1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2022 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/iomap.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/blkdev.h> 13 #include <linux/statfs.h> 14 #include <linux/writeback.h> 15 #include <linux/quotaops.h> 16 #include <linux/seq_file.h> 17 #include <linux/parser.h> 18 #include <linux/uio.h> 19 #include <linux/mman.h> 20 #include <linux/sched/mm.h> 21 #include <linux/task_io_accounting_ops.h> 22 23 #include "zonefs.h" 24 25 #include "trace.h" 26 27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 28 loff_t length, unsigned int flags, 29 struct iomap *iomap, struct iomap *srcmap) 30 { 31 struct zonefs_inode_info *zi = ZONEFS_I(inode); 32 struct zonefs_zone *z = zonefs_inode_zone(inode); 33 struct super_block *sb = inode->i_sb; 34 loff_t isize; 35 36 /* 37 * All blocks are always mapped below EOF. If reading past EOF, 38 * act as if there is a hole up to the file maximum size. 39 */ 40 mutex_lock(&zi->i_truncate_mutex); 41 iomap->bdev = inode->i_sb->s_bdev; 42 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 43 isize = i_size_read(inode); 44 if (iomap->offset >= isize) { 45 iomap->type = IOMAP_HOLE; 46 iomap->addr = IOMAP_NULL_ADDR; 47 iomap->length = length; 48 } else { 49 iomap->type = IOMAP_MAPPED; 50 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 51 iomap->length = isize - iomap->offset; 52 } 53 mutex_unlock(&zi->i_truncate_mutex); 54 55 trace_zonefs_iomap_begin(inode, iomap); 56 57 return 0; 58 } 59 60 static const struct iomap_ops zonefs_read_iomap_ops = { 61 .iomap_begin = zonefs_read_iomap_begin, 62 }; 63 64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 65 loff_t length, unsigned int flags, 66 struct iomap *iomap, struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct zonefs_zone *z = zonefs_inode_zone(inode); 70 struct super_block *sb = inode->i_sb; 71 loff_t isize; 72 73 /* All write I/Os should always be within the file maximum size */ 74 if (WARN_ON_ONCE(offset + length > z->z_capacity)) 75 return -EIO; 76 77 /* 78 * Sequential zones can only accept direct writes. This is already 79 * checked when writes are issued, so warn if we see a page writeback 80 * operation. 81 */ 82 if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 iomap->bdev = inode->i_sb->s_bdev; 92 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 93 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 94 isize = i_size_read(inode); 95 if (iomap->offset >= isize) { 96 iomap->type = IOMAP_UNWRITTEN; 97 iomap->length = z->z_capacity - iomap->offset; 98 } else { 99 iomap->type = IOMAP_MAPPED; 100 iomap->length = isize - iomap->offset; 101 } 102 mutex_unlock(&zi->i_truncate_mutex); 103 104 trace_zonefs_iomap_begin(inode, iomap); 105 106 return 0; 107 } 108 109 static const struct iomap_ops zonefs_write_iomap_ops = { 110 .iomap_begin = zonefs_write_iomap_begin, 111 }; 112 113 static int zonefs_read_folio(struct file *unused, struct folio *folio) 114 { 115 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 116 } 117 118 static void zonefs_readahead(struct readahead_control *rac) 119 { 120 iomap_readahead(rac, &zonefs_read_iomap_ops); 121 } 122 123 /* 124 * Map blocks for page writeback. This is used only on conventional zone files, 125 * which implies that the page range can only be within the fixed inode size. 126 */ 127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 128 struct inode *inode, loff_t offset) 129 { 130 