xref: /linux/fs/xfs/xfs_trans_ail.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30 
31 #ifdef DEBUG
32 /*
33  * Check that the list is sorted as it should be.
34  */
35 STATIC void
36 xfs_ail_check(
37 	struct xfs_ail	*ailp,
38 	xfs_log_item_t	*lip)
39 {
40 	xfs_log_item_t	*prev_lip;
41 
42 	if (list_empty(&ailp->xa_ail))
43 		return;
44 
45 	/*
46 	 * Check the next and previous entries are valid.
47 	 */
48 	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 	if (&prev_lip->li_ail != &ailp->xa_ail)
51 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52 
53 	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 	if (&prev_lip->li_ail != &ailp->xa_ail)
55 		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56 
57 
58 #ifdef XFS_TRANS_DEBUG
59 	/*
60 	 * Walk the list checking lsn ordering, and that every entry has the
61 	 * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
62 	 * when specifically debugging the transaction subsystem.
63 	 */
64 	prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
65 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
66 		if (&prev_lip->li_ail != &ailp->xa_ail)
67 			ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
68 		ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
69 		prev_lip = lip;
70 	}
71 #endif /* XFS_TRANS_DEBUG */
72 }
73 #else /* !DEBUG */
74 #define	xfs_ail_check(a,l)
75 #endif /* DEBUG */
76 
77 /*
78  * Return a pointer to the first item in the AIL.  If the AIL is empty, then
79  * return NULL.
80  */
81 xfs_log_item_t *
82 xfs_ail_min(
83 	struct xfs_ail  *ailp)
84 {
85 	if (list_empty(&ailp->xa_ail))
86 		return NULL;
87 
88 	return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
89 }
90 
91  /*
92  * Return a pointer to the last item in the AIL.  If the AIL is empty, then
93  * return NULL.
94  */
95 static xfs_log_item_t *
96 xfs_ail_max(
97 	struct xfs_ail  *ailp)
98 {
99 	if (list_empty(&ailp->xa_ail))
100 		return NULL;
101 
102 	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
103 }
104 
105 /*
106  * Return a pointer to the item which follows the given item in the AIL.  If
107  * the given item is the last item in the list, then return NULL.
108  */
109 static xfs_log_item_t *
110 xfs_ail_next(
111 	struct xfs_ail  *ailp,
112 	xfs_log_item_t  *lip)
113 {
114 	if (lip->li_ail.next == &ailp->xa_ail)
115 		return NULL;
116 
117 	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
118 }
119 
120 /*
121  * This is called by the log manager code to determine the LSN of the tail of
122  * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
123  * is empty, then this function returns 0.
124  *
125  * We need the AIL lock in order to get a coherent read of the lsn of the last
126  * item in the AIL.
127  */
128 xfs_lsn_t
129 xfs_ail_min_lsn(
130 	struct xfs_ail	*ailp)
131 {
132 	xfs_lsn_t	lsn = 0;
133 	xfs_log_item_t	*lip;
134 
135 	spin_lock(&ailp->xa_lock);
136 	lip = xfs_ail_min(ailp);
137 	if (lip)
138 		lsn = lip->li_lsn;
139 	spin_unlock(&ailp->xa_lock);
140 
141 	return lsn;
142 }
143 
144 /*
145  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
146  */
147 static xfs_lsn_t
148 xfs_ail_max_lsn(
149 	struct xfs_ail  *ailp)
150 {
151 	xfs_lsn_t       lsn = 0;
152 	xfs_log_item_t  *lip;
153 
154 	spin_lock(&ailp->xa_lock);
155 	lip = xfs_ail_max(ailp);
156 	if (lip)
157 		lsn = lip->li_lsn;
158 	spin_unlock(&ailp->xa_lock);
159 
160 	return lsn;
161 }
162 
163 /*
164  * The cursor keeps track of where our current traversal is up to by tracking
165  * the next item in the list for us. However, for this to be safe, removing an
166  * object from the AIL needs to invalidate any cursor that points to it. hence
167  * the traversal cursor needs to be linked to the struct xfs_ail so that
168  * deletion can search all the active cursors for invalidation.
