xref: /linux/fs/xfs/xfs_trans_ail.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30 #include "xfs_log.h"
31 
32 #ifdef DEBUG
33 /*
34  * Check that the list is sorted as it should be.
35  */
36 STATIC void
37 xfs_ail_check(
38 	struct xfs_ail	*ailp,
39 	xfs_log_item_t	*lip)
40 {
41 	xfs_log_item_t	*prev_lip;
42 
43 	if (list_empty(&ailp->xa_ail))
44 		return;
45 
46 	/*
47 	 * Check the next and previous entries are valid.
48 	 */
49 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
50 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
51 	if (&prev_lip->li_ail != &ailp->xa_ail)
52 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
53 
54 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
55 	if (&prev_lip->li_ail != &ailp->xa_ail)
56 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
57 
58 
59 }
60 #else /* !DEBUG */
61 #define	xfs_ail_check(a,l)
62 #endif /* DEBUG */
63 
64 /*
65  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
66  * return NULL.
67  */
68 static xfs_log_item_t *
69 xfs_ail_max(
70 	struct xfs_ail  *ailp)
71 {
72 	if (list_empty(&ailp->xa_ail))
73 		return NULL;
74 
75 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
76 }
77 
78 /*
79  * Return a pointer to the item which follows the given item in the AIL.  If
80  * the given item is the last item in the list, then return NULL.
81  */
82 static xfs_log_item_t *
83 xfs_ail_next(
84 	struct xfs_ail  *ailp,
85 	xfs_log_item_t  *lip)
86 {
87 	if (lip->li_ail.next == &ailp->xa_ail)
88 		return NULL;
89 
90 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
91 }
92 
93 /*
94  * This is called by the log manager code to determine the LSN of the tail of
95  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
96  * is empty, then this function returns 0.
97  *
98  * We need the AIL lock in order to get a coherent read of the lsn of the last
99  * item in the AIL.
100  */
101 xfs_lsn_t
102 xfs_ail_min_lsn(
103 	struct xfs_ail	*ailp)
104 {
105 	xfs_lsn_t	lsn = 0;
106 	xfs_log_item_t	*lip;
107 
108 	spin_lock(&ailp->xa_lock);
109 	lip = xfs_ail_min(ailp);
110 	if (lip)
111 		lsn = lip->li_lsn;
112 	spin_unlock(&ailp->xa_lock);
113 
114 	return lsn;
115 }
116 
117 /*
118  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119  */
120 static xfs_lsn_t
121 xfs_ail_max_lsn(
122 	struct xfs_ail  *ailp)
123 {
124 	xfs_lsn_t       lsn = 0;
125 	xfs_log_item_t  *lip;
126 
127 	spin_lock(&ailp->xa_lock);
128 	lip = xfs_ail_max(ailp);
129 	if (lip)
130 		lsn = lip->li_lsn;
131 	spin_unlock(&ailp->xa_lock);
132 
133 	return lsn;
134 }
135 
136 /*
137  * The cursor keeps track of where our current traversal is up to by tracking
138  * the next item in the list for us. However, for this to be safe, removing an
139  * object from the AIL needs to invalidate any cursor that points to it. hence
140  * the traversal cursor needs to be linked to the struct xfs_ail so that
141  * deletion can search all the active cursors for invalidation.
142  */
143 STATIC void
144 xfs_trans_ail_cursor_init(
145 	struct xfs_ail		*ailp,
146 	struct xfs_ail_cursor	*cur)
147 {
148 	cur->item = NULL;
149 	list_add_tail(&cur->list, &ailp->xa_cursors);
150 }
151 
152 /*
153  * Get the next item in the traversal and advance the cursor.  If the cursor
154  * was invalidated (indicated by a lip of 1), restart the traversal.
155  */
156 struct xfs_log_item *
157 xfs_trans_ail_cursor_next(
158 	struct xfs_ail		*ailp,
159 	struct xfs_ail_cursor	*cur)
160 {
161 	struct xfs_log_item	*lip = cur->item;
162 
163 	if ((__psint_t)lip & 1)
164 		lip = xfs_ail_min(ailp);
165 	if (lip)
166 		cur->item = xfs_ail_next(ailp, lip);
167 	return lip;
168 }
169 
170 /*
171  * When the traversal is complete, we need to remove the cursor from the list
172  * of traversing cursors.
