1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2023-2025 Christoph Hellwig. 4 * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates. 5 */ 6 #include "xfs.h" 7 #include "xfs_shared.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_error.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_iomap.h" 15 #include "xfs_trans.h" 16 #include "xfs_alloc.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_refcount.h" 21 #include "xfs_rtbitmap.h" 22 #include "xfs_rtrmap_btree.h" 23 #include "xfs_zone_alloc.h" 24 #include "xfs_zone_priv.h" 25 #include "xfs_zones.h" 26 #include "xfs_trace.h" 27 #include "xfs_mru_cache.h" 28 29 void 30 xfs_open_zone_put( 31 struct xfs_open_zone *oz) 32 { 33 if (atomic_dec_and_test(&oz->oz_ref)) { 34 xfs_rtgroup_rele(oz->oz_rtg); 35 kfree(oz); 36 } 37 } 38 39 static inline uint32_t 40 xfs_zone_bucket( 41 struct xfs_mount *mp, 42 uint32_t used_blocks) 43 { 44 return XFS_ZONE_USED_BUCKETS * used_blocks / 45 mp->m_groups[XG_TYPE_RTG].blocks; 46 } 47 48 static inline void 49 xfs_zone_add_to_bucket( 50 struct xfs_zone_info *zi, 51 xfs_rgnumber_t rgno, 52 uint32_t to_bucket) 53 { 54 __set_bit(rgno, zi->zi_used_bucket_bitmap[to_bucket]); 55 zi->zi_used_bucket_entries[to_bucket]++; 56 } 57 58 static inline void 59 xfs_zone_remove_from_bucket( 60 struct xfs_zone_info *zi, 61 xfs_rgnumber_t rgno, 62 uint32_t from_bucket) 63 { 64 __clear_bit(rgno, zi->zi_used_bucket_bitmap[from_bucket]); 65 zi->zi_used_bucket_entries[from_bucket]--; 66 } 67 68 static void 69 xfs_zone_account_reclaimable( 70 struct xfs_rtgroup *rtg, 71 uint32_t freed) 72 { 73 struct xfs_group *xg = &rtg->rtg_group; 74 struct xfs_mount *mp = rtg_mount(rtg); 75 struct xfs_zone_info *zi = mp->m_zone_info; 76 uint32_t used = rtg_rmap(rtg)->i_used_blocks; 77 xfs_rgnumber_t rgno = rtg_rgno(rtg); 78 uint32_t from_bucket = xfs_zone_bucket(mp, used + freed); 79 uint32_t to_bucket = xfs_zone_bucket(mp, used); 80 bool was_full = (used + freed == rtg_blocks(rtg)); 81 82 /* 83 * This can be called from log recovery, where the zone_info structure 84 * hasn't been allocated yet. Skip all work as xfs_mount_zones will 85 * add the zones to the right buckets before the file systems becomes 86 * active. 87 */ 88 if (!zi) 89 return; 90 91 if (!used) { 92 /* 93 * The zone is now empty, remove it from the bottom bucket and 94 * trigger a reset. 95 */ 96 trace_xfs_zone_emptied(rtg); 97 98 if (!was_full) 99 xfs_group_clear_mark(xg, XFS_RTG_RECLAIMABLE); 100 101 spin_lock(&zi->zi_used_buckets_lock); 102 if (!was_full) 103 xfs_zone_remove_from_bucket(zi, rgno, from_bucket); 104 spin_unlock(&zi->zi_used_buckets_lock); 105 106 spin_lock(&zi->zi_reset_list_lock); 107 xg->xg_next_reset = zi->zi_reset_list; 108 zi->zi_reset_list = xg; 109 spin_unlock(&zi->zi_reset_list_lock); 110 111 if (zi->zi_gc_thread) 112 wake_up_process(zi->zi_gc_thread); 113 } else if (was_full) { 114 /* 115 * The zone transitioned from full, mark it up as reclaimable 116 * and wake up GC which might be waiting for zones to reclaim. 117 */ 118 spin_lock(&zi->zi_used_buckets_lock); 119 xfs_zone_add_to_bucket(zi, rgno, to_bucket); 120 spin_unlock(&zi->zi_used_buckets_lock); 121 122 xfs_group_set_mark(xg, XFS_RTG_RECLAIMABLE); 123 if (zi->zi_gc_thread && xfs_zoned_need_gc(mp)) 124 wake_up_process(zi->zi_gc_thread); 125 } else if (to_bucket != from_bucket) { 126 /* 127 * Move the zone to a new bucket if it dropped below the 128 * threshold. 129 */ 130 spin_lock(&zi->zi_used_buckets_lock); 131 xfs_zone_add_to_bucket(zi, rgno, to_bucket); 132 xfs_zone_remove_from_bucket(zi, rgno, from_bucket); 133 spin_unlock(&zi->zi_used_buckets_lock); 134 } 135 } 136 137 static void 138 xfs_open_zone_mark_full( 139 struct xfs_open_zone *oz) 140 { 141 struct xfs_rtgroup *rtg = oz->oz_rtg; 142 struct xfs_mount *mp = rtg_mount(rtg); 143 struct xfs_zone_info *zi = mp->m_zone_info; 144 uint32_t used = rtg_rmap(rtg)->i_used_blocks; 145 146 trace_xfs_zone_full(rtg); 147 148 WRITE_ONCE(rtg->rtg_open_zone, NULL); 149 150 spin_lock(&zi->zi_open_zones_lock); 151 if (oz->oz_is_gc) { 152 ASSERT(current == zi->zi_gc_thread); 153 zi->zi_open_gc_zone = NULL; 154 } else { 155 zi->zi_nr_open_zones--; 156 list_del_init(&oz->oz_entry); 157 } 158 spin_unlock(&zi->zi_open_zones_lock); 159 xfs_open_zone_put(oz); 160 161 wake_up_all(&zi->zi_zone_wait); 162 if (used < rtg_blocks(rtg)) 163 xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used); 164 } 165 166 static void 167 xfs_zone_record_blocks( 168 struct xfs_trans *tp, 169 xfs_fsblock_t fsbno, 170 xfs_filblks_t len, 171 struct xfs_open_zone *oz, 172 bool used) 173 { 174 struct xfs_mount *mp = tp->t_mountp; 175 struct xfs_rtgroup *rtg = oz->oz_rtg; 176 struct xfs_inode *rmapip = rtg_rmap(rtg); 177 178 trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len); 179 180 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP); 181 xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP); 182 if (used) { 183 rmapip->i_used_blocks += len; 184 ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg)); 185 } else { 186 xfs_add_frextents(mp, len); 187 } 188 oz->oz_written += len; 189 if (oz->oz_written == rtg_blocks(rtg)) 190 xfs_open_zone_mark_full(oz); 191 xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE); 192 } 193 194 static int 195 xfs_zoned_map_extent( 196 struct xfs_trans *tp, 197 struct xfs_inode *ip, 198 struct xfs_bmbt_irec *new, 199 struct xfs_open_zone *oz, 200 xfs_fsblock_t old_startblock) 201 { 202 struct xfs_bmbt_irec data; 203 int nmaps = 1; 204 int error; 205 206 /* Grab the corresponding mapping in the data fork. */ 207 error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data, 208 &nmaps, 0); 209 if (error) 210 return error; 211 212 /* 213 * Cap the update to the existing extent in the data fork because we can 214 * only overwrite one extent at a time. 215 */ 216 ASSERT(new->br_blockcount >= data.br_blockcount); 217 new->br_blockcount = data.br_blockcount; 218 219 /* 220 * If a data write raced with this GC write, keep the existing data in 221 * the data fork, mark our newly written GC extent as reclaimable, then 222 * move on to the next extent. 223 */ 224 if (old_startblock != NULLFSBLOCK && 225 old_startblock != data.br_startblock) 226 goto skip; 227 228 trace_xfs_reflink_cow_remap_from(ip, new); 229 trace_xfs_reflink_cow_remap_to(ip, &data); 230 231 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 232 XFS_IEXT_REFLINK_END_COW_CNT); 233 if (error) 234 return error; 235 236 if (data.br_startblock != HOLESTARTBLOCK) { 237 ASSERT(data.br_startblock != DELAYSTARTBLOCK); 238 ASSERT(!isnullstartblock(data.br_startblock)); 239 240 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); 241 if (xfs_is_reflink_inode(ip)) { 242 xfs_refcount_decrease_extent(tp, true, &data); 243 } else { 244 error = xfs_free_extent_later(tp, data.br_startblock, 245 data.br_blockcount, NULL, 246 XFS_AG_RESV_NONE, 247 XFS_FREE_EXTENT_REALTIME); 248 if (error) 249 return error; 250 } 251 } 252 253 xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz, 254 true); 255 256 /* Map the new blocks into the data fork. */ 257 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new); 258 return 0; 259 260 skip: 261 trace_xfs_reflink_cow_remap_skip(ip, new); 262 xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz, 263 false); 264 return 0; 265 } 266 267 int 268 xfs_zoned_end_io( 269 struct xfs_inode *ip, 270 xfs_off_t offset, 271 xfs_off_t count, 272 xfs_daddr_t daddr, 273 struct xfs_open_zone *oz, 274 xfs_fsblock_t old_startblock) 275 { 276 struct xfs_mount *mp = ip->i_mount; 277 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 278 struct xfs_bmbt_irec new = { 279 .br_startoff = XFS_B_TO_FSBT(mp, offset), 280 .br_startblock = xfs_daddr_to_rtb(mp, daddr), 281 .br_state = XFS_EXT_NORM, 282 }; 283 unsigned int resblks = 284 XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 285 struct xfs_trans *tp; 286 int error; 287 288 if (xfs_is_shutdown(mp)) 289 return -EIO; 290 291 while (new.br_startoff < end_fsb) { 292 new.br_blockcount = end_fsb - new.br_startoff; 293 294 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 295 XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp); 296 if (error) 297 return error; 298 xfs_ilock(ip, XFS_ILOCK_EXCL); 299 xfs_trans_ijoin(tp, ip, 0); 300 301 error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock); 302 if (error) 303 xfs_trans_cancel(tp); 304 else 305 error = xfs_trans_commit(tp); 306 xfs_iunlock(ip, XFS_ILOCK_EXCL); 307 if (error) 308 return error; 309 310 new.br_startoff += new.br_blockcount; 311 new.br_startblock += new.br_blockcount; 312 if (old_startblock != NULLFSBLOCK) 313 old_startblock += new.br_blockcount; 314 } 315 316 return 0; 317 } 318 319 /* 320 * "Free" blocks allocated in a zone. 321 * 322 * Just decrement the used blocks counter and report the space as freed. 323 */ 324 int 325 xfs_zone_free_blocks( 326 struct xfs_trans *tp, 327 struct xfs_rtgroup *rtg, 328 xfs_fsblock_t fsbno, 329 xfs_filblks_t len) 330 { 331 struct xfs_mount *mp = tp->t_mountp; 332 struct xfs_inode *rmapip = rtg_rmap(rtg); 333 334 xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL); 335 336 if (len > rmapip->i_used_blocks) { 337 xfs_err(mp, 338 "trying to free more blocks (%lld) than used counter (%u).", 339 len, rmapip->i_used_blocks); 340 ASSERT(len <= rmapip->i_used_blocks); 341 xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP); 342 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 343 return -EFSCORRUPTED; 344 } 345 346 trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len); 347 348 rmapip->i_used_blocks -= len; 349 /* 350 * Don't add open zones to the reclaimable buckets. The I/O completion 351 * for writing the last block will take care of accounting for already 352 * unused blocks instead. 