xref: /linux/fs/zonefs/file.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= filemap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_page	= generic_error_remove_page,
184 	.direct_IO		= noop_direct_IO,
185 	.swap_activate		= zonefs_swap_activate,
186 };
187 
188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 	struct zonefs_zone *z = zonefs_inode_zone(inode);
192 	loff_t old_isize;
193 	enum req_op op;
194 	int ret = 0;
195 
196 	/*
197 	 * Only sequential zone files can be truncated and truncation is allowed
198 	 * only down to a 0 size, which is equivalent to a zone reset, and to
199 	 * the maximum file size, which is equivalent to a zone finish.
200 	 */
201 	if (!zonefs_zone_is_seq(z))
202 		return -EPERM;
203 
204 	if (!isize)
205 		op = REQ_OP_ZONE_RESET;
206 	else if (isize == z->z_capacity)
207 		op = REQ_OP_ZONE_FINISH;
208 	else
209 		return -EPERM;
210 
211 	inode_dio_wait(inode);
212 
213 	/* Serialize against page faults */
214 	filemap_invalidate_lock(inode->i_mapping);
215 
216 	/* Serialize against zonefs_iomap_begin() */
217 	mutex_lock(&zi->i_truncate_mutex);
218 
219 	old_isize = i_size_read(inode);
220 	if (isize == old_isize)
221 		goto unlock;
222 
223 	ret = zonefs_inode_zone_mgmt(inode, op);
224 	if (ret)
225 		goto unlock;
226 
227 	/*
228 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 	 * take care of open zones.
230 	 */
231 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 		/*
233 		 * Truncating a zone to EMPTY or FULL is the equivalent of
234 		 * closing the zone. For a truncation to 0, we need to
235 		 * re-open the zone to ensure new writes can be processed.
236 		 * For a truncation to the maximum file size, the zone is
237 		 * closed and writes cannot be accepted anymore, so clear
238 		 * the open flag.
239 		 */
240 		if (!isize)
241 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 		else
243 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 	}
245 
246 	zonefs_update_stats(inode, isize);
247 	truncate_setsize(inode, isize);
248 	z->z_wpoffset = isize;
249 	zonefs_inode_account_active(inode);
250 
251 unlock:
252 	mutex_unlock(&zi->i_truncate_mutex);
253 	filemap_invalidate_unlock(inode->i_mapping);
254 
255 	return ret;
256 }
257 
258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 			     int datasync)
260 {
261 	struct inode *inode = file_inode(file);
262 	int ret = 0;
263 
264 	if (unlikely(IS_IMMUTABLE(inode)))
265 		return -EPERM;
266 
267 	/*
268 	 * Since only direct writes are allowed in sequential files, page cache
269 	 * flush is needed only for conventional zone files.
270 	 */
271 	if (zonefs_inode_is_cnv(inode))
272 		ret = file_write_and_wait_range(file, start, end);
273 	if (!ret)
274 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275 
276 	if (ret)
277 		zonefs_io_error(inode, true);
278 
279 	return ret;
280 }
281 
282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 	struct inode *inode = file_inode(vmf->vma->vm_file);
285 	vm_fault_t ret;
286 
287 	if (unlikely(IS_IMMUTABLE(inode)))
288 		return VM_FAULT_SIGBUS;
289 
290 	/*
291 	 * Sanity check: only conventional zone files can have shared
292 	 * writeable mappings.
293 	 */
294 	if (zonefs_inode_is_seq(inode))
295 		return VM_FAULT_NOPAGE;
296 
297 	sb_start_pagefault(inode->i_sb);
298 	file_update_time(vmf->vma->vm_file);
299 
300 	/* Serialize against truncates */
301 	filemap_invalidate_lock_shared(inode->i_mapping);
302 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303 	filemap_invalidate_unlock_shared(inode->i_mapping);
304 
305 	sb_end_pagefault(inode->i_sb);
306 	return ret;
307 }
308 
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 	.fault		= filemap_fault,
311 	.map_pages	= filemap_map_pages,
312 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313 };
314 
315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316 {
317 	/*
318 	 * Conventional zones accept random writes, so their files can support
319 	 * shared writable mappings. For sequential zone files, only read
320 	 * mappings are possible since there are no guarantees for write
321 	 * ordering between msync() and page cache writeback.
322 	 */
323 	if (zonefs_inode_is_seq(file_inode(file)) &&
324 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325 		return -EINVAL;
326 
327 	file_accessed(file);
328 	vma->vm_ops = &zonefs_file_vm_ops;
329 
330 	return 0;
331 }
332 
333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334 {
335 	loff_t isize = i_size_read(file_inode(file));
336 
337 	/*
338 	 * Seeks are limited to below the zone size for conventional zones
339 	 * and below the zone write pointer for sequential zones. In both
340 	 * cases, this limit is the inode size.
