1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * Copyright (c) 2008 Dave Chinner 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_trace.h" 29 #include "xfs_error.h" 30 #include "xfs_log.h" 31 32 #ifdef DEBUG 33 /* 34 * Check that the list is sorted as it should be. 35 */ 36 STATIC void 37 xfs_ail_check( 38 struct xfs_ail *ailp, 39 xfs_log_item_t *lip) 40 { 41 xfs_log_item_t *prev_lip; 42 43 if (list_empty(&ailp->xa_ail)) 44 return; 45 46 /* 47 * Check the next and previous entries are valid. 48 */ 49 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); 50 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail); 51 if (&prev_lip->li_ail != &ailp->xa_ail) 52 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); 53 54 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail); 55 if (&prev_lip->li_ail != &ailp->xa_ail) 56 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0); 57 58 59 } 60 #else /* !DEBUG */ 61 #define xfs_ail_check(a,l) 62 #endif /* DEBUG */ 63 64 /* 65 * Return a pointer to the last item in the AIL. If the AIL is empty, then 66 * return NULL. 67 */ 68 static xfs_log_item_t * 69 xfs_ail_max( 70 struct xfs_ail *ailp) 71 { 72 if (list_empty(&ailp->xa_ail)) 73 return NULL; 74 75 return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail); 76 } 77 78 /* 79 * Return a pointer to the item which follows the given item in the AIL. If 80 * the given item is the last item in the list, then return NULL. 81 */ 82 static xfs_log_item_t * 83 xfs_ail_next( 84 struct xfs_ail *ailp, 85 xfs_log_item_t *lip) 86 { 87 if (lip->li_ail.next == &ailp->xa_ail) 88 return NULL; 89 90 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail); 91 } 92 93 /* 94 * This is called by the log manager code to determine the LSN of the tail of 95 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 96 * is empty, then this function returns 0. 97 * 98 * We need the AIL lock in order to get a coherent read of the lsn of the last 99 * item in the AIL. 100 */ 101 xfs_lsn_t 102 xfs_ail_min_lsn( 103 struct xfs_ail *ailp) 104 { 105 xfs_lsn_t lsn = 0; 106 xfs_log_item_t *lip; 107 108 spin_lock(&ailp->xa_lock); 109 lip = xfs_ail_min(ailp); 110 if (lip) 111 lsn = lip->li_lsn; 112 spin_unlock(&ailp->xa_lock); 113 114 return lsn; 115 } 116 117 /* 118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty. 119 */ 120 static xfs_lsn_t 121 xfs_ail_max_lsn( 122 struct xfs_ail *ailp) 123 { 124 xfs_lsn_t lsn = 0; 125 xfs_log_item_t *lip; 126 127 spin_lock(&ailp->xa_lock); 128 lip = xfs_ail_max(ailp); 129 if (lip) 130 lsn = lip->li_lsn; 131 spin_unlock(&ailp->xa_lock); 132 133 return lsn; 134 } 135 136 /* 137 * The cursor keeps track of where our current traversal is up to by tracking 138 * the next item in the list for us. However, for this to be safe, removing an 139 * object from the AIL needs to invalidate any cursor that points to it. hence 140 * the traversal cursor needs to be linked to the struct xfs_ail so that 141 * deletion can search all the active cursors for invalidation. 142 */ 143 STATIC void 144 xfs_trans_ail_cursor_init( 145 struct xfs_ail *ailp, 146 struct xfs_ail_cursor *cur) 147 { 148 cur->item = NULL; 149 list_add_tail(&cur->list, &ailp->xa_cursors); 150 } 151 152 /* 153 * Get the next item in the traversal and advance the cursor. If the cursor 154 * was invalidated (indicated by a lip of 1), restart the traversal. 155 */ 156 struct xfs_log_item * 157 xfs_trans_ail_cursor_next( 158 struct xfs_ail *ailp, 159 struct xfs_ail_cursor *cur) 160 { 161 struct xfs_log_item *lip = cur->item; 162 163 if ((__psint_t)lip & 1) 164 lip = xfs_ail_min(ailp); 165 if (lip) 166 cur->item = xfs_ail_next(ailp, lip); 167 return lip; 168 } 169 170 /* 171 * When the traversal is complete, we need to remove the cursor from the list 172 * of traversing cursors. 