xref: /linux/fs/xfs/xfs_trans_ail.c (revision 3a546a67a4cc251b4ec2ba02d8f7aacf0bfc3148)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * Copyright (c) 2008 Dave Chinner
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 
22 #ifdef DEBUG
23 /*
24  * Check that the list is sorted as it should be.
25  *
26  * Called with the ail lock held, but we don't want to assert fail with it
27  * held otherwise we'll lock everything up and won't be able to debug the
28  * cause. Hence we sample and check the state under the AIL lock and return if
29  * everything is fine, otherwise we drop the lock and run the ASSERT checks.
30  * Asserts may not be fatal, so pick the lock back up and continue onwards.
31  */
32 STATIC void
33 xfs_ail_check(
34 	struct xfs_ail		*ailp,
35 	struct xfs_log_item	*lip)
36 	__must_hold(&ailp->ail_lock)
37 {
38 	struct xfs_log_item	*prev_lip;
39 	struct xfs_log_item	*next_lip;
40 	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
41 	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
42 	xfs_lsn_t		lsn;
43 	bool			in_ail;
44 
45 
46 	if (list_empty(&ailp->ail_head))
47 		return;
48 
49 	/*
50 	 * Sample then check the next and previous entries are valid.
51 	 */
52 	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
53 	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
54 	if (&prev_lip->li_ail != &ailp->ail_head)
55 		prev_lsn = prev_lip->li_lsn;
56 	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
57 	if (&next_lip->li_ail != &ailp->ail_head)
58 		next_lsn = next_lip->li_lsn;
59 	lsn = lip->li_lsn;
60 
61 	if (in_ail &&
62 	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
63 	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
64 		return;
65 
66 	spin_unlock(&ailp->ail_lock);
67 	ASSERT(in_ail);
68 	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
69 	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
70 	spin_lock(&ailp->ail_lock);
71 }
72 #else /* !DEBUG */
73 #define	xfs_ail_check(a,l)
74 #endif /* DEBUG */
75 
76 /*
77  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
78  * return NULL.
79  */
80 static struct xfs_log_item *
81 xfs_ail_max(
82 	struct xfs_ail  *ailp)
83 {
84 	if (list_empty(&ailp->ail_head))
85 		return NULL;
86 
87 	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
88 }
89 
90 /*
91  * Return a pointer to the item which follows the given item in the AIL.  If
92  * the given item is the last item in the list, then return NULL.
93  */
94 static struct xfs_log_item *
95 xfs_ail_next(
96 	struct xfs_ail		*ailp,
97 	struct xfs_log_item	*lip)
98 {
99 	if (lip->li_ail.next == &ailp->ail_head)
100 		return NULL;
101 
102 	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
103 }
104 
105 /*
106  * This is called by the log manager code to determine the LSN of the tail of
107  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
108  * is empty, then this function returns 0.
109  *
110  * We need the AIL lock in order to get a coherent read of the lsn of the last
111  * item in the AIL.
112  */
113 static xfs_lsn_t
114 __xfs_ail_min_lsn(
115 	struct xfs_ail		*ailp)
116 {
117 	struct xfs_log_item	*lip = xfs_ail_min(ailp);
118 
119 	if (lip)
120 		return lip->li_lsn;
121 	return 0;
122 }
123 
124 xfs_lsn_t
125 xfs_ail_min_lsn(
126 	struct xfs_ail		*ailp)
127 {
128 	xfs_lsn_t		lsn;
129 
130 	spin_lock(&ailp->ail_lock);
131 	lsn = __xfs_ail_min_lsn(ailp);
132 	spin_unlock(&ailp->ail_lock);
133 
134 	return lsn;
135 }
136 
137 /*
138  * The cursor keeps track of where our current traversal is up to by tracking
139  * the next item in the list for us. However, for this to be safe, removing an
140  * object from the AIL needs to invalidate any cursor that points to it. hence
141  * the traversal cursor needs to be linked to the struct xfs_ail so that
142  * deletion can search all the active cursors for invalidation.