353 */ 354 if (!READ_ONCE(rtg->rtg_open_zone)) 355 xfs_zone_account_reclaimable(rtg, len); 356 xfs_add_frextents(mp, len); 357 xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE); 358 return 0; 359 } 360 361 /* 362 * Check if the zone containing the data just before the offset we are 363 * writing to is still open and has space. 364 */ 365 static struct xfs_open_zone * 366 xfs_last_used_zone( 367 struct iomap_ioend *ioend) 368 { 369 struct xfs_inode *ip = XFS_I(ioend->io_inode); 370 struct xfs_mount *mp = ip->i_mount; 371 xfs_fileoff_t offset_fsb = XFS_B_TO_FSB(mp, ioend->io_offset); 372 struct xfs_rtgroup *rtg = NULL; 373 struct xfs_open_zone *oz = NULL; 374 struct xfs_iext_cursor icur; 375 struct xfs_bmbt_irec got; 376 377 xfs_ilock(ip, XFS_ILOCK_SHARED); 378 if (!xfs_iext_lookup_extent_before(ip, &ip->i_df, &offset_fsb, 379 &icur, &got)) { 380 xfs_iunlock(ip, XFS_ILOCK_SHARED); 381 return NULL; 382 } 383 xfs_iunlock(ip, XFS_ILOCK_SHARED); 384 385 rtg = xfs_rtgroup_grab(mp, xfs_rtb_to_rgno(mp, got.br_startblock)); 386 if (!rtg) 387 return NULL; 388 389 xfs_ilock(rtg_rmap(rtg), XFS_ILOCK_SHARED); 390 oz = READ_ONCE(rtg->rtg_open_zone); 391 if (oz && (oz->oz_is_gc || !atomic_inc_not_zero(&oz->oz_ref))) 392 oz = NULL; 393 xfs_iunlock(rtg_rmap(rtg), XFS_ILOCK_SHARED); 394 395 xfs_rtgroup_rele(rtg); 396 return oz; 397 } 398 399 static struct xfs_group * 400 xfs_find_free_zone( 401 struct xfs_mount *mp, 402 unsigned long start, 403 unsigned long end) 404 { 405 struct xfs_zone_info *zi = mp->m_zone_info; 406 XA_STATE (xas, &mp->m_groups[XG_TYPE_RTG].xa, start); 407 struct xfs_group *xg; 408 409 xas_lock(&xas); 410 xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE) 411 if (atomic_inc_not_zero(&xg->xg_active_ref)) 412 goto found; 413 xas_unlock(&xas); 414 return NULL; 415 416 found: 417 xas_clear_mark(&xas, XFS_RTG_FREE); 418 atomic_dec(&zi->zi_nr_free_zones); 419 zi->zi_free_zone_cursor = xg->xg_gno; 420 xas_unlock(&xas); 421 return xg; 422 } 423 424 static struct xfs_open_zone * 425 xfs_init_open_zone( 426 struct xfs_rtgroup *rtg, 427 xfs_rgblock_t write_pointer, 428 enum rw_hint write_hint, 429 bool is_gc) 430 { 431 struct xfs_open_zone *oz; 432 433 oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL); 434 spin_lock_init(&oz->oz_alloc_lock); 435 atomic_set(&oz->oz_ref, 1); 436 oz->oz_rtg = rtg; 437 oz->oz_allocated = write_pointer; 438 oz->oz_written = write_pointer; 439 oz->oz_write_hint = write_hint; 440 oz->oz_is_gc = is_gc; 441 442 /* 443 * All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap 444 * inode, but we don't really want to take that here because we are 445 * under the zone_list_lock. Ensure the pointer is only set for a fully 446 * initialized open zone structure so that a racy lookup finding it is 447 * fine. 448 */ 449 WRITE_ONCE(rtg->rtg_open_zone, oz); 450 return oz; 451 } 452 453 /* 454 * Find a completely free zone, open it, and return a reference. 455 */ 456 struct xfs_open_zone * 457 xfs_open_zone( 458 struct xfs_mount *mp, 459 enum rw_hint write_hint, 460 bool is_gc) 461 { 462 struct xfs_zone_info *zi = mp->m_zone_info; 463 struct xfs_group *xg; 464 465 xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX); 466 if (!xg) 467 xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor); 468 if (!xg) 469 return NULL; 470 471 set_current_state(TASK_RUNNING); 472 return xfs_init_open_zone(to_rtg(xg), 0, write_hint, is_gc); 473 } 474 475 static struct xfs_open_zone * 476 xfs_try_open_zone( 477 struct xfs_mount *mp, 478 enum rw_hint write_hint) 479 { 480 struct xfs_zone_info *zi = mp->m_zone_info; 481 struct xfs_open_zone *oz; 482 483 if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES) 484 return NULL; 485 if (atomic_read(&zi->zi_nr_free_zones) < 486 XFS_GC_ZONES - XFS_OPEN_GC_ZONES) 487 return NULL; 488 489 /* 490 * Increment the open zone count to reserve our slot before dropping 491 * zi_open_zones_lock. 492 */ 493 zi->zi_nr_open_zones++; 494 spin_unlock(&zi->zi_open_zones_lock); 495 oz = xfs_open_zone(mp, write_hint, false); 496 spin_lock(&zi->zi_open_zones_lock); 497 if (!oz) { 498 zi->zi_nr_open_zones--; 499 return NULL; 500 } 501 502 atomic_inc(&oz->oz_ref); 503 list_add_tail(&oz->oz_entry, &zi->zi_open_zones); 504 505 /* 506 * If this was the last free zone, other waiters might be waiting 507 * on us to write to it as well. 508 */ 509 wake_up_all(&zi->zi_zone_wait); 510 511 if (xfs_zoned_need_gc(mp)) 512 wake_up_process(zi->zi_gc_thread); 513 514 trace_xfs_zone_opened(oz->oz_rtg); 515 return oz; 516 } 517 518 /* 519 * For data with short or medium lifetime, try to colocated it into an 520 * already open zone with a matching temperature. 