1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * Copyright (c) 2008 Dave Chinner 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 22 #ifdef DEBUG 23 /* 24 * Check that the list is sorted as it should be. 25 * 26 * Called with the ail lock held, but we don't want to assert fail with it 27 * held otherwise we'll lock everything up and won't be able to debug the 28 * cause. Hence we sample and check the state under the AIL lock and return if 29 * everything is fine, otherwise we drop the lock and run the ASSERT checks. 30 * Asserts may not be fatal, so pick the lock back up and continue onwards. 31 */ 32 STATIC void 33 xfs_ail_check( 34 struct xfs_ail *ailp, 35 struct xfs_log_item *lip) 36 __must_hold(&ailp->ail_lock) 37 { 38 struct xfs_log_item *prev_lip; 39 struct xfs_log_item *next_lip; 40 xfs_lsn_t prev_lsn = NULLCOMMITLSN; 41 xfs_lsn_t next_lsn = NULLCOMMITLSN; 42 xfs_lsn_t lsn; 43 bool in_ail; 44 45 46 if (list_empty(&ailp->ail_head)) 47 return; 48 49 /* 50 * Sample then check the next and previous entries are valid. 51 */ 52 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags); 53 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail); 54 if (&prev_lip->li_ail != &ailp->ail_head) 55 prev_lsn = prev_lip->li_lsn; 56 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail); 57 if (&next_lip->li_ail != &ailp->ail_head) 58 next_lsn = next_lip->li_lsn; 59 lsn = lip->li_lsn; 60 61 if (in_ail && 62 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) && 63 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0)) 64 return; 65 66 spin_unlock(&ailp->ail_lock); 67 ASSERT(in_ail); 68 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0); 69 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0); 70 spin_lock(&ailp->ail_lock); 71 } 72 #else /* !DEBUG */ 73 #define xfs_ail_check(a,l) 74 #endif /* DEBUG */ 75 76 /* 77 * Return a pointer to the last item in the AIL. If the AIL is empty, then 78 * return NULL. 79 */ 80 static struct xfs_log_item * 81 xfs_ail_max( 82 struct xfs_ail *ailp) 83 { 84 if (list_empty(&ailp->ail_head)) 85 return NULL; 86 87 return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail); 88 } 89 90 /* 91 * Return a pointer to the item which follows the given item in the AIL. If 92 * the given item is the last item in the list, then return NULL. 93 */ 94 static struct xfs_log_item * 95 xfs_ail_next( 96 struct xfs_ail *ailp, 97 struct xfs_log_item *lip) 98 { 99 if (lip->li_ail.next == &ailp->ail_head) 100 return NULL; 101 102 return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail); 103 } 104 105 /* 106 * This is called by the log manager code to determine the LSN of the tail of 107 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 108 * is empty, then this function returns 0. 109 * 110 * We need the AIL lock in order to get a coherent read of the lsn of the last 111 * item in the AIL. 112 */ 113 static xfs_lsn_t 114 __xfs_ail_min_lsn( 115 struct xfs_ail *ailp) 116 { 117 struct xfs_log_item *lip = xfs_ail_min(ailp); 118 119 if (lip) 120 return lip->li_lsn; 121 return 0; 122 } 123 124 xfs_lsn_t 125 xfs_ail_min_lsn( 126 struct xfs_ail *ailp) 127 { 128 xfs_lsn_t lsn; 129 130 spin_lock(&ailp->ail_lock); 131 lsn = __xfs_ail_min_lsn(ailp); 132 spin_unlock(&ailp->ail_lock); 133 134 return lsn; 135 } 136 137 /* 138 * The cursor keeps track of where our current traversal is up to by tracking 139 * the next item in the list for us. However, for this to be safe, removing an 140 * object from the AIL needs to invalidate any cursor that points to it. hence 141 * the traversal cursor needs to be linked to the struct xfs_ail so that 142 * deletion can search all the active cursors for invalidation. 