143  */
144 STATIC void
145 xfs_trans_ail_cursor_init(
146 	struct xfs_ail		*ailp,
147 	struct xfs_ail_cursor	*cur)
148 {
149 	cur->item = NULL;
150 	list_add_tail(&cur->list, &ailp->ail_cursors);
151 }
152 
153 /*
154  * Get the next item in the traversal and advance the cursor.  If the cursor
155  * was invalidated (indicated by a lip of 1), restart the traversal.
156  */
157 struct xfs_log_item *
158 xfs_trans_ail_cursor_next(
159 	struct xfs_ail		*ailp,
160 	struct xfs_ail_cursor	*cur)
161 {
162 	struct xfs_log_item	*lip = cur->item;
163 
164 	if ((uintptr_t)lip & 1)
165 		lip = xfs_ail_min(ailp);
166 	if (lip)
167 		cur->item = xfs_ail_next(ailp, lip);
168 	return lip;
169 }
170 
171 /*
172  * When the traversal is complete, we need to remove the cursor from the list
173  * of traversing cursors.
174  */
175 void
176 xfs_trans_ail_cursor_done(
177 	struct xfs_ail_cursor	*cur)
178 {
179 	cur->item = NULL;
180 	list_del_init(&cur->list);
181 }
182 
183 /*
184  * Invalidate any cursor that is pointing to this item. This is called when an
185  * item is removed from the AIL. Any cursor pointing to this object is now
186  * invalid and the traversal needs to be terminated so it doesn't reference a
187  * freed object. We set the low bit of the cursor item pointer so we can
188  * distinguish between an invalidation and the end of the list when getting the
189  * next item from the cursor.
190  */
191 STATIC void
192 xfs_trans_ail_cursor_clear(
193 	struct xfs_ail		*ailp,
194 	struct xfs_log_item	*lip)
195 {
196 	struct xfs_ail_cursor	*cur;
197 
198 	list_for_each_entry(cur, &ailp->ail_cursors, list) {
199 		if (cur->item == lip)
200 			cur->item = (struct xfs_log_item *)
201 					((uintptr_t)cur->item | 1);
202 	}
203 }
204 
205 /*
206  * Find the first item in the AIL with the given @lsn by searching in ascending
207  * LSN order and initialise the cursor to point to the next item for a
208  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
209  * first item in the AIL. Returns NULL if the list is empty.
210  */
211 struct xfs_log_item *
212 xfs_trans_ail_cursor_first(
213 	struct xfs_ail		*ailp,
214 	struct xfs_ail_cursor	*cur,
215 	xfs_lsn_t		lsn)
216 {
217 	struct xfs_log_item	*lip;
218 
219 	xfs_trans_ail_cursor_init(ailp, cur);
220 
221 	if (lsn == 0) {
222 		lip = xfs_ail_min(ailp);
223 		goto out;
224 	}
225 
226 	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
227 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
228 			goto out;
229 	}
230 	return NULL;
231 
232 out:
233 	if (lip)
234 		cur->item = xfs_ail_next(ailp, lip);
235 	return lip;
236 }
237 
238 static struct xfs_log_item *
239 __xfs_trans_ail_cursor_last(
240 	struct xfs_ail		*ailp,
241 	xfs_lsn_t		lsn)
242 {
243 	struct xfs_log_item	*lip;
244 
245 	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
246 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
247 			return lip;
248 	}
249 	return NULL;
250 }
251 
252 /*
253  * Find the last item in the AIL with the given @lsn by searching in descending
254  * LSN order and initialise the cursor to point to that item.  If there is no
255  * item with the value of @lsn, then it sets the cursor to the last item with an
256  * LSN lower than @lsn.  Returns NULL if the list is empty.
257  */
258 struct xfs_log_item *
259 xfs_trans_ail_cursor_last(
260 	struct xfs_ail		*ailp,
261 	struct xfs_ail_cursor	*cur,
262 	xfs_lsn_t		lsn)
263 {
264 	xfs_trans_ail_cursor_init(ailp, cur);
265 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
266 	return cur->item;
267 }
268 
269 /*
270  * Splice the log item list into the AIL at the given LSN. We splice to the
271  * tail of the given LSN to maintain insert order for push traversals. The
272  * cursor is optional, allowing repeated updates to the same LSN to avoid
273  * repeated traversals.  This should not be called with an empty list.