struct zonefs_zone *z = zonefs_inode_zone(inode); 131 132 if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) 133 return -EIO; 134 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 135 return -EIO; 136 137 /* If the mapping is already OK, nothing needs to be done */ 138 if (offset >= wpc->iomap.offset && 139 offset < wpc->iomap.offset + wpc->iomap.length) 140 return 0; 141 142 return zonefs_write_iomap_begin(inode, offset, 143 z->z_capacity - offset, 144 IOMAP_WRITE, &wpc->iomap, NULL); 145 } 146 147 static const struct iomap_writeback_ops zonefs_writeback_ops = { 148 .map_blocks = zonefs_write_map_blocks, 149 }; 150 151 static int zonefs_writepages(struct address_space *mapping, 152 struct writeback_control *wbc) 153 { 154 struct iomap_writepage_ctx wpc = { }; 155 156 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 157 } 158 159 static int zonefs_swap_activate(struct swap_info_struct *sis, 160 struct file *swap_file, sector_t *span) 161 { 162 struct inode *inode = file_inode(swap_file); 163 164 if (zonefs_inode_is_seq(inode)) { 165 zonefs_err(inode->i_sb, 166 "swap file: not a conventional zone file\n"); 167 return -EINVAL; 168 } 169 170 return iomap_swapfile_activate(sis, swap_file, span, 171 &zonefs_read_iomap_ops); 172 } 173 174 const struct address_space_operations zonefs_file_aops = { 175 .read_folio = zonefs_read_folio, 176 .readahead = zonefs_readahead, 177 .writepages = zonefs_writepages, 178 .dirty_folio = filemap_dirty_folio, 179 .release_folio = iomap_release_folio, 180 .invalidate_folio = iomap_invalidate_folio, 181 .migrate_folio = filemap_migrate_folio, 182 .is_partially_uptodate = iomap_is_partially_uptodate, 183 .error_remove_page = generic_error_remove_page, 184 .direct_IO = noop_direct_IO, 185 .swap_activate = zonefs_swap_activate, 186 }; 187 188 int zonefs_file_truncate(struct inode *inode, loff_t isize) 189 { 190 struct zonefs_inode_info *zi = ZONEFS_I(inode); 191 struct zonefs_zone *z = zonefs_inode_zone(inode); 192 loff_t old_isize; 193 enum req_op op; 194 int ret = 0; 195 196 /* 197 * Only sequential zone files can be truncated and truncation is allowed 198 * only down to a 0 size, which is equivalent to a zone reset, and to 199 * the maximum file size, which is equivalent to a zone finish. 200 */ 201 if (!zonefs_zone_is_seq(z)) 202 return -EPERM; 203 204 if (!isize) 205 op = REQ_OP_ZONE_RESET; 206 else if (isize == z->z_capacity) 207 op = REQ_OP_ZONE_FINISH; 208 else 209 return -EPERM; 210 211 inode_dio_wait(inode); 212 213 /* Serialize against page faults */ 214 filemap_invalidate_lock(inode->i_mapping); 215 216 /* Serialize against zonefs_iomap_begin() */ 217 mutex_lock(&zi->i_truncate_mutex); 218 219 old_isize = i_size_read(inode); 220 if (isize == old_isize) 221 goto unlock; 222 223 ret = zonefs_inode_zone_mgmt(inode, op); 224 if (ret) 225 goto unlock; 226 227 /* 228 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 229 * take care of open zones. 230 */ 231 if (z->z_flags & ZONEFS_ZONE_OPEN) { 232 /* 233 * Truncating a zone to EMPTY or FULL is the equivalent of 234 * closing the zone. For a truncation to 0, we need to 235 * re-open the zone to ensure new writes can be processed. 