143 */ 144 STATIC void 145 xfs_trans_ail_cursor_init( 146 struct xfs_ail *ailp, 147 struct xfs_ail_cursor *cur) 148 { 149 cur->item = NULL; 150 list_add_tail(&cur->list, &ailp->ail_cursors); 151 } 152 153 /* 154 * Get the next item in the traversal and advance the cursor. If the cursor 155 * was invalidated (indicated by a lip of 1), restart the traversal. 156 */ 157 struct xfs_log_item * 158 xfs_trans_ail_cursor_next( 159 struct xfs_ail *ailp, 160 struct xfs_ail_cursor *cur) 161 { 162 struct xfs_log_item *lip = cur->item; 163 164 if ((uintptr_t)lip & 1) 165 lip = xfs_ail_min(ailp); 166 if (lip) 167 cur->item = xfs_ail_next(ailp, lip); 168 return lip; 169 } 170 171 /* 172 * When the traversal is complete, we need to remove the cursor from the list 173 * of traversing cursors. 174 */ 175 void 176 xfs_trans_ail_cursor_done( 177 struct xfs_ail_cursor *cur) 178 { 179 cur->item = NULL; 180 list_del_init(&cur->list); 181 } 182 183 /* 184 * Invalidate any cursor that is pointing to this item. This is called when an 185 * item is removed from the AIL. Any cursor pointing to this object is now 186 * invalid and the traversal needs to be terminated so it doesn't reference a 187 * freed object. We set the low bit of the cursor item pointer so we can 188 * distinguish between an invalidation and the end of the list when getting the 189 * next item from the cursor. 190 */ 191 STATIC void 192 xfs_trans_ail_cursor_clear( 193 struct xfs_ail *ailp, 194 struct xfs_log_item *lip) 195 { 196 struct xfs_ail_cursor *cur; 197 198 list_for_each_entry(cur, &ailp->ail_cursors, list) { 199 if (cur->item == lip) 200 cur->item = (struct xfs_log_item *) 201 ((uintptr_t)cur->item | 1); 202 } 203 } 204 205 /* 206 * Find the first item in the AIL with the given @lsn by searching in ascending 207 * LSN order and initialise the cursor to point to the next item for a 208 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 209 * first item in the AIL. Returns NULL if the list is empty. 210 */ 211 struct xfs_log_item * 212 xfs_trans_ail_cursor_first( 213 struct xfs_ail *ailp, 214 struct xfs_ail_cursor *cur, 215 xfs_lsn_t lsn) 216 { 217 struct xfs_log_item *lip; 218 219 xfs_trans_ail_cursor_init(ailp, cur); 220 221 if (lsn == 0) { 222 lip = xfs_ail_min(ailp); 223 goto out; 224 } 225 226 list_for_each_entry(lip, &ailp->ail_head, li_ail) { 227 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 228 goto out; 229 } 230 return NULL; 231 232 out: 233 if (lip) 234 cur->item = xfs_ail_next(ailp, lip); 235 return lip; 236 } 237 238 static struct xfs_log_item * 239 __xfs_trans_ail_cursor_last( 240 struct xfs_ail *ailp, 241 xfs_lsn_t lsn) 242 { 243 struct xfs_log_item *lip; 244 245 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) { 246 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 247 return lip; 248 } 249 return NULL; 250 } 251 252 /* 253 * Find the last item in the AIL with the given @lsn by searching in descending 254 * LSN order and initialise the cursor to point to that item. If there is no 255 * item with the value of @lsn, then it sets the cursor to the last item with an 256 * LSN lower than @lsn. Returns NULL if the list is empty. 