173 */ 174 void 175 xfs_trans_ail_cursor_done( 176 struct xfs_ail *ailp, 177 struct xfs_ail_cursor *cur) 178 { 179 cur->item = NULL; 180 list_del_init(&cur->list); 181 } 182 183 /* 184 * Invalidate any cursor that is pointing to this item. This is called when an 185 * item is removed from the AIL. Any cursor pointing to this object is now 186 * invalid and the traversal needs to be terminated so it doesn't reference a 187 * freed object. We set the low bit of the cursor item pointer so we can 188 * distinguish between an invalidation and the end of the list when getting the 189 * next item from the cursor. 190 */ 191 STATIC void 192 xfs_trans_ail_cursor_clear( 193 struct xfs_ail *ailp, 194 struct xfs_log_item *lip) 195 { 196 struct xfs_ail_cursor *cur; 197 198 list_for_each_entry(cur, &ailp->xa_cursors, list) { 199 if (cur->item == lip) 200 cur->item = (struct xfs_log_item *) 201 ((__psint_t)cur->item | 1); 202 } 203 } 204 205 /* 206 * Find the first item in the AIL with the given @lsn by searching in ascending 207 * LSN order and initialise the cursor to point to the next item for a 208 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 209 * first item in the AIL. Returns NULL if the list is empty. 210 */ 211 xfs_log_item_t * 212 xfs_trans_ail_cursor_first( 213 struct xfs_ail *ailp, 214 struct xfs_ail_cursor *cur, 215 xfs_lsn_t lsn) 216 { 217 xfs_log_item_t *lip; 218 219 xfs_trans_ail_cursor_init(ailp, cur); 220 221 if (lsn == 0) { 222 lip = xfs_ail_min(ailp); 223 goto out; 224 } 225 226 list_for_each_entry(lip, &ailp->xa_ail, li_ail) { 227 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 228 goto out; 229 } 230 return NULL; 231 232 out: 233 if (lip) 234 cur->item = xfs_ail_next(ailp, lip); 235 return lip; 236 } 237 238 static struct xfs_log_item * 239 __xfs_trans_ail_cursor_last( 240 struct xfs_ail *ailp, 241 xfs_lsn_t lsn) 242 { 243 xfs_log_item_t *lip; 244 245 list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) { 246 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 247 return lip; 248 } 249 return NULL; 250 } 251 252 /* 253 * Find the last item in the AIL with the given @lsn by searching in descending 254 * LSN order and initialise the cursor to point to that item. If there is no 255 * item with the value of @lsn, then it sets the cursor to the last item with an 256 * LSN lower than @lsn. Returns NULL if the list is empty. 257 */ 258 struct xfs_log_item * 259 xfs_trans_ail_cursor_last( 260 struct xfs_ail *ailp, 261 struct xfs_ail_cursor *cur, 262 xfs_lsn_t lsn) 263 { 264 xfs_trans_ail_cursor_init(ailp, cur); 265 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 266 return cur->item; 267 } 268 269 /* 270 * Splice the log item list into the AIL at the given LSN. We splice to the 271 * tail of the given LSN to maintain insert order for push traversals. The 272 * cursor is optional, allowing repeated updates to the same LSN to avoid 273 * repeated traversals. This should not be called with an empty list. 274 */ 275 static void 276 xfs_ail_splice( 277 struct xfs_ail *ailp, 278 struct xfs_ail_cursor *cur, 279 struct list_head *list, 280 xfs_lsn_t lsn) 281 { 282 struct xfs_log_item *lip; 283 284 ASSERT(!list_empty(list)); 285 286 /* 287 * Use the cursor to determine the insertion point if one is 288 * provided. If not, or if the one we got is not valid, 289 * find the place in the AIL where the items belong. 