236 * For a truncation to the maximum file size, the zone is 237 * closed and writes cannot be accepted anymore, so clear 238 * the open flag. 239 */ 240 if (!isize) 241 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 242 else 243 z->z_flags &= ~ZONEFS_ZONE_OPEN; 244 } 245 246 zonefs_update_stats(inode, isize); 247 truncate_setsize(inode, isize); 248 z->z_wpoffset = isize; 249 zonefs_inode_account_active(inode); 250 251 unlock: 252 mutex_unlock(&zi->i_truncate_mutex); 253 filemap_invalidate_unlock(inode->i_mapping); 254 255 return ret; 256 } 257 258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 259 int datasync) 260 { 261 struct inode *inode = file_inode(file); 262 int ret = 0; 263 264 if (unlikely(IS_IMMUTABLE(inode))) 265 return -EPERM; 266 267 /* 268 * Since only direct writes are allowed in sequential files, page cache 269 * flush is needed only for conventional zone files. 270 */ 271 if (zonefs_inode_is_cnv(inode)) 272 ret = file_write_and_wait_range(file, start, end); 273 if (!ret) 274 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 275 276 if (ret) 277 zonefs_io_error(inode, true); 278 279 return ret; 280 } 281 282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 283 { 284 struct inode *inode = file_inode(vmf->vma->vm_file); 285 vm_fault_t ret; 286 287 if (unlikely(IS_IMMUTABLE(inode))) 288 return VM_FAULT_SIGBUS; 289 290 /* 291 * Sanity check: only conventional zone files can have shared 292 * writeable mappings. 293 */ 294 if (zonefs_inode_is_seq(inode)) 295 return VM_FAULT_NOPAGE; 296 297 sb_start_pagefault(inode->i_sb); 298 file_update_time(vmf->vma->vm_file); 299 300 /* Serialize against truncates */ 301 filemap_invalidate_lock_shared(inode->i_mapping); 302 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 303 filemap_invalidate_unlock_shared(inode->i_mapping); 304 305 sb_end_pagefault(inode->i_sb); 306 return ret; 307 } 308 309 static const struct vm_operations_struct zonefs_file_vm_ops = { 310 .fault = filemap_fault, 311 .map_pages = filemap_map_pages, 312 .page_mkwrite = zonefs_filemap_page_mkwrite, 313 }; 314 315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 316 { 317 /* 318 * Conventional zones accept random writes, so their files can support 319 * shared writable mappings. For sequential zone files, only read 320 * mappings are possible since there are no guarantees for write 321 * ordering between msync() and page cache writeback. 322 */ 323 if (zonefs_inode_is_seq(file_inode(file)) && 324 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 325 return -EINVAL; 326 327 file_accessed(file); 328 vma->vm_ops = &zonefs_file_vm_ops; 329 330 return 0; 331 } 332 333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 334 { 335 loff_t isize = i_size_read(file_inode(file)); 336 337 /* 338 * Seeks are limited to below the zone size for conventional zones 339 * and below the zone write pointer for sequential zones. In both 340 * cases, this limit is the inode size. 341 */ 342 return generic_file_llseek_size(file, offset, whence, isize, isize); 343 } 344 345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 346 int error, unsigned int flags) 347 { 348 struct inode *inode = file_inode(iocb->ki_filp); 349 struct zonefs_inode_info *zi = ZONEFS_I(inode); 350 351 if (error) { 352 zonefs_io_error(inode, true); 353 return error; 354 } 355 356 if (size && zonefs_inode_is_seq(inode)) { 357 /* 358 * Note that we may be seeing completions out of order, 359 * but that is not a problem since a write completed 360 * successfully necessarily means that all preceding writes 361 * were also successful. So we can safely increase the inode 362 * size to the write end location. 