169  */
170 STATIC void
171 xfs_trans_ail_cursor_init(
172 	struct xfs_ail		*ailp,
173 	struct xfs_ail_cursor	*cur)
174 {
175 	cur->item = NULL;
176 	list_add_tail(&cur->list, &ailp->xa_cursors);
177 }
178 
179 /*
180  * Get the next item in the traversal and advance the cursor.  If the cursor
181  * was invalidated (indicated by a lip of 1), restart the traversal.
182  */
183 struct xfs_log_item *
184 xfs_trans_ail_cursor_next(
185 	struct xfs_ail		*ailp,
186 	struct xfs_ail_cursor	*cur)
187 {
188 	struct xfs_log_item	*lip = cur->item;
189 
190 	if ((__psint_t)lip & 1)
191 		lip = xfs_ail_min(ailp);
192 	if (lip)
193 		cur->item = xfs_ail_next(ailp, lip);
194 	return lip;
195 }
196 
197 /*
198  * When the traversal is complete, we need to remove the cursor from the list
199  * of traversing cursors.
200  */
201 void
202 xfs_trans_ail_cursor_done(
203 	struct xfs_ail		*ailp,
204 	struct xfs_ail_cursor	*cur)
205 {
206 	cur->item = NULL;
207 	list_del_init(&cur->list);
208 }
209 
210 /*
211  * Invalidate any cursor that is pointing to this item. This is called when an
212  * item is removed from the AIL. Any cursor pointing to this object is now
213  * invalid and the traversal needs to be terminated so it doesn't reference a
214  * freed object. We set the low bit of the cursor item pointer so we can
215  * distinguish between an invalidation and the end of the list when getting the
216  * next item from the cursor.
217  */
218 STATIC void
219 xfs_trans_ail_cursor_clear(
220 	struct xfs_ail		*ailp,
221 	struct xfs_log_item	*lip)
222 {
223 	struct xfs_ail_cursor	*cur;
224 
225 	list_for_each_entry(cur, &ailp->xa_cursors, list) {
226 		if (cur->item == lip)
227 			cur->item = (struct xfs_log_item *)
228 					((__psint_t)cur->item | 1);
229 	}
230 }
231 
232 /*
233  * Find the first item in the AIL with the given @lsn by searching in ascending
234  * LSN order and initialise the cursor to point to the next item for a
235  * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
236  * first item in the AIL. Returns NULL if the list is empty.
237  */
238 xfs_log_item_t *
239 xfs_trans_ail_cursor_first(
240 	struct xfs_ail		*ailp,
241 	struct xfs_ail_cursor	*cur,
242 	xfs_lsn_t		lsn)
243 {
244 	xfs_log_item_t		*lip;
245 
246 	xfs_trans_ail_cursor_init(ailp, cur);
247 
248 	if (lsn == 0) {
249 		lip = xfs_ail_min(ailp);
250 		goto out;
251 	}
252 
253 	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
254 		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
255 			goto out;
256 	}
257 	return NULL;
258 
259 out:
260 	if (lip)
261 		cur->item = xfs_ail_next(ailp, lip);
262 	return lip;
263 }
264 
265 static struct xfs_log_item *
266 __xfs_trans_ail_cursor_last(
267 	struct xfs_ail		*ailp,
268 	xfs_lsn_t		lsn)
269 {
270 	xfs_log_item_t		*lip;
271 
272 	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
273 		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
274 			return lip;
275 	}
276 	return NULL;
277 }
278 
279 /*
280  * Find the last item in the AIL with the given @lsn by searching in descending
281  * LSN order and initialise the cursor to point to that item.  If there is no
282  * item with the value of @lsn, then it sets the cursor to the last item with an
283  * LSN lower than @lsn.  Returns NULL if the list is empty.
284  */
285 struct xfs_log_item *
286 xfs_trans_ail_cursor_last(
287 	struct xfs_ail		*ailp,
288 	struct xfs_ail_cursor	*cur,
289 	xfs_lsn_t		lsn)
290 {
291 	xfs_trans_ail_cursor_init(ailp, cur);
292 	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
293 	return cur->item;
294 }
295 
296 /*
297  * Splice the log item list into the AIL at the given LSN. We splice to the
298  * tail of the given LSN to maintain insert order for push traversals. The
299  * cursor is optional, allowing repeated updates to the same LSN to avoid
300  * repeated traversals.  This should not be called with an empty list.