341 	 */
342 	return generic_file_llseek_size(file, offset, whence, isize, isize);
343 }
344 
345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346 					int error, unsigned int flags)
347 {
348 	struct inode *inode = file_inode(iocb->ki_filp);
349 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
350 
351 	if (error) {
352 		zonefs_io_error(inode, true);
353 		return error;
354 	}
355 
356 	if (size && zonefs_inode_is_seq(inode)) {
357 		/*
358 		 * Note that we may be seeing completions out of order,
359 		 * but that is not a problem since a write completed
360 		 * successfully necessarily means that all preceding writes
361 		 * were also successful. So we can safely increase the inode
362 		 * size to the write end location.
363 		 */
364 		mutex_lock(&zi->i_truncate_mutex);
365 		if (i_size_read(inode) < iocb->ki_pos + size) {
366 			zonefs_update_stats(inode, iocb->ki_pos + size);
367 			zonefs_i_size_write(inode, iocb->ki_pos + size);
368 		}
369 		mutex_unlock(&zi->i_truncate_mutex);
370 	}
371 
372 	return 0;
373 }
374 
375 static const struct iomap_dio_ops zonefs_write_dio_ops = {
376 	.end_io			= zonefs_file_write_dio_end_io,
377 };
378 
379 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
380 {
381 	struct inode *inode = file_inode(iocb->ki_filp);
382 	struct zonefs_zone *z = zonefs_inode_zone(inode);
383 	struct block_device *bdev = inode->i_sb->s_bdev;
384 	unsigned int max = bdev_max_zone_append_sectors(bdev);
385 	pgoff_t start, end;
386 	struct bio *bio;
387 	ssize_t size = 0;
388 	int nr_pages;
389 	ssize_t ret;
390 
391 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
392 	iov_iter_truncate(from, max);
393 
394 	/*
395 	 * If the inode block size (zone write granularity) is smaller than the
396 	 * page size, we may be appending data belonging to the last page of the
397 	 * inode straddling inode->i_size, with that page already cached due to
398 	 * a buffered read or readahead. So make sure to invalidate that page.
399 	 * This will always be a no-op for the case where the block size is
400 	 * equal to the page size.
401 	 */
402 	start = iocb->ki_pos >> PAGE_SHIFT;
403 	end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT;
404 	if (invalidate_inode_pages2_range(inode->i_mapping, start, end))
405 		return -EBUSY;
406 
407 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
408 	if (!nr_pages)
409 		return 0;
410 
411 	bio = bio_alloc(bdev, nr_pages,
412 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
413 	bio->bi_iter.bi_sector = z->z_sector;
414 	bio->bi_ioprio = iocb->ki_ioprio;
415 	if (iocb_is_dsync(iocb))
416 		bio->bi_opf |= REQ_FUA;
417 
418 	ret = bio_iov_iter_get_pages(bio, from);
419 	if (unlikely(ret))
420 		goto out_release;
421 
422 	size = bio->bi_iter.bi_size;
423 	task_io_account_write(size);
424 
425 	if (iocb->ki_flags & IOCB_HIPRI)
426 		bio_set_polled(bio, iocb);
427 
428 	ret = submit_bio_wait(bio);
429 
430 	/*
431 	 * If the file zone was written underneath the file system, the zone
432 	 * write pointer may not be where we expect it to be, but the zone
433 	 * append write can still succeed. So check manually that we wrote where
434 	 * we intended to, that is, at zi->i_wpoffset.
