 
683 	/* Offline zones cannot be read */
684 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
685 		return -EPERM;
686 
687 	if (*ppos >= z->z_capacity)
688 		return 0;
689 
690 	inode_lock_shared(inode);
691 
692 	/* Limit read operations to written data */
693 	mutex_lock(&zi->i_truncate_mutex);
694 	isize = i_size_read(inode);
695 	if (*ppos >= isize)
696 		len = 0;
697 	else
698 		len = min_t(loff_t, len, isize - *ppos);
699 	mutex_unlock(&zi->i_truncate_mutex);
700 
701 	if (len > 0) {
702 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
703 		if (ret == -EIO)
704 			zonefs_io_error(inode, false);
705 	}
706 
707 	inode_unlock_shared(inode);
708 	return ret;
709 }
710 
711 /*
712  * Write open accounting is done only for sequential files.
713  */
714 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
715 					    struct file *file)
716 {
717 	if (zonefs_inode_is_cnv(inode))
718 		return false;
719 
720 	if (!(file->f_mode & FMODE_WRITE))
721 		return false;
722 
723 	return true;
724 }
725 
726 static int zonefs_seq_file_write_open(struct inode *inode)
727 {
728 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
729 	struct zonefs_zone *z = zonefs_inode_zone(inode);
730 	int ret = 0;
731 
732 	mutex_lock(&zi->i_truncate_mutex);
733 
734 	if (!zi->i_wr_refcnt) {
735 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
736 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
737 
738 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
739 
740 			if (sbi->s_max_wro_seq_files
741 			    && wro > sbi->s_max_wro_seq_files) {
742 				atomic_dec(&sbi->s_wro_seq_files);
743 				ret = -EBUSY;
744 				goto unlock;
745 			}
746 
747 			if (i_size_read(inode) < z->z_capacity) {
748 				ret = zonefs_inode_zone_mgmt(inode,
749 							     REQ_OP_ZONE_OPEN);
750 				if (ret) {
751 					atomic_dec(&sbi->s_wro_seq_files);
752 					goto unlock;
753 				}
754 				z->z_flags |= ZONEFS_ZONE_OPEN;
755 				zonefs_inode_account_active(inode);
756 			}
757 		}
758 	}
759 
760 	zi->i_wr_refcnt++;
761 
762 unlock:
763 	mutex_unlock(&zi->i_truncate_mutex);
764 
765 	return ret;
766 }
767 
768 static int zonefs_file_open(struct inode *inode, struct file *file)
769 {
770 	int ret;
771 
772 	file->f_mode |= FMODE_CAN_ODIRECT;
773 	ret = generic_file_open(inode, file);
774 	if (ret)
775 		return ret;
776 
777 	if (zonefs_seq_file_need_wro(inode, file))
778 		return zonefs_seq_file_write_open(inode);
779 
780 	return 0;
781 }
782 
783 static void zonefs_seq_file_write_close(struct inode *inode)
784 {
785 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
786 	struct zonefs_zone *z = zonefs_inode_zone(inode);
787 	struct super_block *sb = inode->i_sb;
788 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
789 	int ret = 0;
790 
791 	mutex_lock(&zi->i_truncate_mutex);
792 
793 	zi->i_wr_refcnt--;
794 	if (zi->i_wr_refcnt)
795 		goto unlock;
796 
797 	/*
798 	 * The file zone may not be open anymore (e.g. the file was truncated to
799 	 * its maximum size or it was fully written). For this case, we only
800 	 * need to decrement the write open count.
801 	 */
802 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
803 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
804 		if (ret) {
805 			__zonefs_io_error(inode, false);
806 			/*
807 			 * Leaving zones explicitly open may lead to a state
808 			 * where most zones cannot be written (zone resources
809 			 * exhausted). So take preventive action by remounting
810 			 * read-only.
811 			 */
812 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
813 			    !(sb->s_flags & SB_RDONLY)) {
814 				zonefs_warn(sb,
815 					"closing zone at %llu failed %d\n",
816 					z->z_sector, ret);
817 				zonefs_warn(sb,
818 					"remounting filesystem read-only\n");
819 				sb->s_flags |= SB_RDONLY;
820 			}
821 			goto unlock;
822 		}
823 
824 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
825 		zonefs_inode_account_active(inode);
826 	}
827 
828 	atomic_dec(&sbi->s_wro_seq_files);
829 
830 unlock:
831 	mutex_unlock(&zi->i_truncate_mutex);
832 }
833 
834 static int zonefs_file_release(struct inode *inode, struct file *file)
835 {
836 	/*
837 	 * If we explicitly open a zone we must close it again as well, but the
838 	 * zone management operation can fail (either due to an IO error or as
839 	 * the zone has gone offline or read-only). Make sure we don't fail the
840 	 * close(2) for user-space.
841 	 */
842 	if (zonefs_seq_file_need_wro(inode, file))
843 		zonefs_seq_file_write_close(inode);
844 
845 	return 0;
846 }
847 
848 const struct file_operations zonefs_file_operations = {
849 	.open		= zonefs_file_open,
850 	.release	= zonefs_file_release,
851 	.fsync		= zonefs_file_fsync,
852 	.mmap		= zonefs_file_mmap,
853 	.llseek		= zonefs_file_llseek,
854 	.read_iter	= zonefs_file_read_iter,
855 	.write_iter	= zonefs_file_write_iter,
856 	.splice_read	= zonefs_file_splice_read,
857 	.splice_write	= iter_file_splice_write,
858 	.iopoll		= iocb_bio_iopoll,
859 };
860