274  */
275 static void
276 xfs_ail_splice(
277 	struct xfs_ail		*ailp,
278 	struct xfs_ail_cursor	*cur,
279 	struct list_head	*list,
280 	xfs_lsn_t		lsn)
281 {
282 	struct xfs_log_item	*lip;
283 
284 	ASSERT(!list_empty(list));
285 
286 	/*
287 	 * Use the cursor to determine the insertion point if one is
288 	 * provided.  If not, or if the one we got is not valid,
289 	 * find the place in the AIL where the items belong.
290 	 */
291 	lip = cur ? cur->item : NULL;
292 	if (!lip || (uintptr_t)lip & 1)
293 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
294 
295 	/*
296 	 * If a cursor is provided, we know we're processing the AIL
297 	 * in lsn order, and future items to be spliced in will
298 	 * follow the last one being inserted now.  Update the
299 	 * cursor to point to that last item, now while we have a
300 	 * reliable pointer to it.
301 	 */
302 	if (cur)
303 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
304 
305 	/*
306 	 * Finally perform the splice.  Unless the AIL was empty,
307 	 * lip points to the item in the AIL _after_ which the new
308 	 * items should go.  If lip is null the AIL was empty, so
309 	 * the new items go at the head of the AIL.
310 	 */
311 	if (lip)
312 		list_splice(list, &lip->li_ail);
313 	else
314 		list_splice(list, &ailp->ail_head);
315 }
316 
317 /*
318  * Delete the given item from the AIL.  Return a pointer to the item.
319  */
320 static void
321 xfs_ail_delete(
322 	struct xfs_ail		*ailp,
323 	struct xfs_log_item	*lip)
324 {
325 	xfs_ail_check(ailp, lip);
326 	list_del(&lip->li_ail);
327 	xfs_trans_ail_cursor_clear(ailp, lip);
328 }
329 
330 /*
331  * Requeue a failed buffer for writeback.
332  *
333  * We clear the log item failed state here as well, but we have to be careful
334  * about reference counts because the only active reference counts on the buffer
335  * may be the failed log items. Hence if we clear the log item failed state
336  * before queuing the buffer for IO we can release all active references to
337  * the buffer and free it, leading to use after free problems in
338  * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
339  * order we process them in - the buffer is locked, and we own the buffer list
340  * so nothing on them is going to change while we are performing this action.
341  *
342  * Hence we can safely queue the buffer for IO before we clear the failed log
343  * item state, therefore  always having an active reference to the buffer and
344  * avoiding the transient zero-reference state that leads to use-after-free.
345  */
346 static inline int
347 xfsaild_resubmit_item(
348 	struct xfs_log_item	*lip,
349 	struct list_head	*buffer_list)
350 {
351 	struct xfs_buf		*bp = lip->li_buf;
352 
353 	if (!xfs_buf_trylock(bp))
354 		return XFS_ITEM_LOCKED;
355 
356 	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
357 		xfs_buf_unlock(bp);
358 		return XFS_ITEM_FLUSHING;
359 	}
360 
361 	/* protected by ail_lock */
362 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
363 		if (bp->b_flags & _XBF_INODES)
364 			clear_bit(XFS_LI_FAILED, &lip->li_flags);
365 		else
366 			xfs_clear_li_failed(lip);
367 	}
368 
369 	xfs_buf_unlock(bp);
370 	return XFS_ITEM_SUCCESS;
371 }
372 
373 static inline uint
374 xfsaild_push_item(
375 	struct xfs_ail		*ailp,
376 	struct xfs_log_item	*lip)
377 {
378 	/*
379 	 * If log item pinning is enabled, skip the push and track the item as
380 	 * pinned. This can help induce head-behind-tail conditions.
381 	 */
382 	if (XFS_TEST_ERROR(false, ailp->ail_log->l_mp, XFS_ERRTAG_LOG_ITEM_PIN))
383 		return XFS_ITEM_PINNED;
384 
385 	/*
386 	 * Consider the item pinned if a push callback is not defined so the
387 	 * caller will force the log. This should only happen for intent items
388 	 * as they are unpinned once the associated done item is committed to
389 	 * the on-disk log.