257 */ 258 struct xfs_log_item * 259 xfs_trans_ail_cursor_last( 260 struct xfs_ail *ailp, 261 struct xfs_ail_cursor *cur, 262 xfs_lsn_t lsn) 263 { 264 xfs_trans_ail_cursor_init(ailp, cur); 265 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 266 return cur->item; 267 } 268 269 /* 270 * Splice the log item list into the AIL at the given LSN. We splice to the 271 * tail of the given LSN to maintain insert order for push traversals. The 272 * cursor is optional, allowing repeated updates to the same LSN to avoid 273 * repeated traversals. This should not be called with an empty list. 274 */ 275 static void 276 xfs_ail_splice( 277 struct xfs_ail *ailp, 278 struct xfs_ail_cursor *cur, 279 struct list_head *list, 280 xfs_lsn_t lsn) 281 { 282 struct xfs_log_item *lip; 283 284 ASSERT(!list_empty(list)); 285 286 /* 287 * Use the cursor to determine the insertion point if one is 288 * provided. If not, or if the one we got is not valid, 289 * find the place in the AIL where the items belong. 290 */ 291 lip = cur ? cur->item : NULL; 292 if (!lip || (uintptr_t)lip & 1) 293 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 294 295 /* 296 * If a cursor is provided, we know we're processing the AIL 297 * in lsn order, and future items to be spliced in will 298 * follow the last one being inserted now. Update the 299 * cursor to point to that last item, now while we have a 300 * reliable pointer to it. 301 */ 302 if (cur) 303 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 304 305 /* 306 * Finally perform the splice. Unless the AIL was empty, 307 * lip points to the item in the AIL _after_ which the new 308 * items should go. If lip is null the AIL was empty, so 309 * the new items go at the head of the AIL. 310 */ 311 if (lip) 312 list_splice(list, &lip->li_ail); 313 else 314 list_splice(list, &ailp->ail_head); 315 } 316 317 /* 318 * Delete the given item from the AIL. Return a pointer to the item. 319 */ 320 static void 321 xfs_ail_delete( 322 struct xfs_ail *ailp, 323 struct xfs_log_item *lip) 324 { 325 xfs_ail_check(ailp, lip); 326 list_del(&lip->li_ail); 327 xfs_trans_ail_cursor_clear(ailp, lip); 328 } 329 330 /* 331 * Requeue a failed buffer for writeback. 332 * 333 * We clear the log item failed state here as well, but we have to be careful 334 * about reference counts because the only active reference counts on the buffer 335 * may be the failed log items. Hence if we clear the log item failed state 336 * before queuing the buffer for IO we can release all active references to 337 * the buffer and free it, leading to use after free problems in 338 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which 339 * order we process them in - the buffer is locked, and we own the buffer list 340 * so nothing on them is going to change while we are performing this action. 341 * 342 * Hence we can safely queue the buffer for IO before we clear the failed log 343 * item state, therefore always having an active reference to the buffer and 344 * avoiding the transient zero-reference state that leads to use-after-free. 345 */ 346 static inline int 347 xfsaild_resubmit_item( 348 struct xfs_log_item *lip, 349 struct list_head *buffer_list) 350 { 351 struct xfs_buf *bp = lip->li_buf; 352 353 if (!xfs_buf_trylock(bp)) 354 return XFS_ITEM_LOCKED; 355 356 if (!xfs_buf_delwri_queue(bp, buffer_list)) { 357 xfs_buf_unlock(bp); 358 return XFS_ITEM_FLUSHING; 359 } 360 361 /* protected by ail_lock */ 362 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 363 if (bp->b_flags & _XBF_INODES) 364 clear_bit(XFS_LI_FAILED, &lip->li_flags); 365 else 366 xfs_clear_li_failed(lip); 367 } 368 369 xfs_buf_unlock(bp); 370 return XFS_ITEM_SUCCESS; 371 } 372 373 static inline uint 374 xfsaild_push_item( 375 struct xfs_ail *ailp, 376 struct xfs_log_item *lip) 377 { 378 /* 379 * If log item pinning is enabled, skip the push and track the item as 380 * pinned. This can help induce head-behind-tail conditions. 