1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * Copyright (c) 2008 Dave Chinner 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_trace.h" 28 #include "xfs_errortag.h" 29 #include "xfs_error.h" 30 #include "xfs_log.h" 31 32 #ifdef DEBUG 33 /* 34 * Check that the list is sorted as it should be. 35 */ 36 STATIC void 37 xfs_ail_check( 38 struct xfs_ail *ailp, 39 xfs_log_item_t *lip) 40 { 41 xfs_log_item_t *prev_lip; 42 43 if (list_empty(&ailp->xa_ail)) 44 return; 45 46 /* 47 * Check the next and previous entries are valid. 48 */ 49 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); 50 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail); 51 if (&prev_lip->li_ail != &ailp->xa_ail) 52 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); 53 54 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail); 55 if (&prev_lip->li_ail != &ailp->xa_ail) 56 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0); 57 58 59 } 60 #else /* !DEBUG */ 61 #define xfs_ail_check(a,l) 62 #endif /* DEBUG */ 63 64 /* 65 * Return a pointer to the last item in the AIL. If the AIL is empty, then 66 * return NULL. 67 */ 68 static xfs_log_item_t * 69 xfs_ail_max( 70 struct xfs_ail *ailp) 71 { 72 if (list_empty(&ailp->xa_ail)) 73 return NULL; 74 75 return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail); 76 } 77 78 /* 79 * Return a pointer to the item which follows the given item in the AIL. If 80 * the given item is the last item in the list, then return NULL. 81 */ 82 static xfs_log_item_t * 83 xfs_ail_next( 84 struct xfs_ail *ailp, 85 xfs_log_item_t *lip) 86 { 87 if (lip->li_ail.next == &ailp->xa_ail) 88 return NULL; 89 90 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail); 91 } 92 93 /* 94 * This is called by the log manager code to determine the LSN of the tail of 95 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 96 * is empty, then this function returns 0. 97 * 98 * We need the AIL lock in order to get a coherent read of the lsn of the last 99 * item in the AIL. 100 */ 101 xfs_lsn_t 102 xfs_ail_min_lsn( 103 struct xfs_ail *ailp) 104 { 105 xfs_lsn_t lsn = 0; 106 xfs_log_item_t *lip; 107 108 spin_lock(&ailp->xa_lock); 109 lip = xfs_ail_min(ailp); 110 if (lip) 111 lsn = lip->li_lsn; 112 spin_unlock(&ailp->xa_lock); 113 114 return lsn; 115 } 116 117 /* 118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty. 119 */ 120 static xfs_lsn_t 121 xfs_ail_max_lsn( 122 struct xfs_ail *ailp) 123 { 124 xfs_lsn_t lsn = 0; 125 xfs_log_item_t *lip; 126 127 spin_lock(&ailp->xa_lock); 128 lip = xfs_ail_max(ailp); 129 if (lip) 130 lsn = lip->li_lsn; 131 spin_unlock(&ailp->xa_lock); 132 133 return lsn; 134 } 135 136 /* 137 * The cursor keeps track of where our current traversal is up to by tracking 138 * the next item in the list for us. However, for this to be safe, removing an 139 * object from the AIL needs to invalidate any cursor that points to it. hence 140 * the traversal cursor needs to be linked to the struct xfs_ail so that 141 * deletion can search all the active cursors for invalidation. 142 */ 143 STATIC void 144 xfs_trans_ail_cursor_init( 145 struct xfs_ail *ailp, 146 struct xfs_ail_cursor *cur) 147 { 148 cur->item = NULL; 149 list_add_tail(&cur->list, &ailp->xa_cursors); 150 } 151 152 /* 153 * Get the next item in the traversal and advance the cursor. If the cursor 154 * was invalidated (indicated by a lip of 1), restart the traversal. 155 */ 156 struct xfs_log_item * 157 xfs_trans_ail_cursor_next( 158 struct xfs_ail *ailp, 159 struct xfs_ail_cursor *cur) 160 { 161 struct xfs_log_item *lip = cur->item; 162 163 if ((uintptr_t)lip & 1) 164 lip = xfs_ail_min(ailp); 165 if (lip) 166 cur->item = xfs_ail_next(ailp, lip); 167 return lip; 168 } 169 170 /* 171 * When the traversal is complete, we need to remove the cursor from the list 172 * of traversing cursors. 173 */ 174 void 175 xfs_trans_ail_cursor_done( 176 struct xfs_ail_cursor *cur) 177 { 178 cur->item = NULL; 179 list_del_init(&cur->list); 180 } 181 182 /* 183 * Invalidate any cursor that is pointing to this item. This is called when an 184 * item is removed from the AIL. Any cursor pointing to this object is now 185 * invalid and the traversal needs to be terminated so it doesn't reference a 186 * freed object. We set the low bit of the cursor item pointer so we can 187 * distinguish between an invalidation and the end of the list when getting the 188 * next item from the cursor. 