435 	 */
436 	if (!ret) {
437 		sector_t wpsector =
438 			z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT);
439 
440 		if (bio->bi_iter.bi_sector != wpsector) {
441 			zonefs_warn(inode->i_sb,
442 				"Corrupted write pointer %llu for zone at %llu\n",
443 				bio->bi_iter.bi_sector, z->z_sector);
444 			ret = -EIO;
445 		}
446 	}
447 
448 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
449 	trace_zonefs_file_dio_append(inode, size, ret);
450 
451 out_release:
452 	bio_release_pages(bio, false);
453 	bio_put(bio);
454 
455 	if (ret >= 0) {
456 		iocb->ki_pos += size;
457 		return size;
458 	}
459 
460 	return ret;
461 }
462 
463 /*
464  * Do not exceed the LFS limits nor the file zone size. If pos is under the
465  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
466  */
467 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
468 					loff_t count)
469 {
470 	struct inode *inode = file_inode(file);
471 	struct zonefs_zone *z = zonefs_inode_zone(inode);
472 	loff_t limit = rlimit(RLIMIT_FSIZE);
473 	loff_t max_size = z->z_capacity;
474 
475 	if (limit != RLIM_INFINITY) {
476 		if (pos >= limit) {
477 			send_sig(SIGXFSZ, current, 0);
478 			return -EFBIG;
479 		}
480 		count = min(count, limit - pos);
481 	}
482 
483 	if (!(file->f_flags & O_LARGEFILE))
484 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
485 
486 	if (unlikely(pos >= max_size))
487 		return -EFBIG;
488 
489 	return min(count, max_size - pos);
490 }
491 
492 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
493 {
494 	struct file *file = iocb->ki_filp;
495 	struct inode *inode = file_inode(file);
496 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
497 	struct zonefs_zone *z = zonefs_inode_zone(inode);
498 	loff_t count;
499 
500 	if (IS_SWAPFILE(inode))
501 		return -ETXTBSY;
502 
503 	if (!iov_iter_count(from))
504 		return 0;
505 
506 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
507 		return -EINVAL;
508 
509 	if (iocb->ki_flags & IOCB_APPEND) {
510 		if (zonefs_zone_is_cnv(z))
511 			return -EINVAL;
512 		mutex_lock(&zi->i_truncate_mutex);
513 		iocb->ki_pos = z->z_wpoffset;
514 		mutex_unlock(&zi->i_truncate_mutex);
515 	}
516 
517 	count = zonefs_write_check_limits(file, iocb->ki_pos,
518 					  iov_iter_count(from));
519 	if (count < 0)
520 		return count;
521 
522 	iov_iter_truncate(from, count);
523 	return iov_iter_count(from);
524 }
525 
526 /*
527  * Handle direct writes. For sequential zone files, this is the only possible
528  * write path. For these files, check that the user is issuing writes
529  * sequentially from the end of the file. This code assumes that the block layer
530  * delivers write requests to the device in sequential order. This is always the
531  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
532  * elevator feature is being used (e.g. mq-deadline). The block layer always
533  * automatically select such an elevator for zoned block devices during the
534  * device initialization.
535  */
536 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
537 {
538 	struct inode *inode = file_inode(iocb->ki_filp);
539 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
540 	struct zonefs_zone *z = zonefs_inode_zone(inode);
541 	struct super_block *sb = inode->i_sb;
542 	bool sync = is_sync_kiocb(iocb);
543 	bool append = false;
544 	ssize_t ret, count;
545 
546 	/*
547 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
548 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
549 	 * on the inode lock but the second goes through but is now unaligned).
550 	 */
551 	if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT))
552 		return -EOPNOTSUPP;
553 
554 	if (iocb->ki_flags & IOCB_NOWAIT) {
555 		if (!inode_trylock(inode))
556 			return -EAGAIN;
557 	} else {
558 		inode_lock(inode);
559 	}
560 
561 	count = zonefs_write_checks(iocb, from);
562 	if (count <= 0) {
563 		ret = count;
564 		goto inode_unlock;
565 	}
566 
567 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
568 		ret = -EINVAL;
569 		goto inode_unlock;
570 	}
571 
572 	/* Enforce sequential writes (append only) in sequential zones */
573 	if (zonefs_zone_is_seq(z)) {
574 		mutex_lock(&zi->i_truncate_mutex);
575 		if (iocb->ki_pos != z->z_wpoffset) {
576 			mutex_unlock(&zi->i_truncate_mutex);
577 			ret = -EINVAL;
578 			goto inode_unlock;
579 		}
580 		mutex_unlock(&zi->i_truncate_mutex);
581 		append = sync;
582 	}
583 
584 	if (append) {
585 		ret = zonefs_file_dio_append(iocb, from);
586 	} else {
587 		/*
588 		 * iomap_dio_rw() may return ENOTBLK if there was an issue with
589 		 * page invalidation. Overwrite that error code with EBUSY to
590 		 * be consistent with zonefs_file_dio_append() return value for
591 		 * similar issues.
592 		 */
593 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
594 				   &zonefs_write_dio_ops, 0, NULL, 0);
595 		if (ret == -ENOTBLK)
596 			ret = -EBUSY;
597 	}
598 
599 	if (zonefs_zone_is_seq(z) &&
600 	    (ret > 0 || ret == -EIOCBQUEUED)) {
601 		if (ret > 0)
602 			count = ret;
603 
604 		/*
605 		 * Update the zone write pointer offset assuming the write
606 		 * operation succeeded. If it did not, the error recovery path
607 		 * will correct it. Also do active seq file accounting.