381 */ 382 if (XFS_TEST_ERROR(false, ailp->ail_log->l_mp, XFS_ERRTAG_LOG_ITEM_PIN)) 383 return XFS_ITEM_PINNED; 384 385 /* 386 * Consider the item pinned if a push callback is not defined so the 387 * caller will force the log. This should only happen for intent items 388 * as they are unpinned once the associated done item is committed to 389 * the on-disk log. 390 */ 391 if (!lip->li_ops->iop_push) 392 return XFS_ITEM_PINNED; 393 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) 394 return xfsaild_resubmit_item(lip, &ailp->ail_buf_list); 395 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list); 396 } 397 398 /* 399 * Compute the LSN that we'd need to push the log tail towards in order to have 400 * at least 25% of the log space free. If the log free space already meets this 401 * threshold, this function returns the lowest LSN in the AIL to slowly keep 402 * writeback ticking over and the tail of the log moving forward. 403 */ 404 static xfs_lsn_t 405 xfs_ail_calc_push_target( 406 struct xfs_ail *ailp) 407 { 408 struct xlog *log = ailp->ail_log; 409 struct xfs_log_item *lip; 410 xfs_lsn_t target_lsn; 411 xfs_lsn_t max_lsn; 412 xfs_lsn_t min_lsn; 413 int32_t free_bytes; 414 uint32_t target_block; 415 uint32_t target_cycle; 416 417 lockdep_assert_held(&ailp->ail_lock); 418 419 lip = xfs_ail_max(ailp); 420 if (!lip) 421 return NULLCOMMITLSN; 422 423 max_lsn = lip->li_lsn; 424 min_lsn = __xfs_ail_min_lsn(ailp); 425 426 /* 427 * If we are supposed to push all the items in the AIL, we want to push 428 * to the current head. We then clear the push flag so that we don't 429 * keep pushing newly queued items beyond where the push all command was 430 * run. If the push waiter wants to empty the ail, it should queue 431 * itself on the ail_empty wait queue. 432 */ 433 if (test_and_clear_bit(XFS_AIL_OPSTATE_PUSH_ALL, &ailp->ail_opstate)) 434 return max_lsn; 435 436 /* If someone wants the AIL empty, keep pushing everything we have. */ 437 if (waitqueue_active(&ailp->ail_empty)) 438 return max_lsn; 439 440 /* 441 * Background pushing - attempt to keep 25% of the log free and if we 442 * have that much free retain the existing target. 443 */ 444 free_bytes = log->l_logsize - xlog_lsn_sub(log, max_lsn, min_lsn); 445 if (free_bytes >= log->l_logsize >> 2) 446 return ailp->ail_target; 447 448 target_cycle = CYCLE_LSN(min_lsn); 449 target_block = BLOCK_LSN(min_lsn) + (log->l_logBBsize >> 2); 450 if (target_block >= log->l_logBBsize) { 451 target_block -= log->l_logBBsize; 452 target_cycle += 1; 453 } 454 target_lsn = xlog_assign_lsn(target_cycle, target_block); 455 456 /* Cap the target to the highest LSN known to be in the AIL. */ 457 if (XFS_LSN_CMP(target_lsn, max_lsn) > 0) 458 return max_lsn; 459 460 /* If the existing target is higher than the new target, keep it. */ 461 if (XFS_LSN_CMP(ailp->ail_target, target_lsn) >= 0) 462 return ailp->ail_target; 463 return target_lsn; 464 } 465 466 static long 467 xfsaild_push( 468 struct xfs_ail *ailp) 469 { 470 struct xfs_mount *mp = ailp->ail_log->l_mp; 471 struct xfs_ail_cursor cur; 472 struct xfs_log_item *lip; 473 xfs_lsn_t lsn; 474 long tout; 475 int stuck = 0; 476 int flushing = 0; 477 int count = 0; 478 479 /* 480 * If we encountered pinned