189 */ 190 STATIC void 191 xfs_trans_ail_cursor_clear( 192 struct xfs_ail *ailp, 193 struct xfs_log_item *lip) 194 { 195 struct xfs_ail_cursor *cur; 196 197 list_for_each_entry(cur, &ailp->xa_cursors, list) { 198 if (cur->item == lip) 199 cur->item = (struct xfs_log_item *) 200 ((uintptr_t)cur->item | 1); 201 } 202 } 203 204 /* 205 * Find the first item in the AIL with the given @lsn by searching in ascending 206 * LSN order and initialise the cursor to point to the next item for a 207 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 208 * first item in the AIL. Returns NULL if the list is empty. 209 */ 210 xfs_log_item_t * 211 xfs_trans_ail_cursor_first( 212 struct xfs_ail *ailp, 213 struct xfs_ail_cursor *cur, 214 xfs_lsn_t lsn) 215 { 216 xfs_log_item_t *lip; 217 218 xfs_trans_ail_cursor_init(ailp, cur); 219 220 if (lsn == 0) { 221 lip = xfs_ail_min(ailp); 222 goto out; 223 } 224 225 list_for_each_entry(lip, &ailp->xa_ail, li_ail) { 226 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 227 goto out; 228 } 229 return NULL; 230 231 out: 232 if (lip) 233 cur->item = xfs_ail_next(ailp, lip); 234 return lip; 235 } 236 237 static struct xfs_log_item * 238 __xfs_trans_ail_cursor_last( 239 struct xfs_ail *ailp, 240 xfs_lsn_t lsn) 241 { 242 xfs_log_item_t *lip; 243 244 list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) { 245 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 246 return lip; 247 } 248 return NULL; 249 } 250 251 /* 252 * Find the last item in the AIL with the given @lsn by searching in descending 253 * LSN order and initialise the cursor to point to that item. If there is no 254 * item with the value of @lsn, then it sets the cursor to the last item with an 255 * LSN lower than @lsn. Returns NULL if the list is empty. 256 */ 257 struct xfs_log_item * 258 xfs_trans_ail_cursor_last( 259 struct xfs_ail *ailp, 260 struct xfs_ail_cursor *cur, 261 xfs_lsn_t lsn) 262 { 263 xfs_trans_ail_cursor_init(ailp, cur); 264 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 265 return cur->item; 266 } 267 268 /* 269 * Splice the log item list into the AIL at the given LSN. We splice to the 270 * tail of the given LSN to maintain insert order for push traversals. The 271 * cursor is optional, allowing repeated updates to the same LSN to avoid 272 * repeated traversals. This should not be called with an empty list. 273 */ 274 static void 275 xfs_ail_splice( 276 struct xfs_ail *ailp, 277 struct xfs_ail_cursor *cur, 278 struct list_head *list, 279 xfs_lsn_t lsn) 280 { 281 struct xfs_log_item *lip; 282 283 ASSERT(!list_empty(list)); 284 285 /* 286 * Use the cursor to determine the insertion point if one is 287 * provided. If not, or if the one we got is not valid, 288 * find the place in the AIL where the items belong. 289 */ 290 lip = cur ? cur->item : NULL; 291 if (!lip || (uintptr_t)lip & 1) 292 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 293 294 /* 295 * If a cursor is provided, we know we're processing the AIL 296 * in lsn order, and future items to be spliced in will 297 * follow the last one being inserted now. Update the 298 * cursor to point to that last item, now while we have a 299 * reliable pointer to it. 300 */ 301 if (cur) 302 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 303 304 /* 305 * Finally perform the splice. Unless the AIL was empty, 306 * lip points to the item in the AIL _after_ which the new 307 * items should go. If lip is null the AIL was empty, so 308 * the new items go at the head of the AIL. 309 */ 310 if (lip) 311 list_splice(list, &lip->li_ail); 312 else 313 list_splice(list, &ailp->xa_ail); 314 } 315 316 /* 317 * Delete the given item from the AIL. Return a pointer to the item. 318 */ 319 static void 320 xfs_ail_delete( 321 struct xfs_ail *ailp, 322 xfs_log_item_t *lip) 323 { 324 xfs_ail_check(ailp, lip); 325 list_del(&lip->li_ail); 326 xfs_trans_ail_cursor_clear(ailp, lip); 327 } 328 329 static inline uint 330 xfsaild_push_item( 331 struct xfs_ail *ailp, 332 struct xfs_log_item *lip) 333 { 334 /* 335 * If log item pinning is enabled, skip the push and track the item as 336 * pinned. This can help induce head-behind-tail conditions. 