521 */ 522 static bool 523 xfs_colocate_eagerly( 524 enum rw_hint file_hint) 525 { 526 switch (file_hint) { 527 case WRITE_LIFE_MEDIUM: 528 case WRITE_LIFE_SHORT: 529 case WRITE_LIFE_NONE: 530 return true; 531 default: 532 return false; 533 } 534 } 535 536 static bool 537 xfs_good_hint_match( 538 struct xfs_open_zone *oz, 539 enum rw_hint file_hint) 540 { 541 switch (oz->oz_write_hint) { 542 case WRITE_LIFE_LONG: 543 case WRITE_LIFE_EXTREME: 544 /* colocate long and extreme */ 545 if (file_hint == WRITE_LIFE_LONG || 546 file_hint == WRITE_LIFE_EXTREME) 547 return true; 548 break; 549 case WRITE_LIFE_MEDIUM: 550 /* colocate medium with medium */ 551 if (file_hint == WRITE_LIFE_MEDIUM) 552 return true; 553 break; 554 case WRITE_LIFE_SHORT: 555 case WRITE_LIFE_NONE: 556 case WRITE_LIFE_NOT_SET: 557 /* colocate short and none */ 558 if (file_hint <= WRITE_LIFE_SHORT) 559 return true; 560 break; 561 } 562 return false; 563 } 564 565 static bool 566 xfs_try_use_zone( 567 struct xfs_zone_info *zi, 568 enum rw_hint file_hint, 569 struct xfs_open_zone *oz, 570 bool lowspace) 571 { 572 if (oz->oz_allocated == rtg_blocks(oz->oz_rtg)) 573 return false; 574 if (!lowspace && !xfs_good_hint_match(oz, file_hint)) 575 return false; 576 if (!atomic_inc_not_zero(&oz->oz_ref)) 577 return false; 578 579 /* 580 * If we have a hint set for the data, use that for the zone even if 581 * some data was written already without any hint set, but don't change 582 * the temperature after that as that would make little sense without 583 * tracking per-temperature class written block counts, which is 584 * probably overkill anyway. 585 */ 586 if (file_hint != WRITE_LIFE_NOT_SET && 587 oz->oz_write_hint == WRITE_LIFE_NOT_SET) 588 oz->oz_write_hint = file_hint; 589 590 /* 591 * If we couldn't match by inode or life time we just pick the first 592 * zone with enough space above. For that we want the least busy zone 593 * for some definition of "least" busy. For now this simple LRU 594 * algorithm that rotates every zone to the end of the list will do it, 595 * even if it isn't exactly cache friendly. 596 */ 597 if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones)) 598 list_move_tail(&oz->oz_entry, &zi->zi_open_zones); 599 return true; 600 } 601 602 static struct xfs_open_zone * 603 xfs_select_open_zone_lru( 604 struct xfs_zone_info *zi, 605 enum rw_hint file_hint, 606 bool lowspace) 607 { 608 struct xfs_open_zone *oz; 609 610 lockdep_assert_held(&zi->zi_open_zones_lock); 611 612 list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) 613 if (xfs_try_use_zone(zi, file_hint, oz, lowspace)) 614 return oz; 615 616 cond_resched_lock(&zi->zi_open_zones_lock); 617 return NULL; 618 } 619 620 static struct xfs_open_zone * 621 xfs_select_open_zone_mru( 622 struct xfs_zone_info *zi, 623 enum rw_hint file_hint) 624 { 625 struct xfs_open_zone *oz; 626 627 lockdep_assert_held(&zi->zi_open_zones_lock); 628 629 list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry) 630 if (xfs_try_use_zone(zi, file_hint, oz, false)) 631 return oz; 632 633 cond_resched_lock(&zi->zi_open_zones_lock); 634 return NULL; 635 } 636 637 static inline enum rw_hint xfs_inode_write_hint(struct xfs_inode *ip) 638 { 639 if (xfs_has_nolifetime(ip->i_mount)) 640 return WRITE_LIFE_NOT_SET; 641 return VFS_I(ip)->i_write_hint; 642 } 643 644 /* 645 * Try to pack inodes that are written back after they were closed tight instead 646 * of trying to open new zones for them or spread them to the least recently 647 * used zone. This optimizes the data layout for workloads that untar or copy 648 * a lot of small files. Right now this does not separate multiple such 649 * streams. 650 */ 651 static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip) 652 { 653 return !inode_is_open_for_write(VFS_I(ip)) && 654 !(ip->i_diflags & XFS_DIFLAG_APPEND); 655 } 656 657 static struct xfs_open_zone * 658 xfs_select_zone_nowait( 659 struct xfs_mount *mp, 660 enum rw_hint write_hint, 661 bool pack_tight) 662 { 663 struct xfs_zone_info *zi = mp->m_zone_info; 664 struct xfs_open_zone *oz = NULL; 665 666 if (xfs_is_shutdown(mp)) 667 return NULL; 668 669 /* 670 * Try to fill up open zones with matching temperature if available. It 671 * is better to try to co-locate data when this is favorable, so we can 672 * activate empty zones when it is statistically better to separate 673 * data. 674 */ 675 spin_lock(&zi->zi_open_zones_lock); 676 if (xfs_colocate_eagerly(write_hint)) 677 oz = xfs_select_open_zone_lru(zi, write_hint, false); 678 else if (pack_tight) 679 oz = xfs_select_open_zone_mru(zi, write_hint); 680 if (oz) 681 goto out_unlock; 682 683 /* 684 * See if we can open a new zone and use that so that data for different 685 * files is mixed as little as possible. 