290 */ 291 lip = cur ? cur->item : NULL; 292 if (!lip || (__psint_t) lip & 1) 293 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 294 295 /* 296 * If a cursor is provided, we know we're processing the AIL 297 * in lsn order, and future items to be spliced in will 298 * follow the last one being inserted now. Update the 299 * cursor to point to that last item, now while we have a 300 * reliable pointer to it. 301 */ 302 if (cur) 303 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 304 305 /* 306 * Finally perform the splice. Unless the AIL was empty, 307 * lip points to the item in the AIL _after_ which the new 308 * items should go. If lip is null the AIL was empty, so 309 * the new items go at the head of the AIL. 310 */ 311 if (lip) 312 list_splice(list, &lip->li_ail); 313 else 314 list_splice(list, &ailp->xa_ail); 315 } 316 317 /* 318 * Delete the given item from the AIL. Return a pointer to the item. 319 */ 320 static void 321 xfs_ail_delete( 322 struct xfs_ail *ailp, 323 xfs_log_item_t *lip) 324 { 325 xfs_ail_check(ailp, lip); 326 list_del(&lip->li_ail); 327 xfs_trans_ail_cursor_clear(ailp, lip); 328 } 329 330 static long 331 xfsaild_push( 332 struct xfs_ail *ailp) 333 { 334 xfs_mount_t *mp = ailp->xa_mount; 335 struct xfs_ail_cursor cur; 336 xfs_log_item_t *lip; 337 xfs_lsn_t lsn; 338 xfs_lsn_t target; 339 long tout; 340 int stuck = 0; 341 int flushing = 0; 342 int count = 0; 343 344 /* 345 * If we encountered pinned items or did not finish writing out all 346 * buffers the last time we ran, force the log first and wait for it 347 * before pushing again. 348 */ 349 if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 && 350 (!list_empty_careful(&ailp->xa_buf_list) || 351 xfs_ail_min_lsn(ailp))) { 352 ailp->xa_log_flush = 0; 353 354 XFS_STATS_INC(xs_push_ail_flush); 355 xfs_log_force(mp, XFS_LOG_SYNC); 356 } 357 358 spin_lock(&ailp->xa_lock); 359 360 /* barrier matches the xa_target update in xfs_ail_push() */ 361 smp_rmb(); 362 target = ailp->xa_target; 363 ailp->xa_target_prev = target; 364 365 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn); 366 if (!lip) { 367 /* 368 * If the AIL is empty or our push has reached the end we are 369 * done now. 370 */ 371 xfs_trans_ail_cursor_done(ailp, &cur); 372 spin_unlock(&ailp->xa_lock); 373 goto out_done; 374 } 375 376 XFS_STATS_INC(xs_push_ail); 377 378 lsn = lip->li_lsn; 379 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) { 380 int lock_result; 381 382 /* 383 * Note that iop_push may unlock and reacquire the AIL lock. We 384 * rely on the AIL cursor implementation to be able to deal with 385 * the dropped lock. 386 */ 387 lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list); 388 switch (lock_result) { 389 case XFS_ITEM_SUCCESS: 390 XFS_STATS_INC(xs_push_ail_success); 391 trace_xfs_ail_push(lip); 392 393 ailp->xa_last_pushed_lsn = lsn; 394 break; 395 396 case XFS_ITEM_FLUSHING: 397 /* 398 * The item or its backing buffer is already beeing 399 * flushed. The typical reason for that is that an 400 * inode buffer is locked because we already pushed the 401 * updates to it as part of inode clustering. 402 * 403 * We do not want to to stop flushing just because lots 404 * of items are already beeing flushed, but we need to 405 * re-try the flushing relatively soon if most of the 406 * AIL is beeing flushed. 