173  */
174 void
175 xfs_trans_ail_cursor_done(
176 	struct xfs_ail		*ailp,
177 	struct xfs_ail_cursor	*cur)
178 {
179 	cur->item = NULL;
180 	list_del_init(&cur->list);
181 }
182 
183 /*
184  * Invalidate any cursor that is pointing to this item. This is called when an
185  * item is removed from the AIL. Any cursor pointing to this object is now
186  * invalid and the traversal needs to be terminated so it doesn't reference a
187  * freed object. We set the low bit of the cursor item pointer so we can
188  * distinguish between an invalidation and the end of the list when getting the
189  * next item from the cursor.
190  */
191 STATIC void
192 xfs_trans_ail_cursor_clear(
193 	struct xfs_ail		*ailp,
194 	struct xfs_log_item	*lip)
195 {
196 	struct xfs_ail_cursor	*cur;
197 
198 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
199 		if (cur->item == lip)
200 			cur->item = (struct xfs_log_item *)
201 					((__psint_t)cur->item | 1);
202 	}
203 }
204 
205 /*
206  * Find the first item in the AIL with the given @lsn by searching in ascending
207  * LSN order and initialise the cursor to point to the next item for a
208  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
209  * first item in the AIL. Returns NULL if the list is empty.
210  */
211 xfs_log_item_t *
212 xfs_trans_ail_cursor_first(
213 	struct xfs_ail		*ailp,
214 	struct xfs_ail_cursor	*cur,
215 	xfs_lsn_t		lsn)
216 {
217 	xfs_log_item_t		*lip;
218 
219 	xfs_trans_ail_cursor_init(ailp, cur);
220 
221 	if (lsn == 0) {
222 		lip = xfs_ail_min(ailp);
223 		goto out;
224 	}
225 
226 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
227 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
228 			goto out;
229 	}
230 	return NULL;
231 
232 out:
233 	if (lip)
234 		cur->item = xfs_ail_next(ailp, lip);
235 	return lip;
236 }
237 
238 static struct xfs_log_item *
239 __xfs_trans_ail_cursor_last(
240 	struct xfs_ail		*ailp,
241 	xfs_lsn_t		lsn)
242 {
243 	xfs_log_item_t		*lip;
244 
245 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
246 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
247 			return lip;
248 	}
249 	return NULL;
250 }
251 
252 /*
253  * Find the last item in the AIL with the given @lsn by searching in descending
254  * LSN order and initialise the cursor to point to that item.  If there is no
255  * item with the value of @lsn, then it sets the cursor to the last item with an
256  * LSN lower than @lsn.  Returns NULL if the list is empty.
257  */
258 struct xfs_log_item *
259 xfs_trans_ail_cursor_last(
260 	struct xfs_ail		*ailp,
261 	struct xfs_ail_cursor	*cur,
262 	xfs_lsn_t		lsn)
263 {
264 	xfs_trans_ail_cursor_init(ailp, cur);
265 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
266 	return cur->item;
267 }
268 
269 /*
270  * Splice the log item list into the AIL at the given LSN. We splice to the
271  * tail of the given LSN to maintain insert order for push traversals. The
272  * cursor is optional, allowing repeated updates to the same LSN to avoid
273  * repeated traversals.  This should not be called with an empty list.
274  */
275 static void
276 xfs_ail_splice(
277 	struct xfs_ail		*ailp,
278 	struct xfs_ail_cursor	*cur,
279 	struct list_head	*list,
280 	xfs_lsn_t		lsn)
281 {
282 	struct xfs_log_item	*lip;
283 
284 	ASSERT(!list_empty(list));
285 
286 	/*
287 	 * Use the cursor to determine the insertion point if one is
288 	 * provided.  If not, or if the one we got is not valid,
289 	 * find the place in the AIL where the items belong.
290 	 */
291 	lip = cur ? cur->item : NULL;
292 	if (!lip || (__psint_t) lip & 1)
293 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
294 
295 	/*
296 	 * If a cursor is provided, we know we're processing the AIL
297 	 * in lsn order, and future items to be spliced in will
298 	 * follow the last one being inserted now.  Update the
299 	 * cursor to point to that last item, now while we have a
300 	 * reliable pointer to it.