686 */ 687 oz = xfs_try_open_zone(mp, write_hint); 688 if (oz) 689 goto out_unlock; 690 691 /* 692 * Try to colocate cold data with other cold data if we failed to open a 693 * new zone for it. 694 */ 695 if (write_hint != WRITE_LIFE_NOT_SET && 696 !xfs_colocate_eagerly(write_hint)) 697 oz = xfs_select_open_zone_lru(zi, write_hint, false); 698 if (!oz) 699 oz = xfs_select_open_zone_lru(zi, WRITE_LIFE_NOT_SET, false); 700 if (!oz) 701 oz = xfs_select_open_zone_lru(zi, WRITE_LIFE_NOT_SET, true); 702 out_unlock: 703 spin_unlock(&zi->zi_open_zones_lock); 704 return oz; 705 } 706 707 static struct xfs_open_zone * 708 xfs_select_zone( 709 struct xfs_mount *mp, 710 enum rw_hint write_hint, 711 bool pack_tight) 712 { 713 struct xfs_zone_info *zi = mp->m_zone_info; 714 DEFINE_WAIT (wait); 715 struct xfs_open_zone *oz; 716 717 oz = xfs_select_zone_nowait(mp, write_hint, pack_tight); 718 if (oz) 719 return oz; 720 721 for (;;) { 722 prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE); 723 oz = xfs_select_zone_nowait(mp, write_hint, pack_tight); 724 if (oz || xfs_is_shutdown(mp)) 725 break; 726 schedule(); 727 } 728 finish_wait(&zi->zi_zone_wait, &wait); 729 return oz; 730 } 731 732 static unsigned int 733 xfs_zone_alloc_blocks( 734 struct xfs_open_zone *oz, 735 xfs_filblks_t count_fsb, 736 sector_t *sector, 737 bool *is_seq) 738 { 739 struct xfs_rtgroup *rtg = oz->oz_rtg; 740 struct xfs_mount *mp = rtg_mount(rtg); 741 xfs_rgblock_t allocated; 742 743 spin_lock(&oz->oz_alloc_lock); 744 count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN, 745 (xfs_filblks_t)rtg_blocks(rtg) - oz->oz_allocated); 746 if (!count_fsb) { 747 spin_unlock(&oz->oz_alloc_lock); 748 return 0; 749 } 750 allocated = oz->oz_allocated; 751 oz->oz_allocated += count_fsb; 752 spin_unlock(&oz->oz_alloc_lock); 753 754 trace_xfs_zone_alloc_blocks(oz, allocated, count_fsb); 755 756 *sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0); 757 *is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector); 758 if (!*is_seq) 759 *sector += XFS_FSB_TO_BB(mp, allocated); 760 return XFS_FSB_TO_B(mp, count_fsb); 761 } 762 763 void 764 xfs_mark_rtg_boundary( 765 struct iomap_ioend *ioend) 766 { 767 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 768 sector_t sector = ioend->io_bio.bi_iter.bi_sector; 769 770 if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0) 771 ioend->io_flags |= IOMAP_IOEND_BOUNDARY; 772 } 773 774 /* 775 * Cache the last zone written to for an inode so that it is considered first 776 * for subsequent writes. 777 */ 778 struct xfs_zone_cache_item { 779 struct xfs_mru_cache_elem mru; 780 struct xfs_open_zone *oz; 781 }; 782 783 static inline struct xfs_zone_cache_item * 784 xfs_zone_cache_item(struct xfs_mru_cache_elem *mru) 785 { 786 return container_of(mru, struct xfs_zone_cache_item, mru); 787 } 788 789 static void 790 xfs_zone_cache_free_func( 791 void *data, 792 struct xfs_mru_cache_elem *mru) 793 { 794 struct xfs_zone_cache_item *item = xfs_zone_cache_item(mru); 795 796 xfs_open_zone_put(item->oz); 797 kfree(item); 798 } 799 800 /* 801 * Check if we have a cached last open zone available for the inode and 802 * if yes return a reference to it. 803 */ 804 static struct xfs_open_zone * 805 xfs_cached_zone( 806 struct xfs_mount *mp, 807 struct xfs_inode *ip) 808 { 809 struct xfs_mru_cache_elem *mru; 810 struct xfs_open_zone *oz; 811 812 mru = xfs_mru_cache_lookup(mp->m_zone_cache, ip->i_ino); 813 if (!mru) 814 return NULL; 815 oz = xfs_zone_cache_item(mru)->oz; 816 if (oz) { 817 /* 818 * GC only steals open zones at mount time, so no GC zones 819 * should end up in the cache. 820 */ 821 ASSERT(!oz->oz_is_gc); 822 ASSERT(atomic_read(&oz->oz_ref) > 0); 823 atomic_inc(&oz->oz_ref); 824 } 825 xfs_mru_cache_done(mp->m_zone_cache); 826 return oz; 827 } 828 829 /* 830 * Update the last used zone cache for a given inode. 