363 */ 364 mutex_lock(&zi->i_truncate_mutex); 365 if (i_size_read(inode) < iocb->ki_pos + size) { 366 zonefs_update_stats(inode, iocb->ki_pos + size); 367 zonefs_i_size_write(inode, iocb->ki_pos + size); 368 } 369 mutex_unlock(&zi->i_truncate_mutex); 370 } 371 372 return 0; 373 } 374 375 static const struct iomap_dio_ops zonefs_write_dio_ops = { 376 .end_io = zonefs_file_write_dio_end_io, 377 }; 378 379 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 380 { 381 struct inode *inode = file_inode(iocb->ki_filp); 382 struct zonefs_zone *z = zonefs_inode_zone(inode); 383 struct block_device *bdev = inode->i_sb->s_bdev; 384 unsigned int max = bdev_max_zone_append_sectors(bdev); 385 struct bio *bio; 386 ssize_t size; 387 int nr_pages; 388 ssize_t ret; 389 390 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 391 iov_iter_truncate(from, max); 392 393 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 394 if (!nr_pages) 395 return 0; 396 397 bio = bio_alloc(bdev, nr_pages, 398 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 399 bio->bi_iter.bi_sector = z->z_sector; 400 bio->bi_ioprio = iocb->ki_ioprio; 401 if (iocb_is_dsync(iocb)) 402 bio->bi_opf |= REQ_FUA; 403 404 ret = bio_iov_iter_get_pages(bio, from); 405 if (unlikely(ret)) 406 goto out_release; 407 408 size = bio->bi_iter.bi_size; 409 task_io_account_write(size); 410 411 if (iocb->ki_flags & IOCB_HIPRI) 412 bio_set_polled(bio, iocb); 413 414 ret = submit_bio_wait(bio); 415 416 /* 417 * If the file zone was written underneath the file system, the zone 418 * write pointer may not be where we expect it to be, but the zone 419 * append write can still succeed. So check manually that we wrote where 420 * we intended to, that is, at zi->i_wpoffset. 421 */ 422 if (!ret) { 423 sector_t wpsector = 424 z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT); 425 426 if (bio->bi_iter.bi_sector != wpsector) { 427 zonefs_warn(inode->i_sb, 428 "Corrupted write pointer %llu for zone at %llu\n", 429 wpsector, z->z_sector); 430 ret = -EIO; 431 } 432 } 433 434 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 435 trace_zonefs_file_dio_append(inode, size, ret); 436 437 out_release: 438 bio_release_pages(bio, false); 439 bio_put(bio); 440 441 if (ret >= 0) { 442 iocb->ki_pos += size; 443 return size; 444 } 445 446 return ret; 447 } 448 449 /* 450 * Do not exceed the LFS limits nor the file zone size. If pos is under the 451 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 452 */ 453 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 454 loff_t count) 455 { 456 struct inode *inode = file_inode(file); 457 struct zonefs_zone *z = zonefs_inode_zone(inode); 458 loff_t limit = rlimit(RLIMIT_FSIZE); 459 loff_t max_size = z->z_capacity; 460 461 if (limit != RLIM_INFINITY) { 462 if (pos >= limit) { 463 send_sig(SIGXFSZ, current, 0); 464 return -EFBIG; 465 } 466 count = min(count, limit - pos); 467 } 468 469 if (!(file->f_flags & O_LARGEFILE)) 470 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 471 472 if (unlikely(pos >= max_size)) 473 return -EFBIG; 474 475 return min(count, max_size - pos); 476 } 477 478 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 479 { 480 struct file *file = iocb->ki_filp; 481 struct inode *inode = file_inode(file); 482 struct zonefs_inode_info *zi = ZONEFS_I(inode); 483 struct zonefs_zone *z = zonefs_inode_zone(inode); 484 loff_t count; 485 486 if (IS_SWAPFILE(inode)) 487 return -ETXTBSY; 488 489 if (!iov_iter_count(from)) 490 return 0; 491 492 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 