337 */ 338 if (XFS_TEST_ERROR(false, ailp->xa_mount, XFS_ERRTAG_LOG_ITEM_PIN)) 339 return XFS_ITEM_PINNED; 340 341 return lip->li_ops->iop_push(lip, &ailp->xa_buf_list); 342 } 343 344 static long 345 xfsaild_push( 346 struct xfs_ail *ailp) 347 { 348 xfs_mount_t *mp = ailp->xa_mount; 349 struct xfs_ail_cursor cur; 350 xfs_log_item_t *lip; 351 xfs_lsn_t lsn; 352 xfs_lsn_t target; 353 long tout; 354 int stuck = 0; 355 int flushing = 0; 356 int count = 0; 357 358 /* 359 * If we encountered pinned items or did not finish writing out all 360 * buffers the last time we ran, force the log first and wait for it 361 * before pushing again. 362 */ 363 if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 && 364 (!list_empty_careful(&ailp->xa_buf_list) || 365 xfs_ail_min_lsn(ailp))) { 366 ailp->xa_log_flush = 0; 367 368 XFS_STATS_INC(mp, xs_push_ail_flush); 369 xfs_log_force(mp, XFS_LOG_SYNC); 370 } 371 372 spin_lock(&ailp->xa_lock); 373 374 /* barrier matches the xa_target update in xfs_ail_push() */ 375 smp_rmb(); 376 target = ailp->xa_target; 377 ailp->xa_target_prev = target; 378 379 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn); 380 if (!lip) { 381 /* 382 * If the AIL is empty or our push has reached the end we are 383 * done now. 384 */ 385 xfs_trans_ail_cursor_done(&cur); 386 spin_unlock(&ailp->xa_lock); 387 goto out_done; 388 } 389 390 XFS_STATS_INC(mp, xs_push_ail); 391 392 lsn = lip->li_lsn; 393 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) { 394 int lock_result; 395 396 /* 397 * Note that iop_push may unlock and reacquire the AIL lock. We 398 * rely on the AIL cursor implementation to be able to deal with 399 * the dropped lock. 400 */ 401 lock_result = xfsaild_push_item(ailp, lip); 402 switch (lock_result) { 403 case XFS_ITEM_SUCCESS: 404 XFS_STATS_INC(mp, xs_push_ail_success); 405 trace_xfs_ail_push(lip); 406 407 ailp->xa_last_pushed_lsn = lsn; 408 break; 409 410 case XFS_ITEM_FLUSHING: 411 /* 412 * The item or its backing buffer is already beeing 413 * flushed. The typical reason for that is that an 414 * inode buffer is locked because we already pushed the 415 * updates to it as part of inode clustering. 416 * 417 * We do not want to to stop flushing just because lots 418 * of items are already beeing flushed, but we need to 419 * re-try the flushing relatively soon if most of the 420 * AIL is beeing flushed. 421 */ 422 XFS_STATS_INC(mp, xs_push_ail_flushing); 423 trace_xfs_ail_flushing(lip); 424 425 flushing++; 426 ailp->xa_last_pushed_lsn = lsn; 427 break; 428 429 case XFS_ITEM_PINNED: 430 XFS_STATS_INC(mp, xs_push_ail_pinned); 431 trace_xfs_ail_pinned(lip); 432 433 stuck++; 434 ailp->xa_log_flush++; 435 break; 436 case XFS_ITEM_LOCKED: 437 XFS_STATS_INC(mp, xs_push_ail_locked); 438 trace_xfs_ail_locked(lip); 439 440 stuck++; 441 break; 442 default: 443 ASSERT(0); 444 break; 445 } 446 447 count++; 448 449 /* 450 * Are there too many items we can't do anything with? 451 * 452 * If we we are skipping too many items because we can't flush 453 * them or they are already being flushed, we back off and 454 * given them time to complete whatever operation is being 455 * done. i.e. remove pressure from the AIL while we can't make 456 * progress so traversals don't slow down further inserts and 457 * removals to/from the AIL. 458 * 459 * The value of 100 is an arbitrary magic number based on 460 * observation. 461 */ 462 if (stuck > 100) 463 break; 464 465 lip = xfs_trans_ail_cursor_next(ailp, &cur); 466 if (lip == NULL) 467 break; 468 lsn = lip->li_lsn; 469 } 470 xfs_trans_ail_cursor_done(&cur); 471 spin_unlock(&ailp->xa_lock); 472 473 if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list)) 474 ailp->xa_log_flush++; 475 476 if (!count || XFS_LSN_CMP(lsn, target) >= 0) { 477 out_done: 478 /* 479 * We reached the target or the AIL is empty, so wait a bit 480 * longer for I/O to complete and remove pushed items from the 481 * AIL before we start the next scan from the start of the AIL. 482 */ 483 tout = 50; 484 ailp->xa_last_pushed_lsn = 0; 485 } else if (((stuck + flushing) * 100) / count > 90) { 486 /* 487 * Either there is a lot of contention on the AIL or we are 488 * stuck due to operations in progress. "Stuck" in this case 489 * is defined as >90% of the items we tried to push were stuck. 