831 * 832 * The caller must have a reference on the open zone. 833 */ 834 static void 835 xfs_zone_cache_create_association( 836 struct xfs_inode *ip, 837 struct xfs_open_zone *oz) 838 { 839 struct xfs_mount *mp = ip->i_mount; 840 struct xfs_zone_cache_item *item = NULL; 841 struct xfs_mru_cache_elem *mru; 842 843 ASSERT(atomic_read(&oz->oz_ref) > 0); 844 atomic_inc(&oz->oz_ref); 845 846 mru = xfs_mru_cache_lookup(mp->m_zone_cache, ip->i_ino); 847 if (mru) { 848 /* 849 * If we have an association already, update it to point to the 850 * new zone. 851 */ 852 item = xfs_zone_cache_item(mru); 853 xfs_open_zone_put(item->oz); 854 item->oz = oz; 855 xfs_mru_cache_done(mp->m_zone_cache); 856 return; 857 } 858 859 item = kmalloc(sizeof(*item), GFP_KERNEL); 860 if (!item) { 861 xfs_open_zone_put(oz); 862 return; 863 } 864 item->oz = oz; 865 xfs_mru_cache_insert(mp->m_zone_cache, ip->i_ino, &item->mru); 866 } 867 868 static void 869 xfs_submit_zoned_bio( 870 struct iomap_ioend *ioend, 871 struct xfs_open_zone *oz, 872 bool is_seq) 873 { 874 ioend->io_bio.bi_iter.bi_sector = ioend->io_sector; 875 ioend->io_private = oz; 876 atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */ 877 878 if (is_seq) { 879 ioend->io_bio.bi_opf &= ~REQ_OP_WRITE; 880 ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND; 881 } else { 882 xfs_mark_rtg_boundary(ioend); 883 } 884 885 submit_bio(&ioend->io_bio); 886 } 887 888 void 889 xfs_zone_alloc_and_submit( 890 struct iomap_ioend *ioend, 891 struct xfs_open_zone **oz) 892 { 893 struct xfs_inode *ip = XFS_I(ioend->io_inode); 894 struct xfs_mount *mp = ip->i_mount; 895 enum rw_hint write_hint = xfs_inode_write_hint(ip); 896 bool pack_tight = xfs_zoned_pack_tight(ip); 897 unsigned int alloc_len; 898 struct iomap_ioend *split; 899 bool is_seq; 900 901 if (xfs_is_shutdown(mp)) 902 goto out_error; 903 904 /* 905 * If we don't have a cached zone in this write context, see if the 906 * last extent before the one we are writing to points to an active 907 * zone. If so, just continue writing to it. 908 */ 909 if (!*oz && ioend->io_offset) 910 *oz = xfs_last_used_zone(ioend); 911 if (!*oz) 912 *oz = xfs_cached_zone(mp, ip); 913 914 if (!*oz) { 915 select_zone: 916 *oz = xfs_select_zone(mp, write_hint, pack_tight); 917 if (!*oz) 918 goto out_error; 919 920 xfs_zone_cache_create_association(ip, *oz); 921 } 922 923 alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size), 924 &ioend->io_sector, &is_seq); 925 if (!alloc_len) { 926 xfs_open_zone_put(*oz); 927 goto select_zone; 928 } 929 930 while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) { 931 if (IS_ERR(split)) 932 goto out_split_error; 933 alloc_len -= split->io_bio.bi_iter.bi_size; 934 xfs_submit_zoned_bio(split, *oz, is_seq); 935 if (!alloc_len) { 936 xfs_open_zone_put(*oz); 937 goto select_zone; 938 } 939 } 940 941 xfs_submit_zoned_bio(ioend, *oz, is_seq); 942 return; 943 944 out_split_error: 945 ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split)); 946 out_error: 947 bio_io_error(&ioend->io_bio); 948 } 949 950 /* 951 * Wake up all threads waiting for a zoned space allocation when the file system 952 * is shut down. 953 */ 954 void 955 xfs_zoned_wake_all( 956 struct xfs_mount *mp) 957 { 958 /* 959 * Don't wake up if there is no m_zone_info. This is complicated by the 960 * fact that unmount can't atomically clear m_zone_info and thus we need 961 * to check SB_ACTIVE for that, but mount temporarily enables SB_ACTIVE 962 * during log recovery so we can't entirely rely on that either. 963 */ 964 if ((mp->m_super->s_flags & SB_ACTIVE) && mp->m_zone_info) 965 wake_up_all(&mp->m_zone_info->zi_zone_wait); 966 } 967 968 /* 969 * Check if @rgbno in @rgb is a potentially valid block. It might still be 970 * unused, but that information is only found in the rmap. 971 */ 972 bool 973 xfs_zone_rgbno_is_valid( 974 struct xfs_rtgroup *rtg, 975 xfs_rgnumber_t rgbno) 976 { 977 lockdep_assert_held(&rtg_rmap(rtg)->i_lock); 978 979 if (rtg->rtg_open_zone) 980 return rgbno < rtg->rtg_open_zone->oz_allocated; 981 return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa, 982 rtg_rgno(rtg), XFS_RTG_FREE); 983 } 984 985 static void 986 xfs_free_open_zones( 987 struct xfs_zone_info *zi) 988 { 989 struct xfs_open_zone *oz; 990 991 spin_lock(&zi->zi_open_zones_lock); 992 while ((oz = list_first_entry_or_null(&zi->zi_open_zones, 993 struct xfs_open_zone, oz_entry))) { 994 list_del(&oz->oz_entry); 995 xfs_open_zone_put(oz); 996 } 997 spin_unlock(&zi->zi_open_zones_lock); 998 } 999 1000 struct xfs_init_zones { 1001 struct xfs_mount *mp; 1002 uint64_t available; 1003 uint64_t reclaimable; 1004 }; 1005 1006 static int 1007 xfs_init_zone( 1008 struct xfs_init_zones *iz, 1009 struct xfs_rtgroup *rtg, 1010 struct blk_zone *zone) 1011 { 1012 struct xfs_mount *mp = rtg_mount(rtg); 1013 struct xfs_zone_info *zi = mp->m_zone_info; 1014 uint32_t used = rtg_rmap(rtg)->i_used_blocks; 1015 xfs_rgblock_t write_pointer, highest_rgbno; 1016 int error; 1017 1018 if (zone && !xfs_zone_validate(zone, rtg, &write_pointer)) 1019 return -EFSCORRUPTED; 1020 1021 /* 1022 * For sequential write required zones we retrieved the hardware write 1023 * pointer above. 