301 	 */
302 	if (cur)
303 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
304 
305 	/*
306 	 * Finally perform the splice.  Unless the AIL was empty,
307 	 * lip points to the item in the AIL _after_ which the new
308 	 * items should go.  If lip is null the AIL was empty, so
309 	 * the new items go at the head of the AIL.
310 	 */
311 	if (lip)
312 		list_splice(list, &lip->li_ail);
313 	else
314 		list_splice(list, &ailp->xa_ail);
315 }
316 
317 /*
318  * Delete the given item from the AIL.  Return a pointer to the item.
319  */
320 static void
321 xfs_ail_delete(
322 	struct xfs_ail  *ailp,
323 	xfs_log_item_t  *lip)
324 {
325 	xfs_ail_check(ailp, lip);
326 	list_del(&lip->li_ail);
327 	xfs_trans_ail_cursor_clear(ailp, lip);
328 }
329 
330 static long
331 xfsaild_push(
332 	struct xfs_ail		*ailp)
333 {
334 	xfs_mount_t		*mp = ailp->xa_mount;
335 	struct xfs_ail_cursor	cur;
336 	xfs_log_item_t		*lip;
337 	xfs_lsn_t		lsn;
338 	xfs_lsn_t		target;
339 	long			tout;
340 	int			stuck = 0;
341 	int			flushing = 0;
342 	int			count = 0;
343 
344 	/*
345 	 * If we encountered pinned items or did not finish writing out all
346 	 * buffers the last time we ran, force the log first and wait for it
347 	 * before pushing again.
348 	 */
349 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
350 	    (!list_empty_careful(&ailp->xa_buf_list) ||
351 	     xfs_ail_min_lsn(ailp))) {
352 		ailp->xa_log_flush = 0;
353 
354 		XFS_STATS_INC(xs_push_ail_flush);
355 		xfs_log_force(mp, XFS_LOG_SYNC);
356 	}
357 
358 	spin_lock(&ailp->xa_lock);
359 
360 	/* barrier matches the xa_target update in xfs_ail_push() */
361 	smp_rmb();
362 	target = ailp->xa_target;
363 	ailp->xa_target_prev = target;
364 
365 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
366 	if (!lip) {
367 		/*
368 		 * If the AIL is empty or our push has reached the end we are
369 		 * done now.
370 		 */
371 		xfs_trans_ail_cursor_done(ailp, &cur);
372 		spin_unlock(&ailp->xa_lock);
373 		goto out_done;
374 	}
375 
376 	XFS_STATS_INC(xs_push_ail);
377 
378 	lsn = lip->li_lsn;
379 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
380 		int	lock_result;
381 
382 		/*
383 		 * Note that iop_push may unlock and reacquire the AIL lock.  We
384 		 * rely on the AIL cursor implementation to be able to deal with
385 		 * the dropped lock.
386 		 */
387 		lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
388 		switch (lock_result) {
389 		case XFS_ITEM_SUCCESS:
390 			XFS_STATS_INC(xs_push_ail_success);
391 			trace_xfs_ail_push(lip);
392 
393 			ailp->xa_last_pushed_lsn = lsn;
394 			break;
395 
396 		case XFS_ITEM_FLUSHING:
397 			/*
398 			 * The item or its backing buffer is already beeing
399 			 * flushed.  The typical reason for that is that an
400 			 * inode buffer is locked because we already pushed the
401 			 * updates to it as part of inode clustering.
402 			 *
403 			 * We do not want to to stop flushing just because lots
404 			 * of items are already beeing flushed, but we need to
405 			 * re-try the flushing relatively soon if most of the
406 			 * AIL is beeing flushed.