493 return -EINVAL; 494 495 if (iocb->ki_flags & IOCB_APPEND) { 496 if (zonefs_zone_is_cnv(z)) 497 return -EINVAL; 498 mutex_lock(&zi->i_truncate_mutex); 499 iocb->ki_pos = z->z_wpoffset; 500 mutex_unlock(&zi->i_truncate_mutex); 501 } 502 503 count = zonefs_write_check_limits(file, iocb->ki_pos, 504 iov_iter_count(from)); 505 if (count < 0) 506 return count; 507 508 iov_iter_truncate(from, count); 509 return iov_iter_count(from); 510 } 511 512 /* 513 * Handle direct writes. For sequential zone files, this is the only possible 514 * write path. For these files, check that the user is issuing writes 515 * sequentially from the end of the file. This code assumes that the block layer 516 * delivers write requests to the device in sequential order. This is always the 517 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 518 * elevator feature is being used (e.g. mq-deadline). The block layer always 519 * automatically select such an elevator for zoned block devices during the 520 * device initialization. 521 */ 522 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 523 { 524 struct inode *inode = file_inode(iocb->ki_filp); 525 struct zonefs_inode_info *zi = ZONEFS_I(inode); 526 struct zonefs_zone *z = zonefs_inode_zone(inode); 527 struct super_block *sb = inode->i_sb; 528 bool sync = is_sync_kiocb(iocb); 529 bool append = false; 530 ssize_t ret, count; 531 532 /* 533 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 534 * as this can cause write reordering (e.g. the first aio gets EAGAIN 535 * on the inode lock but the second goes through but is now unaligned). 536 */ 537 if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT)) 538 return -EOPNOTSUPP; 539 540 if (iocb->ki_flags & IOCB_NOWAIT) { 541 if (!inode_trylock(inode)) 542 return -EAGAIN; 543 } else { 544 inode_lock(inode); 545 } 546 547 count = zonefs_write_checks(iocb, from); 548 if (count <= 0) { 549 ret = count; 550 goto inode_unlock; 551 } 552 553 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 554 ret = -EINVAL; 555 goto inode_unlock; 556 } 557 558 /* Enforce sequential writes (append only) in sequential zones */ 559 if (zonefs_zone_is_seq(z)) { 560 mutex_lock(&zi->i_truncate_mutex); 561 if (iocb->ki_pos != z->z_wpoffset) { 562 mutex_unlock(&zi->i_truncate_mutex); 563 ret = -EINVAL; 564 goto inode_unlock; 565 } 566 mutex_unlock(&zi->i_truncate_mutex); 567 append = sync; 568 } 569 570 if (append) 571 ret = zonefs_file_dio_append(iocb, from); 572 else 573 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 574 &zonefs_write_dio_ops, 0, NULL, 0); 575 if (zonefs_zone_is_seq(z) && 576 (ret > 0 || ret == -EIOCBQUEUED)) { 577 if (ret > 0) 578 count = ret; 579 580 /* 581 * Update the zone write pointer offset assuming the write 582 * operation succeeded. If it did not, the error recovery path 583 * will correct it. Also do active seq file accounting. 584 */ 585 mutex_lock(&zi->i_truncate_mutex); 586 z->z_wpoffset += count; 587 zonefs_inode_account_active(inode); 588 mutex_unlock(&zi->i_truncate_mutex); 589 } 590 591 inode_unlock: 592 inode_unlock(inode); 593 594 return ret; 595 } 596 597 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 598 struct iov_iter *from) 599 { 600 struct inode *inode = file_inode(iocb->ki_filp); 601 ssize_t ret; 602 603 /* 604 * Direct IO writes are mandatory for sequential zone files so that the 605 * write IO issuing order is preserved. 