390 	 */
391 	if (!lip->li_ops->iop_push)
392 		return XFS_ITEM_PINNED;
393 	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
394 		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
395 	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
396 }
397 
398 /*
399  * Compute the LSN that we'd need to push the log tail towards in order to have
400  * at least 25% of the log space free.  If the log free space already meets this
401  * threshold, this function returns the lowest LSN in the AIL to slowly keep
402  * writeback ticking over and the tail of the log moving forward.
403  */
404 static xfs_lsn_t
405 xfs_ail_calc_push_target(
406 	struct xfs_ail		*ailp)
407 {
408 	struct xlog		*log = ailp->ail_log;
409 	struct xfs_log_item	*lip;
410 	xfs_lsn_t		target_lsn;
411 	xfs_lsn_t		max_lsn;
412 	xfs_lsn_t		min_lsn;
413 	int32_t			free_bytes;
414 	uint32_t		target_block;
415 	uint32_t		target_cycle;
416 
417 	lockdep_assert_held(&ailp->ail_lock);
418 
419 	lip = xfs_ail_max(ailp);
420 	if (!lip)
421 		return NULLCOMMITLSN;
422 
423 	max_lsn = lip->li_lsn;
424 	min_lsn = __xfs_ail_min_lsn(ailp);
425 
426 	/*
427 	 * If we are supposed to push all the items in the AIL, we want to push
428 	 * to the current head. We then clear the push flag so that we don't
429 	 * keep pushing newly queued items beyond where the push all command was
430 	 * run. If the push waiter wants to empty the ail, it should queue
431 	 * itself on the ail_empty wait queue.
432 	 */
433 	if (test_and_clear_bit(XFS_AIL_OPSTATE_PUSH_ALL, &ailp->ail_opstate))
434 		return max_lsn;
435 
436 	/* If someone wants the AIL empty, keep pushing everything we have. */
437 	if (waitqueue_active(&ailp->ail_empty))
438 		return max_lsn;
439 
440 	/*
441 	 * Background pushing - attempt to keep 25% of the log free and if we
442 	 * have that much free retain the existing target.
443 	 */
444 	free_bytes = log->l_logsize - xlog_lsn_sub(log, max_lsn, min_lsn);
445 	if (free_bytes >= log->l_logsize >> 2)
446 		return ailp->ail_target;
447 
448 	target_cycle = CYCLE_LSN(min_lsn);
449 	target_block = BLOCK_LSN(min_lsn) + (log->l_logBBsize >> 2);
450 	if (target_block >= log->l_logBBsize) {
451 		target_block -= log->l_logBBsize;
452 		target_cycle += 1;
453 	}
454 	target_lsn = xlog_assign_lsn(target_cycle, target_block);
455 
456 	/* Cap the target to the highest LSN known to be in the AIL. */
457 	if (XFS_LSN_CMP(target_lsn, max_lsn) > 0)
458 		return max_lsn;
459 
460 	/* If the existing target is higher than the new target, keep it. */
461 	if (XFS_LSN_CMP(ailp->ail_target, target_lsn) >= 0)
462 		return ailp->ail_target;
463 	return target_lsn;
464 }
465 
466 static long
467 xfsaild_push(
468 	struct xfs_ail		*ailp)
469 {
470 	struct xfs_mount	*mp = ailp->ail_log->l_mp;
471 	struct xfs_ail_cursor	cur;
472 	struct xfs_log_item	*lip;
473 	xfs_lsn_t		lsn;
474 	long			tout;
475 	int			stuck = 0;
476 	int			flushing = 0;
477 	int			count = 0;
478 
479 	/*
480 	 * If we encountered pinned items or did not finish writing out all
481 	 * buffers the last time we ran, force a background CIL push to get the
482 	 * items unpinned in the near future. We do not wait on the CIL push as
483 	 * that could stall us for seconds if there is enough background IO
484 	 * load. Stalling for that long when the tail of the log is pinned and
485 	 * needs flushing will hard stop the transaction subsystem when log
486 	 * space runs out.