407 			 */
408 			XFS_STATS_INC(xs_push_ail_flushing);
409 			trace_xfs_ail_flushing(lip);
410 
411 			flushing++;
412 			ailp->xa_last_pushed_lsn = lsn;
413 			break;
414 
415 		case XFS_ITEM_PINNED:
416 			XFS_STATS_INC(xs_push_ail_pinned);
417 			trace_xfs_ail_pinned(lip);
418 
419 			stuck++;
420 			ailp->xa_log_flush++;
421 			break;
422 		case XFS_ITEM_LOCKED:
423 			XFS_STATS_INC(xs_push_ail_locked);
424 			trace_xfs_ail_locked(lip);
425 
426 			stuck++;
427 			break;
428 		default:
429 			ASSERT(0);
430 			break;
431 		}
432 
433 		count++;
434 
435 		/*
436 		 * Are there too many items we can't do anything with?
437 		 *
438 		 * If we we are skipping too many items because we can't flush
439 		 * them or they are already being flushed, we back off and
440 		 * given them time to complete whatever operation is being
441 		 * done. i.e. remove pressure from the AIL while we can't make
442 		 * progress so traversals don't slow down further inserts and
443 		 * removals to/from the AIL.
444 		 *
445 		 * The value of 100 is an arbitrary magic number based on
446 		 * observation.
447 		 */
448 		if (stuck > 100)
449 			break;
450 
451 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
452 		if (lip == NULL)
453 			break;
454 		lsn = lip->li_lsn;
455 	}
456 	xfs_trans_ail_cursor_done(ailp, &cur);
457 	spin_unlock(&ailp->xa_lock);
458 
459 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
460 		ailp->xa_log_flush++;
461 
462 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
463 out_done:
464 		/*
465 		 * We reached the target or the AIL is empty, so wait a bit
466 		 * longer for I/O to complete and remove pushed items from the
467 		 * AIL before we start the next scan from the start of the AIL.
468 		 */
469 		tout = 50;
470 		ailp->xa_last_pushed_lsn = 0;
471 	} else if (((stuck + flushing) * 100) / count > 90) {
472 		/*
473 		 * Either there is a lot of contention on the AIL or we are
474 		 * stuck due to operations in progress. "Stuck" in this case
475 		 * is defined as >90% of the items we tried to push were stuck.
476 		 *
477 		 * Backoff a bit more to allow some I/O to complete before
478 		 * restarting from the start of the AIL. This prevents us from
479 		 * spinning on the same items, and if they are pinned will all
480 		 * the restart to issue a log force to unpin the stuck items.
481 		 */
482 		tout = 20;
483 		ailp->xa_last_pushed_lsn = 0;
484 	} else {
485 		/*
486 		 * Assume we have more work to do in a short while.
487 		 */
488 		tout = 10;
489 	}
490 
491 	return tout;
492 }
493 
494 static int
495 xfsaild(
496 	void		*data)
497 {
498 	struct xfs_ail	*ailp = data;
499 	long		tout = 0;	/* milliseconds */
500 
501 	current->flags |= PF_MEMALLOC;
502 
503 	while (!kthread_should_stop()) {
504 		if (tout && tout <= 20)
505 			__set_current_state(TASK_KILLABLE);
506 		else
507 			__set_current_state(TASK_INTERRUPTIBLE);
508 
509 		spin_lock(&ailp->xa_lock);
510 
511 		/*
512 		 * Idle if the AIL is empty and we are not racing with a target
513 		 * update. We check the AIL after we set the task to a sleep
514 		 * state to guarantee that we either catch an xa_target update
515 		 * or that a wake_up resets the state to TASK_RUNNING.
516 		 * Otherwise, we run the risk of sleeping indefinitely.
517 		 *
518 		 * The barrier matches the xa_target update in xfs_ail_push().
519 		 */
520 		smp_rmb();
521 		if (!xfs_ail_min(ailp) &&
522 		    ailp->xa_target == ailp->xa_target_prev) {
523 			spin_unlock(&ailp->xa_lock);
524 			schedule();
525 			tout = 0;
526 			continue;
527 		}
528 		spin_unlock(&ailp->xa_lock);
529 
530 		if (tout)
531 			schedule_timeout(msecs_to_jiffies(tout));
532 
533 		__set_current_state(TASK_RUNNING);
534 
535 		try_to_freeze();
536 
537 		tout = xfsaild_push(ailp);
538 	}
539 
540 	return 0;
541 }
542 
543 /*
544  * This routine is called to move the tail of the AIL forward.  It does this by
545  * trying to flush items in the AIL whose lsns are below the given
546  * threshold_lsn.