301  */
302 static void
303 xfs_ail_splice(
304 	struct xfs_ail		*ailp,
305 	struct xfs_ail_cursor	*cur,
306 	struct list_head	*list,
307 	xfs_lsn_t		lsn)
308 {
309 	struct xfs_log_item	*lip;
310 
311 	ASSERT(!list_empty(list));
312 
313 	/*
314 	 * Use the cursor to determine the insertion point if one is
315 	 * provided.  If not, or if the one we got is not valid,
316 	 * find the place in the AIL where the items belong.
317 	 */
318 	lip = cur ? cur->item : NULL;
319 	if (!lip || (__psint_t) lip & 1)
320 		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
321 
322 	/*
323 	 * If a cursor is provided, we know we're processing the AIL
324 	 * in lsn order, and future items to be spliced in will
325 	 * follow the last one being inserted now.  Update the
326 	 * cursor to point to that last item, now while we have a
327 	 * reliable pointer to it.
328 	 */
329 	if (cur)
330 		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
331 
332 	/*
333 	 * Finally perform the splice.  Unless the AIL was empty,
334 	 * lip points to the item in the AIL _after_ which the new
335 	 * items should go.  If lip is null the AIL was empty, so
336 	 * the new items go at the head of the AIL.
337 	 */
338 	if (lip)
339 		list_splice(list, &lip->li_ail);
340 	else
341 		list_splice(list, &ailp->xa_ail);
342 }
343 
344 /*
345  * Delete the given item from the AIL.  Return a pointer to the item.
346  */
347 static void
348 xfs_ail_delete(
349 	struct xfs_ail  *ailp,
350 	xfs_log_item_t  *lip)
351 {
352 	xfs_ail_check(ailp, lip);
353 	list_del(&lip->li_ail);
354 	xfs_trans_ail_cursor_clear(ailp, lip);
355 }
356 
357 static long
358 xfsaild_push(
359 	struct xfs_ail		*ailp)
360 {
361 	xfs_mount_t		*mp = ailp->xa_mount;
362 	struct xfs_ail_cursor	cur;
363 	xfs_log_item_t		*lip;
364 	xfs_lsn_t		lsn;
365 	xfs_lsn_t		target;
366 	long			tout;
367 	int			stuck = 0;
368 	int			flushing = 0;
369 	int			count = 0;
370 
371 	/*
372 	 * If we encountered pinned items or did not finish writing out all
373 	 * buffers the last time we ran, force the log first and wait for it
374 	 * before pushing again.
375 	 */
376 	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
377 	    (!list_empty_careful(&ailp->xa_buf_list) ||
378 	     xfs_ail_min_lsn(ailp))) {
379 		ailp->xa_log_flush = 0;
380 
381 		XFS_STATS_INC(xs_push_ail_flush);
382 		xfs_log_force(mp, XFS_LOG_SYNC);
383 	}
384 
385 	spin_lock(&ailp->xa_lock);
386 	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
387 	if (!lip) {
388 		/*
389 		 * If the AIL is empty or our push has reached the end we are
390 		 * done now.
391 		 */
392 		xfs_trans_ail_cursor_done(ailp, &cur);
393 		spin_unlock(&ailp->xa_lock);
394 		goto out_done;
395 	}
396 
397 	XFS_STATS_INC(xs_push_ail);
398 
399 	lsn = lip->li_lsn;
400 	target = ailp->xa_target;
401 	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
402 		int	lock_result;
403 
404 		/*
405 		 * Note that IOP_PUSH may unlock and reacquire the AIL lock.  We
406 		 * rely on the AIL cursor implementation to be able to deal with
407 		 * the dropped lock.
408 		 */
409 		lock_result = IOP_PUSH(lip, &ailp->xa_buf_list);
410 		switch (lock_result) {
411 		case XFS_ITEM_SUCCESS:
412 			XFS_STATS_INC(xs_push_ail_success);
413 			trace_xfs_ail_push(lip);
414 
415 			ailp->xa_last_pushed_lsn = lsn;
416 			break;
417 
418 		case XFS_ITEM_FLUSHING:
419 			/*
420 			 * The item or its backing buffer is already beeing
421 			 * flushed.  The typical reason for that is that an
422 			 * inode buffer is locked because we already pushed the
423 			 * updates to it as part of inode clustering.