487 	 */
488 	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
489 	    (!list_empty_careful(&ailp->ail_buf_list) ||
490 	     xfs_ail_min_lsn(ailp))) {
491 		ailp->ail_log_flush = 0;
492 
493 		XFS_STATS_INC(mp, xs_push_ail_flush);
494 		xlog_cil_flush(ailp->ail_log);
495 	}
496 
497 	spin_lock(&ailp->ail_lock);
498 	WRITE_ONCE(ailp->ail_target, xfs_ail_calc_push_target(ailp));
499 	if (ailp->ail_target == NULLCOMMITLSN)
500 		goto out_done;
501 
502 	/* we're done if the AIL is empty or our push has reached the end */
503 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
504 	if (!lip)
505 		goto out_done_cursor;
506 
507 	XFS_STATS_INC(mp, xs_push_ail);
508 
509 	ASSERT(ailp->ail_target != NULLCOMMITLSN);
510 
511 	lsn = lip->li_lsn;
512 	while ((XFS_LSN_CMP(lip->li_lsn, ailp->ail_target) <= 0)) {
513 		int	lock_result;
514 
515 		if (test_bit(XFS_LI_FLUSHING, &lip->li_flags))
516 			goto next_item;
517 
518 		/*
519 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
520 		 * rely on the AIL cursor implementation to be able to deal with
521 		 * the dropped lock.
522 		 */
523 		lock_result = xfsaild_push_item(ailp, lip);
524 		switch (lock_result) {
525 		case XFS_ITEM_SUCCESS:
526 			XFS_STATS_INC(mp, xs_push_ail_success);
527 			trace_xfs_ail_push(lip);
528 
529 			ailp->ail_last_pushed_lsn = lsn;
530 			break;
531 
532 		case XFS_ITEM_FLUSHING:
533 			/*
534 			 * The item or its backing buffer is already being
535 			 * flushed.  The typical reason for that is that an
536 			 * inode buffer is locked because we already pushed the
537 			 * updates to it as part of inode clustering.
538 			 *
539 			 * We do not want to stop flushing just because lots
540 			 * of items are already being flushed, but we need to
541 			 * re-try the flushing relatively soon if most of the
542 			 * AIL is being flushed.
543 			 */
544 			XFS_STATS_INC(mp, xs_push_ail_flushing);
545 			trace_xfs_ail_flushing(lip);
546 
547 			flushing++;
548 			ailp->ail_last_pushed_lsn = lsn;
549 			break;
550 
551 		case XFS_ITEM_PINNED:
552 			XFS_STATS_INC(mp, xs_push_ail_pinned);
553 			trace_xfs_ail_pinned(lip);
554 
555 			stuck++;
556 			ailp->ail_log_flush++;
557 			break;
558 		case XFS_ITEM_LOCKED:
559 			XFS_STATS_INC(mp, xs_push_ail_locked);
560 			trace_xfs_ail_locked(lip);
561 
562 			stuck++;
563 			break;
564 		default:
565 			ASSERT(0);
566 			break;
567 		}
568 
569 		count++;
570 
571 		/*
572 		 * Are there too many items we can't do anything with?
573 		 *
574 		 * If we are skipping too many items because we can't flush
575 		 * them or they are already being flushed, we back off and
576 		 * given them time to complete whatever operation is being
577 		 * done. i.e. remove pressure from the AIL while we can't make
578 		 * progress so traversals don't slow down further inserts and
579 		 * removals to/from the AIL.
580 		 *
581 		 * The value of 100 is an arbitrary magic number based on
582 		 * observation.
583 		 */
584 		if (stuck > 100)
585 			break;
586 
587 next_item:
588 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
589 		if (lip == NULL)
590 			break;
591 		if (lip->li_lsn != lsn && count > 1000)
592 			break;
593 		lsn = lip->li_lsn;
594 	}
595 
596 out_done_cursor:
597 	xfs_trans_ail_cursor_done(&cur);
598 out_done:
599 	spin_unlock(&ailp->ail_lock);
600 
601 	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
602 		ailp->ail_log_flush++;
603 
604 	if (!count || XFS_LSN_CMP(lsn, ailp->ail_target) >= 0) {
605 		/*
606 		 * We reached the target or the AIL is empty, so wait a bit
607 		 * longer for I/O to complete and remove pushed items from the
608 		 * AIL before we start the next scan from the start of the AIL.