608 		 */
609 		mutex_lock(&zi->i_truncate_mutex);
610 		z->z_wpoffset += count;
611 		zonefs_inode_account_active(inode);
612 		mutex_unlock(&zi->i_truncate_mutex);
613 	}
614 
615 inode_unlock:
616 	inode_unlock(inode);
617 
618 	return ret;
619 }
620 
621 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
622 					  struct iov_iter *from)
623 {
624 	struct inode *inode = file_inode(iocb->ki_filp);
625 	ssize_t ret;
626 
627 	/*
628 	 * Direct IO writes are mandatory for sequential zone files so that the
629 	 * write IO issuing order is preserved.
630 	 */
631 	if (zonefs_inode_is_seq(inode))
632 		return -EIO;
633 
634 	if (iocb->ki_flags & IOCB_NOWAIT) {
635 		if (!inode_trylock(inode))
636 			return -EAGAIN;
637 	} else {
638 		inode_lock(inode);
639 	}
640 
641 	ret = zonefs_write_checks(iocb, from);
642 	if (ret <= 0)
643 		goto inode_unlock;
644 
645 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
646 	if (ret > 0)
647 		iocb->ki_pos += ret;
648 	else if (ret == -EIO)
649 		zonefs_io_error(inode, true);
650 
651 inode_unlock:
652 	inode_unlock(inode);
653 	if (ret > 0)
654 		ret = generic_write_sync(iocb, ret);
655 
656 	return ret;
657 }
658 
659 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
660 {
661 	struct inode *inode = file_inode(iocb->ki_filp);
662 	struct zonefs_zone *z = zonefs_inode_zone(inode);
663 
664 	if (unlikely(IS_IMMUTABLE(inode)))
665 		return -EPERM;
666 
667 	if (sb_rdonly(inode->i_sb))
668 		return -EROFS;
669 
670 	/* Write operations beyond the zone capacity are not allowed */
671 	if (iocb->ki_pos >= z->z_capacity)
672 		return -EFBIG;
673 
674 	if (iocb->ki_flags & IOCB_DIRECT) {
675 		ssize_t ret = zonefs_file_dio_write(iocb, from);
676 
677 		if (ret != -ENOTBLK)
678 			return ret;
679 	}
680 
681 	return zonefs_file_buffered_write(iocb, from);
682 }
683 
684 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
685 				       int error, unsigned int flags)
686 {
687 	if (error) {
688 		zonefs_io_error(file_inode(iocb->ki_filp), false);
689 		return error;
690 	}
691 
692 	return 0;
693 }
694 
695 static const struct iomap_dio_ops zonefs_read_dio_ops = {
696 	.end_io			= zonefs_file_read_dio_end_io,
697 };
698 
699 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
700 {
701 	struct inode *inode = file_inode(iocb->ki_filp);
702 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
703 	struct zonefs_zone *z = zonefs_inode_zone(inode);
704 	struct super_block *sb = inode->i_sb;
705 	loff_t isize;
706 	ssize_t ret;
707 
708 	/* Offline zones cannot be read */
709 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
710 		return -EPERM;
711 
712 	if (iocb->ki_pos >= z->z_capacity)
713 		return 0;
714 
715 	if (iocb->ki_flags & IOCB_NOWAIT) {
716 		if (!inode_trylock_shared(inode))
717 			return -EAGAIN;
718 	} else {
719 		inode_lock_shared(inode);
720 	}
721 
722 	/* Limit read operations to written data */
723 	mutex_lock(&zi->i_truncate_mutex);
724 	isize = i_size_read(inode);
725 	if (iocb->ki_pos >= isize) {
726 		mutex_unlock(&zi->i_truncate_mutex);
727 		ret = 0;
728 		goto inode_unlock;
729 	}
730 	iov_iter_truncate(to, isize - iocb->ki_pos);
731 	mutex_unlock(&zi->i_truncate_mutex);
732 
733 	if (iocb->ki_flags & IOCB_DIRECT) {
734 		size_t count = iov_iter_count(to);
735 
736 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
737 			ret = -EINVAL;
738 			goto inode_unlock;
739 		}
740 		file_accessed(iocb->ki_filp);
741 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
742 				   &zonefs_read_dio_ops, 0, NULL, 0);
743 	} else {
744 		ret = generic_file_read_iter(iocb, to);
745 		if (ret == -EIO)
746 			zonefs_io_error(inode, false);
747 	}
748 
749 inode_unlock:
750 	inode_unlock_shared(inode);
751 
752 	return ret;
753 }
754 
755 /*
756  * Write open accounting is done only for sequential files.