424 			 *
425 			 * We do not want to to stop flushing just because lots
426 			 * of items are already beeing flushed, but we need to
427 			 * re-try the flushing relatively soon if most of the
428 			 * AIL is beeing flushed.
429 			 */
430 			XFS_STATS_INC(xs_push_ail_flushing);
431 			trace_xfs_ail_flushing(lip);
432 
433 			flushing++;
434 			ailp->xa_last_pushed_lsn = lsn;
435 			break;
436 
437 		case XFS_ITEM_PINNED:
438 			XFS_STATS_INC(xs_push_ail_pinned);
439 			trace_xfs_ail_pinned(lip);
440 
441 			stuck++;
442 			ailp->xa_log_flush++;
443 			break;
444 		case XFS_ITEM_LOCKED:
445 			XFS_STATS_INC(xs_push_ail_locked);
446 			trace_xfs_ail_locked(lip);
447 
448 			stuck++;
449 			break;
450 		default:
451 			ASSERT(0);
452 			break;
453 		}
454 
455 		count++;
456 
457 		/*
458 		 * Are there too many items we can't do anything with?
459 		 *
460 		 * If we we are skipping too many items because we can't flush
461 		 * them or they are already being flushed, we back off and
462 		 * given them time to complete whatever operation is being
463 		 * done. i.e. remove pressure from the AIL while we can't make
464 		 * progress so traversals don't slow down further inserts and
465 		 * removals to/from the AIL.
466 		 *
467 		 * The value of 100 is an arbitrary magic number based on
468 		 * observation.
469 		 */
470 		if (stuck > 100)
471 			break;
472 
473 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
474 		if (lip == NULL)
475 			break;
476 		lsn = lip->li_lsn;
477 	}
478 	xfs_trans_ail_cursor_done(ailp, &cur);
479 	spin_unlock(&ailp->xa_lock);
480 
481 	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
482 		ailp->xa_log_flush++;
483 
484 	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
485 out_done:
486 		/*
487 		 * We reached the target or the AIL is empty, so wait a bit
488 		 * longer for I/O to complete and remove pushed items from the
489 		 * AIL before we start the next scan from the start of the AIL.
490 		 */
491 		tout = 50;
492 		ailp->xa_last_pushed_lsn = 0;
493 	} else if (((stuck + flushing) * 100) / count > 90) {
494 		/*
495 		 * Either there is a lot of contention on the AIL or we are
496 		 * stuck due to operations in progress. "Stuck" in this case
497 		 * is defined as >90% of the items we tried to push were stuck.
498 		 *
499 		 * Backoff a bit more to allow some I/O to complete before
500 		 * restarting from the start of the AIL. This prevents us from
501 		 * spinning on the same items, and if they are pinned will all
502 		 * the restart to issue a log force to unpin the stuck items.
503 		 */
504 		tout = 20;
505 		ailp->xa_last_pushed_lsn = 0;
506 	} else {
507 		/*
508 		 * Assume we have more work to do in a short while.
509 		 */
510 		tout = 10;
511 	}
512 
513 	return tout;
514 }
515 
516 static int
517 xfsaild(
518 	void		*data)
519 {
520 	struct xfs_ail	*ailp = data;
521 	long		tout = 0;	/* milliseconds */
522 
523 	current->flags |= PF_MEMALLOC;
524 
525 	while (!kthread_should_stop()) {
526 		if (tout && tout <= 20)
527 			__set_current_state(TASK_KILLABLE);
528 		else
529 			__set_current_state(TASK_INTERRUPTIBLE);
530 		schedule_timeout(tout ?
531 				 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
532 
533 		try_to_freeze();
534 
535 		tout = xfsaild_push(ailp);
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * This routine is called to move the tail of the AIL forward.  It does this by
543  * trying to flush items in the AIL whose lsns are below the given
544  * threshold_lsn.
545  *
546  * The push is run asynchronously in a workqueue, which means the caller needs
547  * to handle waiting on the async flush for space to become available.