1024 * 1025 * For conventional zones or conventional devices we don't have that 1026 * luxury. Instead query the rmap to find the highest recorded block 1027 * and set the write pointer to the block after that. In case of a 1028 * power loss this misses blocks where the data I/O has completed but 1029 * not recorded in the rmap yet, and it also rewrites blocks if the most 1030 * recently written ones got deleted again before unmount, but this is 1031 * the best we can do without hardware support. 1032 */ 1033 if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) { 1034 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP); 1035 highest_rgbno = xfs_rtrmap_highest_rgbno(rtg); 1036 if (highest_rgbno == NULLRGBLOCK) 1037 write_pointer = 0; 1038 else 1039 write_pointer = highest_rgbno + 1; 1040 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP); 1041 } 1042 1043 /* 1044 * If there are no used blocks, but the zone is not in empty state yet 1045 * we lost power before the zoned reset. In that case finish the work 1046 * here. 1047 */ 1048 if (write_pointer == rtg_blocks(rtg) && used == 0) { 1049 error = xfs_zone_gc_reset_sync(rtg); 1050 if (error) 1051 return error; 1052 write_pointer = 0; 1053 } 1054 1055 if (write_pointer == 0) { 1056 /* zone is empty */ 1057 atomic_inc(&zi->zi_nr_free_zones); 1058 xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE); 1059 iz->available += rtg_blocks(rtg); 1060 } else if (write_pointer < rtg_blocks(rtg)) { 1061 /* zone is open */ 1062 struct xfs_open_zone *oz; 1063 1064 atomic_inc(&rtg_group(rtg)->xg_active_ref); 1065 oz = xfs_init_open_zone(rtg, write_pointer, WRITE_LIFE_NOT_SET, 1066 false); 1067 list_add_tail(&oz->oz_entry, &zi->zi_open_zones); 1068 zi->zi_nr_open_zones++; 1069 1070 iz->available += (rtg_blocks(rtg) - write_pointer); 1071 iz->reclaimable += write_pointer - used; 1072 } else if (used < rtg_blocks(rtg)) { 1073 /* zone fully written, but has freed blocks */ 1074 xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used); 1075 iz->reclaimable += (rtg_blocks(rtg) - used); 1076 } 1077 1078 return 0; 1079 } 1080 1081 static int 1082 xfs_get_zone_info_cb( 1083 struct blk_zone *zone, 1084 unsigned int idx, 1085 void *data) 1086 { 1087 struct xfs_init_zones *iz = data; 1088 struct xfs_mount *mp = iz->mp; 1089 xfs_fsblock_t zsbno = xfs_daddr_to_rtb(mp, zone->start); 1090 xfs_rgnumber_t rgno; 1091 struct xfs_rtgroup *rtg; 1092 int error; 1093 1094 if (xfs_rtb_to_rgbno(mp, zsbno) != 0) { 1095 xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno); 1096 return -EFSCORRUPTED; 1097 } 1098 1099 rgno = xfs_rtb_to_rgno(mp, zsbno); 1100 rtg = xfs_rtgroup_grab(mp, rgno); 1101 if (!rtg) { 1102 xfs_warn(mp, "realtime group not found for zone %u.", rgno); 1103 return -EFSCORRUPTED; 1104 } 1105 error = xfs_init_zone(iz, rtg, zone); 1106 xfs_rtgroup_rele(rtg); 1107 return error; 1108 } 1109 1110 /* 1111 * Calculate the max open zone limit based on the of number of backing zones 1112 * available. 1113 */ 1114 static inline uint32_t 1115 xfs_max_open_zones( 1116 struct xfs_mount *mp) 1117 { 1118 unsigned int max_open, max_open_data_zones; 1119 1120 /* 1121 * We need two zones for every open data zone, one in reserve as we 1122 * don't reclaim open zones. One data zone and its spare is included 1123 * in XFS_MIN_ZONES to support at least one user data writer. 1124 */ 1125 max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1; 1126 max_open = max_open_data_zones + XFS_OPEN_GC_ZONES; 1127 1128 /* 1129 * Cap the max open limit to 1/4 of available space. Without this we'd 1130 * run out of easy reclaim targets too quickly and storage devices don't 1131 * handle huge numbers of concurrent write streams overly well. 1132 */ 1133 max_open = min(max_open, mp->m_sb.sb_rgcount / 4); 1134 1135 return max(XFS_MIN_OPEN_ZONES, max_open); 1136 } 1137 1138 /* 1139 * Normally we use the open zone limit that the device reports. If there is 1140 * none let the user pick one from the command line. 1141 * 1142 * If the device doesn't report an open zone limit and there is no override, 1143 * allow to hold about a quarter of the zones open. In theory we could allow 1144 * all to be open, but at that point we run into GC deadlocks because we can't 1145 * reclaim open zones. 1146 * 1147 * When used on conventional SSDs a lower open limit is advisable as we'll 1148 * otherwise overwhelm the FTL just as much as a conventional block allocator. 1149 * 1150 * Note: To debug the open zone management code, force max_open to 1 here. 1151 */ 1152 static int 1153 xfs_calc_open_zones( 1154 struct xfs_mount *mp) 1155 { 1156 struct block_device *bdev = mp->m_rtdev_targp->bt_bdev; 1157 unsigned int bdev_open_zones = bdev_max_open_zones(bdev); 1158 1159 if (!mp->m_max_open_zones) { 1160 if (bdev_open_zones) 1161 mp->m_max_open_zones = bdev_open_zones; 1162 else 1163 mp->m_max_open_zones = xfs_max_open_zones(mp); 1164 } 1165 1166 if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) { 1167 xfs_notice(mp, "need at least %u open zones.", 1168 XFS_MIN_OPEN_ZONES); 1169 return -EIO; 1170 } 1171 1172 if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) { 1173 mp->m_max_open_zones = bdev_open_zones; 1174 xfs_info(mp, "limiting open zones to %u due to hardware limit.