547  *
548  * The push is run asynchronously in a workqueue, which means the caller needs
549  * to handle waiting on the async flush for space to become available.
550  * We don't want to interrupt any push that is in progress, hence we only queue
551  * work if we set the pushing bit approriately.
552  *
553  * We do this unlocked - we only need to know whether there is anything in the
554  * AIL at the time we are called. We don't need to access the contents of
555  * any of the objects, so the lock is not needed.
556  */
557 void
558 xfs_ail_push(
559 	struct xfs_ail	*ailp,
560 	xfs_lsn_t	threshold_lsn)
561 {
562 	xfs_log_item_t	*lip;
563 
564 	lip = xfs_ail_min(ailp);
565 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
566 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
567 		return;
568 
569 	/*
570 	 * Ensure that the new target is noticed in push code before it clears
571 	 * the XFS_AIL_PUSHING_BIT.
572 	 */
573 	smp_wmb();
574 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
575 	smp_wmb();
576 
577 	wake_up_process(ailp->xa_task);
578 }
579 
580 /*
581  * Push out all items in the AIL immediately
582  */
583 void
584 xfs_ail_push_all(
585 	struct xfs_ail  *ailp)
586 {
587 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
588 
589 	if (threshold_lsn)
590 		xfs_ail_push(ailp, threshold_lsn);
591 }
592 
593 /*
594  * Push out all items in the AIL immediately and wait until the AIL is empty.
595  */
596 void
597 xfs_ail_push_all_sync(
598 	struct xfs_ail  *ailp)
599 {
600 	struct xfs_log_item	*lip;
601 	DEFINE_WAIT(wait);
602 
603 	spin_lock(&ailp->xa_lock);
604 	while ((lip = xfs_ail_max(ailp)) != NULL) {
605 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
606 		ailp->xa_target = lip->li_lsn;
607 		wake_up_process(ailp->xa_task);
608 		spin_unlock(&ailp->xa_lock);
609 		schedule();
610 		spin_lock(&ailp->xa_lock);
611 	}
612 	spin_unlock(&ailp->xa_lock);
613 
614 	finish_wait(&ailp->xa_empty, &wait);
615 }
616 
617 /*
618  * xfs_trans_ail_update - bulk AIL insertion operation.
619  *
620  * @xfs_trans_ail_update takes an array of log items that all need to be
621  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
622  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
623  * it to the AIL. If we move the first item in the AIL, update the log tail to
624  * match the new minimum LSN in the AIL.
625  *
626  * This function takes the AIL lock once to execute the update operations on
627  * all the items in the array, and as such should not be called with the AIL
628  * lock held. As a result, once we have the AIL lock, we need to check each log
629  * item LSN to confirm it needs to be moved forward in the AIL.
630  *
631  * To optimise the insert operation, we delete all the items from the AIL in
632  * the first pass, moving them into a temporary list, then splice the temporary
633  * list into the correct position in the AIL. This avoids needing to do an
634  * insert operation on every item.
635  *
636  * This function must be called with the AIL lock held.  The lock is dropped
637  * before returning.
638  */
639 void
640 xfs_trans_ail_update_bulk(
641 	struct xfs_ail		*ailp,
642 	struct xfs_ail_cursor	*cur,
643 	struct xfs_log_item	**log_items,
644 	int			nr_items,
645 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
646 {
647 	xfs_log_item_t		*mlip;
648 	int			mlip_changed = 0;
649 	int			i;
650 	LIST_HEAD(tmp);
651 
652 	ASSERT(nr_items > 0);		/* Not required, but true. */
653 	mlip = xfs_ail_min(ailp);
654 
655 	for (i = 0; i < nr_items; i++) {
656 		struct xfs_log_item *lip = log_items[i];
657 		if (lip->li_flags & XFS_LI_IN_AIL) {
658 			/* check if we really need to move the item */
659 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
660 				continue;
661 
662 			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
663 			xfs_ail_delete(ailp, lip);
664 			if (mlip == lip)
665 				mlip_changed = 1;
666 		} else {
667 			lip->li_flags |= XFS_LI_IN_AIL;
668 			trace_xfs_ail_insert(lip, 0, lsn);
669 		}
670 		lip->li_lsn = lsn;
671 		list_add(&lip->li_ail, &tmp);
672 	}
673 
674 	if (!list_empty(&tmp))
675 		xfs_ail_splice(ailp, cur, &tmp, lsn);
676 
677 	if (mlip_changed) {
678 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
679 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
680 		spin_unlock(&ailp->xa_lock);
681 
682 		xfs_log_space_wake(ailp->xa_mount);
683 	} else {
684 		spin_unlock(&ailp->xa_lock);
685 	}
686 }
687 
688 /*
689  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
690  *
691  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
692  * removed from the AIL. The caller is already holding the AIL lock, and done
693  * all the checks necessary to ensure the items passed in via @log_items are
694  * ready for deletion. This includes checking that the items are in the AIL.