548  * We don't want to interrupt any push that is in progress, hence we only queue
549  * work if we set the pushing bit approriately.
550  *
551  * We do this unlocked - we only need to know whether there is anything in the
552  * AIL at the time we are called. We don't need to access the contents of
553  * any of the objects, so the lock is not needed.
554  */
555 void
556 xfs_ail_push(
557 	struct xfs_ail	*ailp,
558 	xfs_lsn_t	threshold_lsn)
559 {
560 	xfs_log_item_t	*lip;
561 
562 	lip = xfs_ail_min(ailp);
563 	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
564 	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
565 		return;
566 
567 	/*
568 	 * Ensure that the new target is noticed in push code before it clears
569 	 * the XFS_AIL_PUSHING_BIT.
570 	 */
571 	smp_wmb();
572 	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
573 	smp_wmb();
574 
575 	wake_up_process(ailp->xa_task);
576 }
577 
578 /*
579  * Push out all items in the AIL immediately
580  */
581 void
582 xfs_ail_push_all(
583 	struct xfs_ail  *ailp)
584 {
585 	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
586 
587 	if (threshold_lsn)
588 		xfs_ail_push(ailp, threshold_lsn);
589 }
590 
591 /*
592  * Push out all items in the AIL immediately and wait until the AIL is empty.
593  */
594 void
595 xfs_ail_push_all_sync(
596 	struct xfs_ail  *ailp)
597 {
598 	struct xfs_log_item	*lip;
599 	DEFINE_WAIT(wait);
600 
601 	spin_lock(&ailp->xa_lock);
602 	while ((lip = xfs_ail_max(ailp)) != NULL) {
603 		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
604 		ailp->xa_target = lip->li_lsn;
605 		wake_up_process(ailp->xa_task);
606 		spin_unlock(&ailp->xa_lock);
607 		schedule();
608 		spin_lock(&ailp->xa_lock);
609 	}
610 	spin_unlock(&ailp->xa_lock);
611 
612 	finish_wait(&ailp->xa_empty, &wait);
613 }
614 
615 /*
616  * xfs_trans_ail_update - bulk AIL insertion operation.
617  *
618  * @xfs_trans_ail_update takes an array of log items that all need to be
619  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
620  * be added.  Otherwise, it will be repositioned  by removing it and re-adding
621  * it to the AIL. If we move the first item in the AIL, update the log tail to
622  * match the new minimum LSN in the AIL.
623  *
624  * This function takes the AIL lock once to execute the update operations on
625  * all the items in the array, and as such should not be called with the AIL
626  * lock held. As a result, once we have the AIL lock, we need to check each log
627  * item LSN to confirm it needs to be moved forward in the AIL.
628  *
629  * To optimise the insert operation, we delete all the items from the AIL in
630  * the first pass, moving them into a temporary list, then splice the temporary
631  * list into the correct position in the AIL. This avoids needing to do an
632  * insert operation on every item.
633  *
634  * This function must be called with the AIL lock held.  The lock is dropped
635  * before returning.
636  */
637 void
638 xfs_trans_ail_update_bulk(
639 	struct xfs_ail		*ailp,
640 	struct xfs_ail_cursor	*cur,
641 	struct xfs_log_item	**log_items,
642 	int			nr_items,
643 	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
644 {
645 	xfs_log_item_t		*mlip;
646 	int			mlip_changed = 0;
647 	int			i;
648 	LIST_HEAD(tmp);
649 
650 	ASSERT(nr_items > 0);		/* Not required, but true. */
651 	mlip = xfs_ail_min(ailp);
652 
653 	for (i = 0; i < nr_items; i++) {
654 		struct xfs_log_item *lip = log_items[i];
655 		if (lip->li_flags & XFS_LI_IN_AIL) {
656 			/* check if we really need to move the item */
657 			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
658 				continue;
659 
660 			xfs_ail_delete(ailp, lip);
661 			if (mlip == lip)
662 				mlip_changed = 1;
663 		} else {
664 			lip->li_flags |= XFS_LI_IN_AIL;
665 		}
666 		lip->li_lsn = lsn;
667 		list_add(&lip->li_ail, &tmp);
668 	}
669 
670 	if (!list_empty(&tmp))
671 		xfs_ail_splice(ailp, cur, &tmp, lsn);
672 
673 	if (mlip_changed) {
674 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
675 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
676 		spin_unlock(&ailp->xa_lock);
677 
678 		xfs_log_space_wake(ailp->xa_mount);
679 	} else {
680 		spin_unlock(&ailp->xa_lock);
681 	}
682 }
683 
684 /*
685  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
686  *
687  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
688  * removed from the AIL. The caller is already holding the AIL lock, and done
689  * all the checks necessary to ensure the items passed in via @log_items are
690  * ready for deletion. This includes checking that the items are in the AIL.