609 		 */
610 		tout = 50;
611 		ailp->ail_last_pushed_lsn = 0;
612 	} else if (((stuck + flushing) * 100) / count > 90) {
613 		/*
614 		 * Either there is a lot of contention on the AIL or we are
615 		 * stuck due to operations in progress. "Stuck" in this case
616 		 * is defined as >90% of the items we tried to push were stuck.
617 		 *
618 		 * Backoff a bit more to allow some I/O to complete before
619 		 * restarting from the start of the AIL. This prevents us from
620 		 * spinning on the same items, and if they are pinned will all
621 		 * the restart to issue a log force to unpin the stuck items.
622 		 */
623 		tout = 20;
624 		ailp->ail_last_pushed_lsn = 0;
625 	} else {
626 		/*
627 		 * Assume we have more work to do in a short while.
628 		 */
629 		tout = 0;
630 	}
631 
632 	return tout;
633 }
634 
635 static int
636 xfsaild(
637 	void		*data)
638 {
639 	struct xfs_ail	*ailp = data;
640 	long		tout = 0;	/* milliseconds */
641 	unsigned int	noreclaim_flag;
642 
643 	noreclaim_flag = memalloc_noreclaim_save();
644 	set_freezable();
645 
646 	while (1) {
647 		/*
648 		 * Long waits of 50ms or more occur when we've run out of items
649 		 * to push, so we only want uninterruptible state if we're
650 		 * actually blocked on something.
651 		 */
652 		if (tout && tout <= 20)
653 			set_current_state(TASK_KILLABLE|TASK_FREEZABLE);
654 		else
655 			set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
656 
657 		/*
658 		 * Check kthread_should_stop() after we set the task state to
659 		 * guarantee that we either see the stop bit and exit or the
660 		 * task state is reset to runnable such that it's not scheduled
661 		 * out indefinitely and detects the stop bit at next iteration.
662 		 * A memory barrier is included in above task state set to
663 		 * serialize again kthread_stop().
664 		 */
665 		if (kthread_should_stop()) {
666 			__set_current_state(TASK_RUNNING);
667 
668 			/*
669 			 * The caller forces out the AIL before stopping the
670 			 * thread in the common case, which means the delwri
671 			 * queue is drained. In the shutdown case, the queue may
672 			 * still hold relogged buffers that haven't been
673 			 * submitted because they were pinned since added to the
674 			 * queue.
675 			 *
676 			 * Log I/O error processing stales the underlying buffer
677 			 * and clears the delwri state, expecting the buf to be
678 			 * removed on the next submission attempt. That won't
679 			 * happen if we're shutting down, so this is the last
680 			 * opportunity to release such buffers from the queue.
681 			 */
682 			ASSERT(list_empty(&ailp->ail_buf_list) ||
683 			       xlog_is_shutdown(ailp->ail_log));
684 			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
685 			break;
686 		}
687 
688 		/* Idle if the AIL is empty. */
689 		spin_lock(&ailp->ail_lock);
690 		if (!xfs_ail_min(ailp) && list_empty(&ailp->ail_buf_list)) {
691 			spin_unlock(&ailp->ail_lock);
692 			schedule();
693 			tout = 0;
694 			continue;
695 		}
696 		spin_unlock(&ailp->ail_lock);
697 
698 		if (tout)
699 			schedule_timeout(msecs_to_jiffies(tout));
700 
701 		__set_current_state(TASK_RUNNING);
702 
703 		try_to_freeze();
704 
705 		tout = xfsaild_push(ailp);
706 	}
707 
708 	memalloc_noreclaim_restore(noreclaim_flag);
709 	return 0;
710 }
711 
712 /*
713  * Push out all items in the AIL immediately and wait until the AIL is empty.