items or did not finish writing out all 481 * buffers the last time we ran, force a background CIL push to get the 482 * items unpinned in the near future. We do not wait on the CIL push as 483 * that could stall us for seconds if there is enough background IO 484 * load. Stalling for that long when the tail of the log is pinned and 485 * needs flushing will hard stop the transaction subsystem when log 486 * space runs out. 487 */ 488 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 && 489 (!list_empty_careful(&ailp->ail_buf_list) || 490 xfs_ail_min_lsn(ailp))) { 491 ailp->ail_log_flush = 0; 492 493 XFS_STATS_INC(mp, xs_push_ail_flush); 494 xlog_cil_flush(ailp->ail_log); 495 } 496 497 spin_lock(&ailp->ail_lock); 498 WRITE_ONCE(ailp->ail_target, xfs_ail_calc_push_target(ailp)); 499 if (ailp->ail_target == NULLCOMMITLSN) 500 goto out_done; 501 502 /* we're done if the AIL is empty or our push has reached the end */ 503 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn); 504 if (!lip) 505 goto out_done_cursor; 506 507 XFS_STATS_INC(mp, xs_push_ail); 508 509 ASSERT(ailp->ail_target != NULLCOMMITLSN); 510 511 lsn = lip->li_lsn; 512 while ((XFS_LSN_CMP(lip->li_lsn, ailp->ail_target) <= 0)) { 513 int lock_result; 514 515 if (test_bit(XFS_LI_FLUSHING, &lip->li_flags)) 516 goto next_item; 517 518 /* 519 * Note that iop_push may unlock and reacquire the AIL lock. We 520 * rely on the AIL cursor implementation to be able to deal with 521 * the dropped lock. 522 */ 523 lock_result = xfsaild_push_item(ailp, lip); 524 switch (lock_result) { 525 case XFS_ITEM_SUCCESS: 526 XFS_STATS_INC(mp, xs_push_ail_success); 527 trace_xfs_ail_push(lip); 528 529 ailp->ail_last_pushed_lsn = lsn; 530 break; 531 532 case XFS_ITEM_FLUSHING: 533 /* 534 * The item or its backing buffer is already being 535 * flushed. The typical reason for that is that an 536 * inode buffer is locked because we already pushed the 537 * updates to it as part of inode clustering. 538 * 539 * We do not want to stop flushing just because lots 540 * of items are already being flushed, but we need to 541 * re-try the flushing relatively soon if most of the 542 * AIL is being flushed. 543 */ 544 XFS_STATS_INC(mp, xs_push_ail_flushing); 545 trace_xfs_ail_flushing(lip); 546 547 flushing++; 548 ailp->ail_last_pushed_lsn = lsn; 549 break; 550 551 case XFS_ITEM_PINNED: 552 XFS_STATS_INC(mp, xs_push_ail_pinned); 553 trace_xfs_ail_pinned(lip); 554 555 stuck++; 556 ailp->ail_log_flush++; 557 break; 558 case XFS_ITEM_LOCKED: 559 XFS_STATS_INC(mp, xs_push_ail_locked); 560 trace_xfs_ail_locked(lip); 561 562 stuck++; 563 break; 564 default: 565 ASSERT(0); 566 break; 567 } 568 569 count++; 570 571 /* 572 * Are there too many items we can't do anything with? 573 * 574 * If we are skipping too many items because we can't flush 575 * them or they are already being flushed, we back off and 576 * given them time to complete whatever operation is being 577 * done. i.e. remove pressure from the AIL while we can't make 578 * progress so traversals don't slow down further inserts and 579 * removals to/from the AIL. 580 * 581 * The value of 100 is an arbitrary magic number based on 582 * observation. 