407 */ 408 XFS_STATS_INC(xs_push_ail_flushing); 409 trace_xfs_ail_flushing(lip); 410 411 flushing++; 412 ailp->xa_last_pushed_lsn = lsn; 413 break; 414 415 case XFS_ITEM_PINNED: 416 XFS_STATS_INC(xs_push_ail_pinned); 417 trace_xfs_ail_pinned(lip); 418 419 stuck++; 420 ailp->xa_log_flush++; 421 break; 422 case XFS_ITEM_LOCKED: 423 XFS_STATS_INC(xs_push_ail_locked); 424 trace_xfs_ail_locked(lip); 425 426 stuck++; 427 break; 428 default: 429 ASSERT(0); 430 break; 431 } 432 433 count++; 434 435 /* 436 * Are there too many items we can't do anything with? 437 * 438 * If we we are skipping too many items because we can't flush 439 * them or they are already being flushed, we back off and 440 * given them time to complete whatever operation is being 441 * done. i.e. remove pressure from the AIL while we can't make 442 * progress so traversals don't slow down further inserts and 443 * removals to/from the AIL. 444 * 445 * The value of 100 is an arbitrary magic number based on 446 * observation. 447 */ 448 if (stuck > 100) 449 break; 450 451 lip = xfs_trans_ail_cursor_next(ailp, &cur); 452 if (lip == NULL) 453 break; 454 lsn = lip->li_lsn; 455 } 456 xfs_trans_ail_cursor_done(ailp, &cur); 457 spin_unlock(&ailp->xa_lock); 458 459 if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list)) 460 ailp->xa_log_flush++; 461 462 if (!count || XFS_LSN_CMP(lsn, target) >= 0) { 463 out_done: 464 /* 465 * We reached the target or the AIL is empty, so wait a bit 466 * longer for I/O to complete and remove pushed items from the 467 * AIL before we start the next scan from the start of the AIL. 468 */ 469 tout = 50; 470 ailp->xa_last_pushed_lsn = 0; 471 } else if (((stuck + flushing) * 100) / count > 90) { 472 /* 473 * Either there is a lot of contention on the AIL or we are 474 * stuck due to operations in progress. "Stuck" in this case 475 * is defined as >90% of the items we tried to push were stuck. 476 * 477 * Backoff a bit more to allow some I/O to complete before 478 * restarting from the start of the AIL. This prevents us from 479 * spinning on the same items, and if they are pinned will all 480 * the restart to issue a log force to unpin the stuck items. 481 */ 482 tout = 20; 483 ailp->xa_last_pushed_lsn = 0; 484 } else { 485 /* 486 * Assume we have more work to do in a short while. 487 */ 488 tout = 10; 489 } 490 491 return tout; 492 } 493 494 static int 495 xfsaild( 496 void *data) 497 { 498 struct xfs_ail *ailp = data; 499 long tout = 0; /* milliseconds */ 500 501 current->flags |= PF_MEMALLOC; 502 503 while (!kthread_should_stop()) { 504 if (tout && tout <= 20) 505 __set_current_state(TASK_KILLABLE); 506 else 507 __set_current_state(TASK_INTERRUPTIBLE); 508 509 spin_lock(&ailp->xa_lock); 510 511 /* 512 * Idle if the AIL is empty and we are not racing with a target 513 * update. We check the AIL after we set the task to a sleep 514 * state to guarantee that we either catch an xa_target update 515 * or that a wake_up resets the state to TASK_RUNNING. 516 * Otherwise, we run the risk of sleeping indefinitely. 517 * 518 * The barrier matches the xa_target update in xfs_ail_push(). 519 */ 520 smp_rmb(); 521 if (!xfs_ail_min(ailp) && 522 ailp->xa_target == ailp->xa_target_prev) { 523 spin_unlock(&ailp->xa_lock); 524 schedule(); 525 tout = 0; 526 continue; 527 } 528 spin_unlock(&ailp->xa_lock); 529 530 if (tout) 531 schedule_timeout(msecs_to_jiffies(tout)); 532 533 __set_current_state(TASK_RUNNING); 534 535 try_to_freeze(); 536 537 tout = xfsaild_push(ailp); 538 } 539 540 return 0; 541 } 542 543 /* 544 * This routine is called to move the tail of the AIL forward. It does this by 545 * trying to flush items in the AIL whose lsns are below the given 546 * threshold_lsn. 547 * 548 * The push is run asynchronously in a workqueue, which means the caller needs 549 * to handle waiting on the async flush for space to become available. 