714  */
715 void
716 xfs_ail_push_all_sync(
717 	struct xfs_ail  *ailp)
718 {
719 	DEFINE_WAIT(wait);
720 
721 	spin_lock(&ailp->ail_lock);
722 	while (xfs_ail_max(ailp) != NULL) {
723 		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
724 		wake_up_process(ailp->ail_task);
725 		spin_unlock(&ailp->ail_lock);
726 		schedule();
727 		spin_lock(&ailp->ail_lock);
728 	}
729 	spin_unlock(&ailp->ail_lock);
730 
731 	finish_wait(&ailp->ail_empty, &wait);
732 }
733 
734 void
735 __xfs_ail_assign_tail_lsn(
736 	struct xfs_ail		*ailp)
737 {
738 	struct xlog		*log = ailp->ail_log;
739 	xfs_lsn_t		tail_lsn;
740 
741 	assert_spin_locked(&ailp->ail_lock);
742 
743 	if (xlog_is_shutdown(log))
744 		return;
745 
746 	tail_lsn = __xfs_ail_min_lsn(ailp);
747 	if (!tail_lsn)
748 		tail_lsn = ailp->ail_head_lsn;
749 
750 	WRITE_ONCE(log->l_tail_space,
751 			xlog_lsn_sub(log, ailp->ail_head_lsn, tail_lsn));
752 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
753 	atomic64_set(&log->l_tail_lsn, tail_lsn);
754 }
755 
756 /*
757  * Callers should pass the original tail lsn so that we can detect if the tail
758  * has moved as a result of the operation that was performed. If the caller
759  * needs to force a tail space update, it should pass NULLCOMMITLSN to bypass
760  * the "did the tail LSN change?" checks. If the caller wants to avoid a tail
761  * update (e.g. it knows the tail did not change) it should pass an @old_lsn of
762  * 0.
763  */
764 void
765 xfs_ail_update_finish(
766 	struct xfs_ail		*ailp,
767 	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
768 {
769 	struct xlog		*log = ailp->ail_log;
770 
771 	/* If the tail lsn hasn't changed, don't do updates or wakeups. */
772 	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
773 		spin_unlock(&ailp->ail_lock);
774 		return;
775 	}
776 
777 	__xfs_ail_assign_tail_lsn(ailp);
778 	if (list_empty(&ailp->ail_head))
779 		wake_up_all(&ailp->ail_empty);
780 	spin_unlock(&ailp->ail_lock);
781 	xfs_log_space_wake(log->l_mp);
782 }
783 
784 /*
785  * xfs_trans_ail_update - bulk AIL insertion operation.
786  *
787  * @xfs_trans_ail_update takes an array of log items that all need to be
788  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
789  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
790  * it to the AIL. If we move the first item in the AIL, update the log tail to
791  * match the new minimum LSN in the AIL.
792  *
793  * This function takes the AIL lock once to execute the update operations on
794  * all the items in the array, and as such should not be called with the AIL
795  * lock held. As a result, once we have the AIL lock, we need to check each log
796  * item LSN to confirm it needs to be moved forward in the AIL.
797  *
798  * To optimise the insert operation, we delete all the items from the AIL in
799  * the first pass, moving them into a temporary list, then splice the temporary
800  * list into the correct position in the AIL. This avoids needing to do an
801  * insert operation on every item.
802  *
803  * This function must be called with the AIL lock held.  The lock is dropped
804  * before returning.
805  */
806 void
807 xfs_trans_ail_update_bulk(
808 	struct xfs_ail		*ailp,
809 	struct xfs_ail_cursor	*cur,
810 	struct xfs_log_item	**log_items,
811 	int			nr_items,
812 	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
813 {
814 	struct xfs_log_item	*mlip;
815 	xfs_lsn_t		tail_lsn = 0;
816 	int			i;
817 	LIST_HEAD(tmp);
818 
819 	ASSERT(nr_items > 0);		/* Not required, but true. */
820 	mlip = xfs_ail_min(ailp);
821 
822 	for (i = 0; i < nr_items; i++) {
823 		struct xfs_log_item *lip = log_items[i];
824 		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
825 			/* check if we really need to move the item */
826 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
827 				continue;
828 
829 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
830 			if (mlip == lip && !tail_lsn)
831 				tail_lsn = lip->li_lsn;
832 
833 			xfs_ail_delete(ailp, lip);
834 		} else {
835 			trace_xfs_ail_insert(lip, 0, lsn);
836 		}
837 		lip->li_lsn = lsn;
838 		list_add_tail(&lip->li_ail, &tmp);
839 	}
840 
841 	if (!list_empty(&tmp))
842 		xfs_ail_splice(ailp, cur, &tmp, lsn);
843 
844 	/*
845 	 * If this is the first insert, wake up the push daemon so it can
846 	 * actively scan for items to push. We also need to do a log tail
847 	 * LSN update to ensure that it is correctly tracked by the log, so
848 	 * set the tail_lsn to NULLCOMMITLSN so that xfs_ail_update_finish()
849 	 * will see that the tail lsn has changed and will update the tail
850 	 * appropriately.