583 */ 584 if (stuck > 100) 585 break; 586 587 next_item: 588 lip = xfs_trans_ail_cursor_next(ailp, &cur); 589 if (lip == NULL) 590 break; 591 if (lip->li_lsn != lsn && count > 1000) 592 break; 593 lsn = lip->li_lsn; 594 } 595 596 out_done_cursor: 597 xfs_trans_ail_cursor_done(&cur); 598 out_done: 599 spin_unlock(&ailp->ail_lock); 600 601 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list)) 602 ailp->ail_log_flush++; 603 604 if (!count || XFS_LSN_CMP(lsn, ailp->ail_target) >= 0) { 605 /* 606 * We reached the target or the AIL is empty, so wait a bit 607 * longer for I/O to complete and remove pushed items from the 608 * AIL before we start the next scan from the start of the AIL. 609 */ 610 tout = 50; 611 ailp->ail_last_pushed_lsn = 0; 612 } else if (((stuck + flushing) * 100) / count > 90) { 613 /* 614 * Either there is a lot of contention on the AIL or we are 615 * stuck due to operations in progress. "Stuck" in this case 616 * is defined as >90% of the items we tried to push were stuck. 617 * 618 * Backoff a bit more to allow some I/O to complete before 619 * restarting from the start of the AIL. This prevents us from 620 * spinning on the same items, and if they are pinned will all 621 * the restart to issue a log force to unpin the stuck items. 622 */ 623 tout = 20; 624 ailp->ail_last_pushed_lsn = 0; 625 } else { 626 /* 627 * Assume we have more work to do in a short while. 628 */ 629 tout = 0; 630 } 631 632 return tout; 633 } 634 635 static int 636 xfsaild( 637 void *data) 638 { 639 struct xfs_ail *ailp = data; 640 long tout = 0; /* milliseconds */ 641 unsigned int noreclaim_flag; 642 643 noreclaim_flag = memalloc_noreclaim_save(); 644 set_freezable(); 645 646 while (1) { 647 if (tout) 648 set_current_state(TASK_KILLABLE|TASK_FREEZABLE); 649 else 650 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 651 652 /* 653 * Check kthread_should_stop() after we set the task state to 654 * guarantee that we either see the stop bit and exit or the 655 * task state is reset to runnable such that it's not scheduled 656 * out indefinitely and detects the stop bit at next iteration. 657 * A memory barrier is included in above task state set to 658 * serialize again kthread_stop(). 659 */ 660 if (kthread_should_stop()) { 661 __set_current_state(TASK_RUNNING); 662 663 /* 664 * The caller forces out the AIL before stopping the 665 * thread in the common case, which means the delwri 666 * queue is drained. In the shutdown case, the queue may 667 * still hold relogged buffers that haven't been 668 * submitted because they were pinned since added to the 669 * queue. 670 * 671 * Log I/O error processing stales the underlying buffer 672 * and clears the delwri state, expecting the buf to be 673 * removed on the next submission attempt. That won't 674 * happen if we're shutting down, so this is the last 675 * opportunity to release such buffers from the queue. 676 */ 677 ASSERT(list_empty(&ailp->ail_buf_list) || 678 xlog_is_shutdown(ailp->ail_log)); 679 xfs_buf_delwri_cancel(&ailp->ail_buf_list); 680 break; 681 } 682 683 /* Idle if the AIL is empty. */ 684 spin_lock(&ailp->ail_lock); 685 if (!xfs_ail_min(ailp) && list_empty(&ailp->ail_buf_list)) { 686 spin_unlock(&ailp->ail_lock); 687 schedule(); 688 tout = 0; 689 continue; 690 } 691 spin_unlock(&ailp->ail_lock); 692 693 if (tout) 694 schedule_timeout(msecs_to_jiffies(tout)); 695 696 __set_current_state(TASK_RUNNING); 697 698 try_to_freeze(); 699 700 tout = xfsaild_push(ailp); 701 } 702 703 memalloc_noreclaim_restore(noreclaim_flag); 704 return 0; 705 } 706 707 /* 708 * Push out all items in the AIL immediately and wait until the AIL is empty. 