691  *
692  * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
693  * flag from the item and reset the item's lsn to 0. If we remove the first
694  * item in the AIL, update the log tail to match the new minimum LSN in the
695  * AIL.
696  *
697  * This function will not drop the AIL lock until all items are removed from
698  * the AIL to minimise the amount of lock traffic on the AIL. This does not
699  * greatly increase the AIL hold time, but does significantly reduce the amount
700  * of traffic on the lock, especially during IO completion.
701  *
702  * This function must be called with the AIL lock held.  The lock is dropped
703  * before returning.
704  */
705 void
706 xfs_trans_ail_delete_bulk(
707 	struct xfs_ail		*ailp,
708 	struct xfs_log_item	**log_items,
709 	int			nr_items,
710 	int			shutdown_type) __releases(ailp->xa_lock)
711 {
712 	xfs_log_item_t		*mlip;
713 	int			mlip_changed = 0;
714 	int			i;
715 
716 	mlip = xfs_ail_min(ailp);
717 
718 	for (i = 0; i < nr_items; i++) {
719 		struct xfs_log_item *lip = log_items[i];
720 		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
721 			struct xfs_mount	*mp = ailp->xa_mount;
722 
723 			spin_unlock(&ailp->xa_lock);
724 			if (!XFS_FORCED_SHUTDOWN(mp)) {
725 				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
726 		"%s: attempting to delete a log item that is not in the AIL",
727 						__func__);
728 				xfs_force_shutdown(mp, shutdown_type);
729 			}
730 			return;
731 		}
732 
733 		xfs_ail_delete(ailp, lip);
734 		lip->li_flags &= ~XFS_LI_IN_AIL;
735 		lip->li_lsn = 0;
736 		if (mlip == lip)
737 			mlip_changed = 1;
738 	}
739 
740 	if (mlip_changed) {
741 		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
742 			xlog_assign_tail_lsn_locked(ailp->xa_mount);
743 		if (list_empty(&ailp->xa_ail))
744 			wake_up_all(&ailp->xa_empty);
745 		spin_unlock(&ailp->xa_lock);
746 
747 		xfs_log_space_wake(ailp->xa_mount);
748 	} else {
749 		spin_unlock(&ailp->xa_lock);
750 	}
751 }
752 
753 int
754 xfs_trans_ail_init(
755 	xfs_mount_t	*mp)
756 {
757 	struct xfs_ail	*ailp;
758 
759 	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
760 	if (!ailp)
761 		return ENOMEM;
762 
763 	ailp->xa_mount = mp;
764 	INIT_LIST_HEAD(&ailp->xa_ail);
765 	INIT_LIST_HEAD(&ailp->xa_cursors);
766 	spin_lock_init(&ailp->xa_lock);
767 	INIT_LIST_HEAD(&ailp->xa_buf_list);
768 	init_waitqueue_head(&ailp->xa_empty);
769 
770 	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
771 			ailp->xa_mount->m_fsname);
772 	if (IS_ERR(ailp->xa_task))
773 		goto out_free_ailp;
774 
775 	mp->m_ail = ailp;
776 	return 0;
777 
778 out_free_ailp:
779 	kmem_free(ailp);
780 	return ENOMEM;
781 }
782 
783 void
784 xfs_trans_ail_destroy(
785 	xfs_mount_t	*mp)
786 {
787 	struct xfs_ail	*ailp = mp->m_ail;
788 
789 	kthread_stop(ailp->xa_task);
790 	kmem_free(ailp);
791 }
792