851 	 */
852 	if (!mlip) {
853 		wake_up_process(ailp->ail_task);
854 		tail_lsn = NULLCOMMITLSN;
855 	}
856 
857 	xfs_ail_update_finish(ailp, tail_lsn);
858 }
859 
860 /* Insert a log item into the AIL. */
861 void
862 xfs_trans_ail_insert(
863 	struct xfs_ail		*ailp,
864 	struct xfs_log_item	*lip,
865 	xfs_lsn_t		lsn)
866 {
867 	spin_lock(&ailp->ail_lock);
868 	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
869 }
870 
871 /*
872  * Delete one log item from the AIL.
873  *
874  * If this item was at the tail of the AIL, return the LSN of the log item so
875  * that we can use it to check if the LSN of the tail of the log has moved
876  * when finishing up the AIL delete process in xfs_ail_update_finish().
877  */
878 xfs_lsn_t
879 xfs_ail_delete_one(
880 	struct xfs_ail		*ailp,
881 	struct xfs_log_item	*lip)
882 {
883 	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
884 	xfs_lsn_t		lsn = lip->li_lsn;
885 
886 	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
887 	xfs_ail_delete(ailp, lip);
888 	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
889 	lip->li_lsn = 0;
890 
891 	if (mlip == lip)
892 		return lsn;
893 	return 0;
894 }
895 
896 void
897 xfs_trans_ail_delete(
898 	struct xfs_log_item	*lip,
899 	int			shutdown_type)
900 {
901 	struct xfs_ail		*ailp = lip->li_ailp;
902 	struct xlog		*log = ailp->ail_log;
903 	xfs_lsn_t		tail_lsn;
904 
905 	spin_lock(&ailp->ail_lock);
906 	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
907 		spin_unlock(&ailp->ail_lock);
908 		if (shutdown_type && !xlog_is_shutdown(log)) {
909 			xfs_alert_tag(log->l_mp, XFS_PTAG_AILDELETE,
910 	"%s: attempting to delete a log item that is not in the AIL",
911 					__func__);
912 			xlog_force_shutdown(log, shutdown_type);
913 		}
914 		return;
915 	}
916 
917 	/* xfs_ail_update_finish() drops the AIL lock */
918 	xfs_clear_li_failed(lip);
919 	tail_lsn = xfs_ail_delete_one(ailp, lip);
920 	xfs_ail_update_finish(ailp, tail_lsn);
921 }
922 
923 int
924 xfs_trans_ail_init(
925 	xfs_mount_t	*mp)
926 {
927 	struct xfs_ail	*ailp;
928 
929 	ailp = kzalloc(sizeof(struct xfs_ail),
930 			GFP_KERNEL | __GFP_RETRY_MAYFAIL);
931 	if (!ailp)
932 		return -ENOMEM;
933 
934 	ailp->ail_log = mp->m_log;
935 	INIT_LIST_HEAD(&ailp->ail_head);
936 	INIT_LIST_HEAD(&ailp->ail_cursors);
937 	spin_lock_init(&ailp->ail_lock);
938 	INIT_LIST_HEAD(&ailp->ail_buf_list);
939 	init_waitqueue_head(&ailp->ail_empty);
940 
941 	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
942 				mp->m_super->s_id);
943 	if (IS_ERR(ailp->ail_task))
944 		goto out_free_ailp;
945 
946 	mp->m_ail = ailp;
947 	return 0;
948 
949 out_free_ailp:
950 	kfree(ailp);
951 	return -ENOMEM;
952 }
953 
954 void
955 xfs_trans_ail_destroy(
956 	xfs_mount_t	*mp)
957 {
958 	struct xfs_ail	*ailp = mp->m_ail;
959 
960 	kthread_stop(ailp->ail_task);
961 	kfree(ailp);
962 }
963