709 */ 710 void 711 xfs_ail_push_all_sync( 712 struct xfs_ail *ailp) 713 { 714 DEFINE_WAIT(wait); 715 716 spin_lock(&ailp->ail_lock); 717 while (xfs_ail_max(ailp) != NULL) { 718 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE); 719 wake_up_process(ailp->ail_task); 720 spin_unlock(&ailp->ail_lock); 721 schedule(); 722 spin_lock(&ailp->ail_lock); 723 } 724 spin_unlock(&ailp->ail_lock); 725 726 finish_wait(&ailp->ail_empty, &wait); 727 } 728 729 void 730 __xfs_ail_assign_tail_lsn( 731 struct xfs_ail *ailp) 732 { 733 struct xlog *log = ailp->ail_log; 734 xfs_lsn_t tail_lsn; 735 736 assert_spin_locked(&ailp->ail_lock); 737 738 if (xlog_is_shutdown(log)) 739 return; 740 741 tail_lsn = __xfs_ail_min_lsn(ailp); 742 if (!tail_lsn) 743 tail_lsn = ailp->ail_head_lsn; 744 745 WRITE_ONCE(log->l_tail_space, 746 xlog_lsn_sub(log, ailp->ail_head_lsn, tail_lsn)); 747 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 748 atomic64_set(&log->l_tail_lsn, tail_lsn); 749 } 750 751 /* 752 * Callers should pass the original tail lsn so that we can detect if the tail 753 * has moved as a result of the operation that was performed. If the caller 754 * needs to force a tail space update, it should pass NULLCOMMITLSN to bypass 755 * the "did the tail LSN change?" checks. If the caller wants to avoid a tail 756 * update (e.g. it knows the tail did not change) it should pass an @old_lsn of 757 * 0. 758 */ 759 void 760 xfs_ail_update_finish( 761 struct xfs_ail *ailp, 762 xfs_lsn_t old_lsn) __releases(ailp->ail_lock) 763 { 764 struct xlog *log = ailp->ail_log; 765 766 /* If the tail lsn hasn't changed, don't do updates or wakeups. */ 767 if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) { 768 spin_unlock(&ailp->ail_lock); 769 return; 770 } 771 772 __xfs_ail_assign_tail_lsn(ailp); 773 if (list_empty(&ailp->ail_head)) 774 wake_up_all(&ailp->ail_empty); 775 spin_unlock(&ailp->ail_lock); 776 xfs_log_space_wake(log->l_mp); 777 } 778 779 /* 780 * xfs_trans_ail_update - bulk AIL insertion operation. 781 * 782 * @xfs_trans_ail_update takes an array of log items that all need to be 783 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 784 * be added. Otherwise, it will be repositioned by removing it and re-adding 785 * it to the AIL. If we move the first item in the AIL, update the log tail to 786 * match the new minimum LSN in the AIL. 787 * 788 * This function takes the AIL lock once to execute the update operations on 789 * all the items in the array, and as such should not be called with the AIL 790 * lock held. As a result, once we have the AIL lock, we need to check each log 791 * item LSN to confirm it needs to be moved forward in the AIL. 792 * 793 * To optimise the insert operation, we delete all the items from the AIL in 794 * the first pass, moving them into a temporary list, then splice the temporary 795 * list into the correct position in the AIL. This avoids needing to do an 796 * insert operation on every item. 797 * 798 * This function must be called with the AIL lock held. The lock is dropped 799 * before returning. 800 */ 801 void 802 xfs_trans_ail_update_bulk( 803 struct xfs_ail *ailp, 804 struct xfs_ail_cursor *cur, 805 struct xfs_log_item **log_items, 806 int nr_items, 807 xfs_lsn_t lsn) __releases(ailp->ail_lock) 808 { 809 struct xfs_log_item *mlip; 810 xfs_lsn_t tail_lsn = 0; 811 int i; 812 LIST_HEAD(tmp); 813 814 ASSERT(nr_items > 0); /* Not required, but true. */ 815 mlip = xfs_ail_min(ailp); 816 817 for (i = 0; i < nr_items; i++) { 818 struct xfs_log_item *lip = log_items[i]; 819 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 820 /* check if we really need to move the item */ 821 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 