\n", 1175 bdev_open_zones); 1176 } 1177 1178 if (mp->m_max_open_zones > xfs_max_open_zones(mp)) { 1179 mp->m_max_open_zones = xfs_max_open_zones(mp); 1180 xfs_info(mp, 1181 "limiting open zones to %u due to total zone count (%u)", 1182 mp->m_max_open_zones, mp->m_sb.sb_rgcount); 1183 } 1184 1185 return 0; 1186 } 1187 1188 static unsigned long * 1189 xfs_alloc_bucket_bitmap( 1190 struct xfs_mount *mp) 1191 { 1192 return kvmalloc_array(BITS_TO_LONGS(mp->m_sb.sb_rgcount), 1193 sizeof(unsigned long), GFP_KERNEL | __GFP_ZERO); 1194 } 1195 1196 static struct xfs_zone_info * 1197 xfs_alloc_zone_info( 1198 struct xfs_mount *mp) 1199 { 1200 struct xfs_zone_info *zi; 1201 int i; 1202 1203 zi = kzalloc(sizeof(*zi), GFP_KERNEL); 1204 if (!zi) 1205 return NULL; 1206 INIT_LIST_HEAD(&zi->zi_open_zones); 1207 INIT_LIST_HEAD(&zi->zi_reclaim_reservations); 1208 spin_lock_init(&zi->zi_reset_list_lock); 1209 spin_lock_init(&zi->zi_open_zones_lock); 1210 spin_lock_init(&zi->zi_reservation_lock); 1211 init_waitqueue_head(&zi->zi_zone_wait); 1212 spin_lock_init(&zi->zi_used_buckets_lock); 1213 for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++) { 1214 zi->zi_used_bucket_bitmap[i] = xfs_alloc_bucket_bitmap(mp); 1215 if (!zi->zi_used_bucket_bitmap[i]) 1216 goto out_free_bitmaps; 1217 } 1218 return zi; 1219 1220 out_free_bitmaps: 1221 while (--i > 0) 1222 kvfree(zi->zi_used_bucket_bitmap[i]); 1223 kfree(zi); 1224 return NULL; 1225 } 1226 1227 static void 1228 xfs_free_zone_info( 1229 struct xfs_zone_info *zi) 1230 { 1231 int i; 1232 1233 xfs_free_open_zones(zi); 1234 for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++) 1235 kvfree(zi->zi_used_bucket_bitmap[i]); 1236 kfree(zi); 1237 } 1238 1239 int 1240 xfs_mount_zones( 1241 struct xfs_mount *mp) 1242 { 1243 struct xfs_init_zones iz = { 1244 .mp = mp, 1245 }; 1246 struct xfs_buftarg *bt = mp->m_rtdev_targp; 1247 int error; 1248 1249 if (!bt) { 1250 xfs_notice(mp, "RT device missing."); 1251 return -EINVAL; 1252 } 1253 1254 if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) { 1255 xfs_notice(mp, "invalid flag combination."); 1256 return -EFSCORRUPTED; 1257 } 1258 if (mp->m_sb.sb_rextsize != 1) { 1259 xfs_notice(mp, "zoned file systems do not support rextsize."); 1260 return -EFSCORRUPTED; 1261 } 1262 if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) { 1263 xfs_notice(mp, 1264 "zoned file systems need to have at least %u zones.", XFS_MIN_ZONES); 1265 return -EFSCORRUPTED; 1266 } 1267 1268 error = xfs_calc_open_zones(mp); 1269 if (error) 1270 return error; 1271 1272 mp->m_zone_info = xfs_alloc_zone_info(mp); 1273 if (!mp->m_zone_info) 1274 return -ENOMEM; 1275 1276 xfs_info(mp, "%u zones of %u blocks size (%u max open)", 1277 mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks, 1278 mp->m_max_open_zones); 1279 trace_xfs_zones_mount(mp); 1280 1281 if (bdev_is_zoned(bt->bt_bdev)) { 1282 error = blkdev_report_zones(bt->bt_bdev, 1283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart), 1284 mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz); 1285 if (error < 0) 1286 goto out_free_zone_info; 1287 } else { 1288 struct xfs_rtgroup *rtg = NULL; 1289 1290 while ((rtg = xfs_rtgroup_next(mp, rtg))) { 1291 error = xfs_init_zone(&iz, rtg, NULL); 1292 if (error) 1293 goto out_free_zone_info; 1294 } 1295 } 1296 1297 xfs_set_freecounter(mp, XC_FREE_RTAVAILABLE, iz.available); 1298 xfs_set_freecounter(mp, XC_FREE_RTEXTENTS, 1299 iz.available + iz.reclaimable); 1300 1301 /* 1302 * The user may configure GC to free up a percentage of unused blocks. 1303 * By default this is 0. GC will always trigger at the minimum level 1304 * for keeping max_open_zones available for data placement. 1305 */ 1306 mp->m_zonegc_low_space = 0; 1307 1308 error = xfs_zone_gc_mount(mp); 1309 if (error) 1310 goto out_free_zone_info; 1311 1312 /* 1313 * Set up a mru cache to track inode to open zone for data placement 1314 * purposes. The magic values for group count and life time is the 1315 * same as the defaults for file streams, which seems sane enough. 1316 */ 1317 xfs_mru_cache_create(&mp->m_zone_cache, mp, 1318 5000, 10, xfs_zone_cache_free_func); 1319 return 0; 1320 1321 out_free_zone_info: 1322 xfs_free_zone_info(mp->m_zone_info); 1323 return error; 1324 } 1325 1326 void 1327 xfs_unmount_zones( 1328 struct xfs_mount *mp) 1329 { 1330 xfs_zone_gc_unmount(mp); 1331 xfs_free_zone_info(mp->m_zone_info); 1332 xfs_mru_cache_destroy(mp->m_zone_cache); 1333 } 1334