757  */
758 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
759 					    struct file *file)
760 {
761 	if (zonefs_inode_is_cnv(inode))
762 		return false;
763 
764 	if (!(file->f_mode & FMODE_WRITE))
765 		return false;
766 
767 	return true;
768 }
769 
770 static int zonefs_seq_file_write_open(struct inode *inode)
771 {
772 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
773 	struct zonefs_zone *z = zonefs_inode_zone(inode);
774 	int ret = 0;
775 
776 	mutex_lock(&zi->i_truncate_mutex);
777 
778 	if (!zi->i_wr_refcnt) {
779 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
780 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
781 
782 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
783 
784 			if (sbi->s_max_wro_seq_files
785 			    && wro > sbi->s_max_wro_seq_files) {
786 				atomic_dec(&sbi->s_wro_seq_files);
787 				ret = -EBUSY;
788 				goto unlock;
789 			}
790 
791 			if (i_size_read(inode) < z->z_capacity) {
792 				ret = zonefs_inode_zone_mgmt(inode,
793 							     REQ_OP_ZONE_OPEN);
794 				if (ret) {
795 					atomic_dec(&sbi->s_wro_seq_files);
796 					goto unlock;
797 				}
798 				z->z_flags |= ZONEFS_ZONE_OPEN;
799 				zonefs_inode_account_active(inode);
800 			}
801 		}
802 	}
803 
804 	zi->i_wr_refcnt++;
805 
806 unlock:
807 	mutex_unlock(&zi->i_truncate_mutex);
808 
809 	return ret;
810 }
811 
812 static int zonefs_file_open(struct inode *inode, struct file *file)
813 {
814 	int ret;
815 
816 	ret = generic_file_open(inode, file);
817 	if (ret)
818 		return ret;
819 
820 	if (zonefs_seq_file_need_wro(inode, file))
821 		return zonefs_seq_file_write_open(inode);
822 
823 	return 0;
824 }
825 
826 static void zonefs_seq_file_write_close(struct inode *inode)
827 {
828 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
829 	struct zonefs_zone *z = zonefs_inode_zone(inode);
830 	struct super_block *sb = inode->i_sb;
831 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
832 	int ret = 0;
833 
834 	mutex_lock(&zi->i_truncate_mutex);
835 
836 	zi->i_wr_refcnt--;
837 	if (zi->i_wr_refcnt)
838 		goto unlock;
839 
840 	/*
841 	 * The file zone may not be open anymore (e.g. the file was truncated to
842 	 * its maximum size or it was fully written). For this case, we only
843 	 * need to decrement the write open count.
844 	 */
845 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
846 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
847 		if (ret) {
848 			__zonefs_io_error(inode, false);
849 			/*
850 			 * Leaving zones explicitly open may lead to a state
851 			 * where most zones cannot be written (zone resources
852 			 * exhausted). So take preventive action by remounting
853 			 * read-only.
854 			 */
855 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
856 			    !(sb->s_flags & SB_RDONLY)) {
857 				zonefs_warn(sb,
858 					"closing zone at %llu failed %d\n",
859 					z->z_sector, ret);
860 				zonefs_warn(sb,
861 					"remounting filesystem read-only\n");
862 				sb->s_flags |= SB_RDONLY;
863 			}
864 			goto unlock;
865 		}
866 
867 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
868 		zonefs_inode_account_active(inode);
869 	}
870 
871 	atomic_dec(&sbi->s_wro_seq_files);
872 
873 unlock:
874 	mutex_unlock(&zi->i_truncate_mutex);
875 }
876 
877 static int zonefs_file_release(struct inode *inode, struct file *file)
878 {
879 	/*
880 	 * If we explicitly open a zone we must close it again as well, but the
881 	 * zone management operation can fail (either due to an IO error or as
882 	 * the zone has gone offline or read-only). Make sure we don't fail the
883 	 * close(2) for user-space.
884 	 */
885 	if (zonefs_seq_file_need_wro(inode, file))
886 		zonefs_seq_file_write_close(inode);
887 
888 	return 0;
889 }
890 
891 const struct file_operations zonefs_file_operations = {
892 	.open		= zonefs_file_open,
893 	.release	= zonefs_file_release,
894 	.fsync		= zonefs_file_fsync,
895 	.mmap		= zonefs_file_mmap,
896 	.llseek		= zonefs_file_llseek,
897 	.read_iter	= zonefs_file_read_iter,
898 	.write_iter	= zonefs_file_write_iter,
899 	.splice_read	= generic_file_splice_read,
900 	.splice_write	= iter_file_splice_write,
901 	.iopoll		= iocb_bio_iopoll,
902 };
903