822 continue; 823 824 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 825 if (mlip == lip && !tail_lsn) 826 tail_lsn = lip->li_lsn; 827 828 xfs_ail_delete(ailp, lip); 829 } else { 830 trace_xfs_ail_insert(lip, 0, lsn); 831 } 832 lip->li_lsn = lsn; 833 list_add_tail(&lip->li_ail, &tmp); 834 } 835 836 if (!list_empty(&tmp)) 837 xfs_ail_splice(ailp, cur, &tmp, lsn); 838 839 /* 840 * If this is the first insert, wake up the push daemon so it can 841 * actively scan for items to push. We also need to do a log tail 842 * LSN update to ensure that it is correctly tracked by the log, so 843 * set the tail_lsn to NULLCOMMITLSN so that xfs_ail_update_finish() 844 * will see that the tail lsn has changed and will update the tail 845 * appropriately. 846 */ 847 if (!mlip) { 848 wake_up_process(ailp->ail_task); 849 tail_lsn = NULLCOMMITLSN; 850 } 851 852 xfs_ail_update_finish(ailp, tail_lsn); 853 } 854 855 /* Insert a log item into the AIL. */ 856 void 857 xfs_trans_ail_insert( 858 struct xfs_ail *ailp, 859 struct xfs_log_item *lip, 860 xfs_lsn_t lsn) 861 { 862 spin_lock(&ailp->ail_lock); 863 xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn); 864 } 865 866 /* 867 * Delete one log item from the AIL. 868 * 869 * If this item was at the tail of the AIL, return the LSN of the log item so 870 * that we can use it to check if the LSN of the tail of the log has moved 871 * when finishing up the AIL delete process in xfs_ail_update_finish(). 872 */ 873 xfs_lsn_t 874 xfs_ail_delete_one( 875 struct xfs_ail *ailp, 876 struct xfs_log_item *lip) 877 { 878 struct xfs_log_item *mlip = xfs_ail_min(ailp); 879 xfs_lsn_t lsn = lip->li_lsn; 880 881 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 882 xfs_ail_delete(ailp, lip); 883 clear_bit(XFS_LI_IN_AIL, &lip->li_flags); 884 lip->li_lsn = 0; 885 886 if (mlip == lip) 887 return lsn; 888 return 0; 889 } 890 891 void 892 xfs_trans_ail_delete( 893 struct xfs_log_item *lip, 894 int shutdown_type) 895 { 896 struct xfs_ail *ailp = lip->li_ailp; 897 struct xlog *log = ailp->ail_log; 898 xfs_lsn_t tail_lsn; 899 900 spin_lock(&ailp->ail_lock); 901 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 902 spin_unlock(&ailp->ail_lock); 903 if (shutdown_type && !xlog_is_shutdown(log)) { 904 xfs_alert_tag(log->l_mp, XFS_PTAG_AILDELETE, 905 "%s: attempting to delete a log item that is not in the AIL", 906 __func__); 907 xlog_force_shutdown(log, shutdown_type); 908 } 909 return; 910 } 911 912 /* xfs_ail_update_finish() drops the AIL lock */ 913 xfs_clear_li_failed(lip); 914 tail_lsn = xfs_ail_delete_one(ailp, lip); 915 xfs_ail_update_finish(ailp, tail_lsn); 916 } 917 918 int 919 xfs_trans_ail_init( 920 xfs_mount_t *mp) 921 { 922 struct xfs_ail *ailp; 923 924 ailp = kzalloc(sizeof(struct xfs_ail), 925 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 926 if (!ailp) 927 return -ENOMEM; 928 929 ailp->ail_log = mp->m_log; 930 INIT_LIST_HEAD(&ailp->ail_head); 931 INIT_LIST_HEAD(&ailp->ail_cursors); 932 spin_lock_init(&ailp->ail_lock); 933 INIT_LIST_HEAD(&ailp->ail_buf_list); 934 init_waitqueue_head(&ailp->ail_empty); 935 936 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 937 mp->m_super->s_id); 938 if (IS_ERR(ailp->ail_task)) 939 goto out_free_ailp; 940 941 mp->m_ail = ailp; 942 return 0; 943 944 out_free_ailp: 945 kfree(ailp); 946 return -ENOMEM; 947 } 948 949 void 950 xfs_trans_ail_destroy( 951 xfs_mount_t *mp) 952 { 953 struct xfs_ail *ailp = mp->m_ail; 954 955 kthread_stop(ailp->ail_task); 956 kfree(ailp); 957 } 958