606 */ 607 if (zonefs_inode_is_seq(inode)) 608 return -EIO; 609 610 if (iocb->ki_flags & IOCB_NOWAIT) { 611 if (!inode_trylock(inode)) 612 return -EAGAIN; 613 } else { 614 inode_lock(inode); 615 } 616 617 ret = zonefs_write_checks(iocb, from); 618 if (ret <= 0) 619 goto inode_unlock; 620 621 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 622 if (ret > 0) 623 iocb->ki_pos += ret; 624 else if (ret == -EIO) 625 zonefs_io_error(inode, true); 626 627 inode_unlock: 628 inode_unlock(inode); 629 if (ret > 0) 630 ret = generic_write_sync(iocb, ret); 631 632 return ret; 633 } 634 635 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 636 { 637 struct inode *inode = file_inode(iocb->ki_filp); 638 struct zonefs_zone *z = zonefs_inode_zone(inode); 639 640 if (unlikely(IS_IMMUTABLE(inode))) 641 return -EPERM; 642 643 if (sb_rdonly(inode->i_sb)) 644 return -EROFS; 645 646 /* Write operations beyond the zone capacity are not allowed */ 647 if (iocb->ki_pos >= z->z_capacity) 648 return -EFBIG; 649 650 if (iocb->ki_flags & IOCB_DIRECT) { 651 ssize_t ret = zonefs_file_dio_write(iocb, from); 652 653 if (ret != -ENOTBLK) 654 return ret; 655 } 656 657 return zonefs_file_buffered_write(iocb, from); 658 } 659 660 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 661 int error, unsigned int flags) 662 { 663 if (error) { 664 zonefs_io_error(file_inode(iocb->ki_filp), false); 665 return error; 666 } 667 668 return 0; 669 } 670 671 static const struct iomap_dio_ops zonefs_read_dio_ops = { 672 .end_io = zonefs_file_read_dio_end_io, 673 }; 674 675 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 676 { 677 struct inode *inode = file_inode(iocb->ki_filp); 678 struct zonefs_inode_info *zi = ZONEFS_I(inode); 679 struct zonefs_zone *z = zonefs_inode_zone(inode); 680 struct super_block *sb = inode->i_sb; 681 loff_t isize; 682 ssize_t ret; 683 684 /* Offline zones cannot be read */ 685 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 686 return -EPERM; 687 688 if (iocb->ki_pos >= z->z_capacity) 689 return 0; 690 691 if (iocb->ki_flags & IOCB_NOWAIT) { 692 if (!inode_trylock_shared(inode)) 693 return -EAGAIN; 694 } else { 695 inode_lock_shared(inode); 696 } 697 698 /* Limit read operations to written data */ 699 mutex_lock(&zi->i_truncate_mutex); 700 isize = i_size_read(inode); 701 if (iocb->ki_pos >= isize) { 702 mutex_unlock(&zi->i_truncate_mutex); 703 ret = 0; 704 goto inode_unlock; 705 } 706 iov_iter_truncate(to, isize - iocb->ki_pos); 707 mutex_unlock(&zi->i_truncate_mutex); 708 709 if (iocb->ki_flags & IOCB_DIRECT) { 710 size_t count = iov_iter_count(to); 711 712 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 713 ret = -EINVAL; 714 goto inode_unlock; 715 } 716 file_accessed(iocb->ki_filp); 717 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 718 &zonefs_read_dio_ops, 0, NULL, 0); 719 } else { 720 ret = generic_file_read_iter(iocb, to); 721 if (ret == -EIO) 722 zonefs_io_error(inode, false); 723 } 724 725 inode_unlock: 726 inode_unlock_shared(inode); 727 728 return ret; 729 } 730 731 /* 732 * Write open accounting is done only for sequential files. 733 */ 734 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 735 struct file *file) 736 { 737 if (zonefs_inode_is_cnv(inode)) 738 return false; 739 740 if (!