695  *
696  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
697  * flag from the item and reset the item's lsn to 0. If we remove the first
698  * item in the AIL, update the log tail to match the new minimum LSN in the
699  * AIL.
700  *
701  * This function will not drop the AIL lock until all items are removed from
702  * the AIL to minimise the amount of lock traffic on the AIL. This does not
703  * greatly increase the AIL hold time, but does significantly reduce the amount
704  * of traffic on the lock, especially during IO completion.
705  *
706  * This function must be called with the AIL lock held.  The lock is dropped
707  * before returning.
708  */
709 void
710 xfs_trans_ail_delete_bulk(
711 	struct xfs_ail		*ailp,
712 	struct xfs_log_item	**log_items,
713 	int			nr_items,
714 	int			shutdown_type) __releases(ailp->xa_lock)
715 {
716 	xfs_log_item_t		*mlip;
717 	int			mlip_changed = 0;
718 	int			i;
719 
720 	mlip = xfs_ail_min(ailp);
721 
722 	for (i = 0; i < nr_items; i++) {
723 		struct xfs_log_item *lip = log_items[i];
724 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
725 			struct xfs_mount	*mp = ailp->xa_mount;
726 
727 			spin_unlock(&ailp->xa_lock);
728 			if (!XFS_FORCED_SHUTDOWN(mp)) {
729 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
730 		"%s: attempting to delete a log item that is not in the AIL",
731 						__func__);
732 				xfs_force_shutdown(mp, shutdown_type);
733 			}
734 			return;
735 		}
736 
737 		trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
738 		xfs_ail_delete(ailp, lip);
739 		lip->li_flags &= ~XFS_LI_IN_AIL;
740 		lip->li_lsn = 0;
741 		if (mlip == lip)
742 			mlip_changed = 1;
743 	}
744 
745 	if (mlip_changed) {
746 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
747 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
748 		if (list_empty(&ailp->xa_ail))
749 			wake_up_all(&ailp->xa_empty);
750 		spin_unlock(&ailp->xa_lock);
751 
752 		xfs_log_space_wake(ailp->xa_mount);
753 	} else {
754 		spin_unlock(&ailp->xa_lock);
755 	}
756 }
757 
758 int
759 xfs_trans_ail_init(
760 	xfs_mount_t	*mp)
761 {
762 	struct xfs_ail	*ailp;
763 
764 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
765 	if (!ailp)
766 		return ENOMEM;
767 
768 	ailp->xa_mount = mp;
769 	INIT_LIST_HEAD(&ailp->xa_ail);
770 	INIT_LIST_HEAD(&ailp->xa_cursors);
771 	spin_lock_init(&ailp->xa_lock);
772 	INIT_LIST_HEAD(&ailp->xa_buf_list);
773 	init_waitqueue_head(&ailp->xa_empty);
774 
775 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
776 			ailp->xa_mount->m_fsname);
777 	if (IS_ERR(ailp->xa_task))
778 		goto out_free_ailp;
779 
780 	mp->m_ail = ailp;
781 	return 0;
782 
783 out_free_ailp:
784 	kmem_free(ailp);
785 	return ENOMEM;
786 }
787 
788 void
789 xfs_trans_ail_destroy(
790 	xfs_mount_t	*mp)
791 {
792 	struct xfs_ail	*ailp = mp->m_ail;
793 
794 	kthread_stop(ailp->xa_task);
795 	kmem_free(ailp);
796 }
797