550 * We don't want to interrupt any push that is in progress, hence we only queue 551 * work if we set the pushing bit approriately. 552 * 553 * We do this unlocked - we only need to know whether there is anything in the 554 * AIL at the time we are called. We don't need to access the contents of 555 * any of the objects, so the lock is not needed. 556 */ 557 void 558 xfs_ail_push( 559 struct xfs_ail *ailp, 560 xfs_lsn_t threshold_lsn) 561 { 562 xfs_log_item_t *lip; 563 564 lip = xfs_ail_min(ailp); 565 if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) || 566 XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0) 567 return; 568 569 /* 570 * Ensure that the new target is noticed in push code before it clears 571 * the XFS_AIL_PUSHING_BIT. 572 */ 573 smp_wmb(); 574 xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn); 575 smp_wmb(); 576 577 wake_up_process(ailp->xa_task); 578 } 579 580 /* 581 * Push out all items in the AIL immediately 582 */ 583 void 584 xfs_ail_push_all( 585 struct xfs_ail *ailp) 586 { 587 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp); 588 589 if (threshold_lsn) 590 xfs_ail_push(ailp, threshold_lsn); 591 } 592 593 /* 594 * Push out all items in the AIL immediately and wait until the AIL is empty. 595 */ 596 void 597 xfs_ail_push_all_sync( 598 struct xfs_ail *ailp) 599 { 600 struct xfs_log_item *lip; 601 DEFINE_WAIT(wait); 602 603 spin_lock(&ailp->xa_lock); 604 while ((lip = xfs_ail_max(ailp)) != NULL) { 605 prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE); 606 ailp->xa_target = lip->li_lsn; 607 wake_up_process(ailp->xa_task); 608 spin_unlock(&ailp->xa_lock); 609 schedule(); 610 spin_lock(&ailp->xa_lock); 611 } 612 spin_unlock(&ailp->xa_lock); 613 614 finish_wait(&ailp->xa_empty, &wait); 615 } 616 617 /* 618 * xfs_trans_ail_update - bulk AIL insertion operation. 619 * 620 * @xfs_trans_ail_update takes an array of log items that all need to be 621 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 622 * be added. Otherwise, it will be repositioned by removing it and re-adding 623 * it to the AIL. If we move the first item in the AIL, update the log tail to 624 * match the new minimum LSN in the AIL. 625 * 626 * This function takes the AIL lock once to execute the update operations on 627 * all the items in the array, and as such should not be called with the AIL 628 * lock held. As a result, once we have the AIL lock, we need to check each log 629 * item LSN to confirm it needs to be moved forward in the AIL. 630 * 631 * To optimise the insert operation, we delete all the items from the AIL in 632 * the first pass, moving them into a temporary list, then splice the temporary 633 * list into the correct position in the AIL. This avoids needing to do an 634 * insert operation on every item. 635 * 636 * This function must be called with the AIL lock held. The lock is dropped 637 * before returning. 638 */ 639 void 640 xfs_trans_ail_update_bulk( 641 struct xfs_ail *ailp, 642 struct xfs_ail_cursor *cur, 643 struct xfs_log_item **log_items, 644 int nr_items, 645 xfs_lsn_t lsn) __releases(ailp->xa_lock) 646 { 647 xfs_log_item_t *mlip; 648 int mlip_changed = 0; 649 int i; 650 LIST_HEAD(tmp); 651 652 ASSERT(nr_items > 0); /* Not required, but true. */ 653 mlip = xfs_ail_min(ailp); 654 655 for (i = 0; i < nr_items; i++) { 656 struct xfs_log_item *lip = log_items[i]; 657 if (lip->li_flags & XFS_LI_IN_AIL) { 658 /* check if we really need to move the item */ 659 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 660 continue; 661 662 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 663 xfs_ail_delete(ailp, lip); 664 if (mlip == lip) 665 mlip_changed = 1; 666 } else { 667 lip->li_flags |= XFS_LI_IN_AIL; 668 trace_xfs_ail_insert(lip, 0, lsn); 669 } 670 lip->li_lsn = lsn; 671 list_add(&lip->li_ail, &tmp); 672 } 673 674 if (!list_empty(&tmp)) 675 xfs_ail_splice(ailp, cur, &tmp, lsn); 676 677 if (mlip_changed) { 678 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 679 xlog_assign_tail_lsn_locked(ailp->xa_mount); 680 spin_unlock(&ailp->xa_lock); 681 682 xfs_log_space_wake(ailp->xa_mount); 683 } else { 684 spin_unlock(&ailp->xa_lock); 685 } 686 } 687 688 /* 689 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL 690 * 691 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to 692 * removed from the AIL. The caller is already holding the AIL lock, and done 693 * all the checks necessary to ensure the items passed in via @log_items are 694 * ready for deletion. This includes checking that the items are in the AIL. 695 * 696 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL 697 * flag from the item and reset the item's lsn to 0. If we remove the first 698 * item in the AIL, update the log tail to match the new minimum LSN in the 699 * AIL. 700 * 701 * This function will not drop the AIL lock until all items are removed from 702 * the AIL to minimise the amount of lock traffic on the AIL. This does not 703 * greatly increase the AIL hold time, but does significantly reduce the amount 704 * of traffic on the lock, especially during IO completion. 705 * 706 * This function must be called with the AIL lock held. The lock is dropped 707 * before returning. 708 */ 709 void 710 xfs_trans_ail_delete_bulk( 711 struct xfs_ail *ailp, 712 struct xfs_log_item **log_items, 713 int nr_items, 714 int shutdown_type) __releases(ailp->xa_lock) 715 { 716 xfs_log_item_t *mlip; 717 int mlip_changed = 0; 718 int i; 719 720 mlip = xfs_ail_min(ailp); 721 722 for (i = 0; i < nr_items; i++) { 723 struct xfs_log_item *lip = log_items[i]; 724 if (!(lip->li_flags & XFS_LI_IN_AIL)) { 725 struct xfs_mount *mp = ailp->xa_mount; 726 727 spin_unlock(&ailp->xa_lock); 728 if (!XFS_FORCED_SHUTDOWN(mp)) { 729 xfs_alert_tag(mp, XFS_PTAG_AILDELETE, 730 "%s: attempting to delete a log item that is not in the AIL", 731 __func__); 732 xfs_force_shutdown(mp, shutdown_type); 733 } 734 return; 735 } 736 737 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 738 xfs_ail_delete(ailp, lip); 739 lip->li_flags &= ~XFS_LI_IN_AIL; 740 lip->li_lsn = 0; 741 if (mlip == lip) 742 mlip_changed = 1; 743 } 744 745 if (mlip_changed) { 746 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 747 xlog_assign_tail_lsn_locked(ailp->xa_mount); 748 if (list_empty(&ailp->xa_ail)) 749 wake_up_all(&ailp->xa_empty); 750 spin_unlock(&ailp->xa_lock); 751 752 xfs_log_space_wake(ailp->xa_mount); 753 } else { 754 spin_unlock(&ailp->xa_lock); 755 } 756 } 757 758 int 759 xfs_trans_ail_init( 760 xfs_mount_t *mp) 761 { 762 struct xfs_ail *ailp; 763 764 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); 765 if (!ailp) 766 return ENOMEM; 767 768 ailp->xa_mount = mp; 769 INIT_LIST_HEAD(&ailp->xa_ail); 770 INIT_LIST_HEAD(&ailp->xa_cursors); 771 spin_lock_init(&ailp->xa_lock); 772 INIT_LIST_HEAD(&ailp->xa_buf_list); 773 init_waitqueue_head(&ailp->xa_empty); 774 775 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 776 ailp->xa_mount->m_fsname); 777 if (IS_ERR(ailp->xa_task)) 778 goto out_free_ailp; 779 780 mp->m_ail = ailp; 781 return 0; 782 783 out_free_ailp: 784 kmem_free(ailp); 785 return ENOMEM; 786 } 787 788 void 789 xfs_trans_ail_destroy( 790 xfs_mount_t *mp) 791 { 792 struct xfs_ail *ailp = mp->m_ail; 793 794 kthread_stop(ailp->xa_task); 795 kmem_free(ailp); 796 } 797