(file->f_mode & FMODE_WRITE)) 741 return false; 742 743 return true; 744 } 745 746 static int zonefs_seq_file_write_open(struct inode *inode) 747 { 748 struct zonefs_inode_info *zi = ZONEFS_I(inode); 749 struct zonefs_zone *z = zonefs_inode_zone(inode); 750 int ret = 0; 751 752 mutex_lock(&zi->i_truncate_mutex); 753 754 if (!zi->i_wr_refcnt) { 755 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 756 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 757 758 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 759 760 if (sbi->s_max_wro_seq_files 761 && wro > sbi->s_max_wro_seq_files) { 762 atomic_dec(&sbi->s_wro_seq_files); 763 ret = -EBUSY; 764 goto unlock; 765 } 766 767 if (i_size_read(inode) < z->z_capacity) { 768 ret = zonefs_inode_zone_mgmt(inode, 769 REQ_OP_ZONE_OPEN); 770 if (ret) { 771 atomic_dec(&sbi->s_wro_seq_files); 772 goto unlock; 773 } 774 z->z_flags |= ZONEFS_ZONE_OPEN; 775 zonefs_inode_account_active(inode); 776 } 777 } 778 } 779 780 zi->i_wr_refcnt++; 781 782 unlock: 783 mutex_unlock(&zi->i_truncate_mutex); 784 785 return ret; 786 } 787 788 static int zonefs_file_open(struct inode *inode, struct file *file) 789 { 790 int ret; 791 792 ret = generic_file_open(inode, file); 793 if (ret) 794 return ret; 795 796 if (zonefs_seq_file_need_wro(inode, file)) 797 return zonefs_seq_file_write_open(inode); 798 799 return 0; 800 } 801 802 static void zonefs_seq_file_write_close(struct inode *inode) 803 { 804 struct zonefs_inode_info *zi = ZONEFS_I(inode); 805 struct zonefs_zone *z = zonefs_inode_zone(inode); 806 struct super_block *sb = inode->i_sb; 807 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 808 int ret = 0; 809 810 mutex_lock(&zi->i_truncate_mutex); 811 812 zi->i_wr_refcnt--; 813 if (zi->i_wr_refcnt) 814 goto unlock; 815 816 /* 817 * The file zone may not be open anymore (e.g. the file was truncated to 818 * its maximum size or it was fully written). For this case, we only 819 * need to decrement the write open count. 820 */ 821 if (z->z_flags & ZONEFS_ZONE_OPEN) { 822 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 823 if (ret) { 824 __zonefs_io_error(inode, false); 825 /* 826 * Leaving zones explicitly open may lead to a state 827 * where most zones cannot be written (zone resources 828 * exhausted). So take preventive action by remounting 829 * read-only. 830 */ 831 if (z->z_flags & ZONEFS_ZONE_OPEN && 832 !(sb->s_flags & SB_RDONLY)) { 833 zonefs_warn(sb, 834 "closing zone at %llu failed %d\n", 835 z->z_sector, ret); 836 zonefs_warn(sb, 837 "remounting filesystem read-only\n"); 838 sb->s_flags |= SB_RDONLY; 839 } 840 goto unlock; 841 } 842 843 z->z_flags &= ~ZONEFS_ZONE_OPEN; 844 zonefs_inode_account_active(inode); 845 } 846 847 atomic_dec(&sbi->s_wro_seq_files); 848 849 unlock: 850 mutex_unlock(&zi->i_truncate_mutex); 851 } 852 853 static int zonefs_file_release(struct inode *inode, struct file *file) 854 { 855 /* 856 * If we explicitly open a zone we must close it again as well, but the 857 * zone management operation can fail (either due to an IO error or as 858 * the zone has gone offline or read-only). Make sure we don't fail the 859 * close(2) for user-space. 860 */ 861 if (zonefs_seq_file_need_wro(inode, file)) 862 zonefs_seq_file_write_close(inode); 863 864 return 0; 865 } 866 867 const struct file_operations zonefs_file_operations = { 868 .open = zonefs_file_open, 869 .release = zonefs_file_release, 870 .fsync = zonefs_file_fsync, 871 .mmap = zonefs_file_mmap, 872 .llseek = zonefs_file_llseek, 873 .read_iter = zonefs_file_read_iter, 874 .write_iter = zonefs_file_write_iter, 875 .splice_read = generic_file_splice_read, 876 .splice_write = iter_file_splice_write, 877 .iopoll = iocb_bio_iopoll, 878 }; 879