490 * 491 * Backoff a bit more to allow some I/O to complete before 492 * restarting from the start of the AIL. This prevents us from 493 * spinning on the same items, and if they are pinned will all 494 * the restart to issue a log force to unpin the stuck items. 495 */ 496 tout = 20; 497 ailp->xa_last_pushed_lsn = 0; 498 } else { 499 /* 500 * Assume we have more work to do in a short while. 501 */ 502 tout = 10; 503 } 504 505 return tout; 506 } 507 508 static int 509 xfsaild( 510 void *data) 511 { 512 struct xfs_ail *ailp = data; 513 long tout = 0; /* milliseconds */ 514 515 current->flags |= PF_MEMALLOC; 516 set_freezable(); 517 518 while (1) { 519 if (tout && tout <= 20) 520 set_current_state(TASK_KILLABLE); 521 else 522 set_current_state(TASK_INTERRUPTIBLE); 523 524 /* 525 * Check kthread_should_stop() after we set the task state 526 * to guarantee that we either see the stop bit and exit or 527 * the task state is reset to runnable such that it's not 528 * scheduled out indefinitely and detects the stop bit at 529 * next iteration. 530 * 531 * A memory barrier is included in above task state set to 532 * serialize again kthread_stop(). 533 */ 534 if (kthread_should_stop()) { 535 __set_current_state(TASK_RUNNING); 536 break; 537 } 538 539 spin_lock(&ailp->xa_lock); 540 541 /* 542 * Idle if the AIL is empty and we are not racing with a target 543 * update. We check the AIL after we set the task to a sleep 544 * state to guarantee that we either catch an xa_target update 545 * or that a wake_up resets the state to TASK_RUNNING. 546 * Otherwise, we run the risk of sleeping indefinitely. 547 * 548 * The barrier matches the xa_target update in xfs_ail_push(). 549 */ 550 smp_rmb(); 551 if (!xfs_ail_min(ailp) && 552 ailp->xa_target == ailp->xa_target_prev) { 553 spin_unlock(&ailp->xa_lock); 554 freezable_schedule(); 555 tout = 0; 556 continue; 557 } 558 spin_unlock(&ailp->xa_lock); 559 560 if (tout) 561 freezable_schedule_timeout(msecs_to_jiffies(tout)); 562 563 __set_current_state(TASK_RUNNING); 564 565 try_to_freeze(); 566 567 tout = xfsaild_push(ailp); 568 } 569 570 return 0; 571 } 572 573 /* 574 * This routine is called to move the tail of the AIL forward. It does this by 575 * trying to flush items in the AIL whose lsns are below the given 576 * threshold_lsn. 577 * 578 * The push is run asynchronously in a workqueue, which means the caller needs 579 * to handle waiting on the async flush for space to become available. 580 * We don't want to interrupt any push that is in progress, hence we only queue 581 * work if we set the pushing bit approriately. 582 * 583 * We do this unlocked - we only need to know whether there is anything in the 584 * AIL at the time we are called. We don't need to access the contents of 585 * any of the objects, so the lock is not needed. 586 */ 587 void 588 xfs_ail_push( 589 struct xfs_ail *ailp, 590 xfs_lsn_t threshold_lsn) 591 { 592 xfs_log_item_t *lip; 593 594 lip = xfs_ail_min(ailp); 595 if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) || 596 XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0) 597 return; 598 599 /* 600 * Ensure that the new target is noticed in push code before it clears 601 * the XFS_AIL_PUSHING_BIT. 602 */ 603 smp_wmb(); 604 xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn); 605 smp_wmb(); 606 607 wake_up_process(ailp->xa_task); 608 } 609 610 /* 611 * Push out all items in the AIL immediately 612 */ 613 void 614 xfs_ail_push_all( 615 struct xfs_ail *ailp) 616 { 617 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp); 618 619 if (threshold_lsn) 620 xfs_ail_push(ailp, threshold_lsn); 621 } 622 623 /* 624 * Push out all items in the AIL immediately and wait until the AIL is empty. 625 */ 626 void 627 xfs_ail_push_all_sync( 628 struct xfs_ail *ailp) 629 { 630 struct xfs_log_item *lip; 631 DEFINE_WAIT(wait); 632 633 spin_lock(&ailp->xa_lock); 634 while ((lip = xfs_ail_max(ailp)) != NULL) { 635 prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE); 636 ailp->xa_target = lip->li_lsn; 637 wake_up_process(ailp->xa_task); 638 spin_unlock(&ailp->xa_lock); 639 schedule(); 640 spin_lock(&ailp->xa_lock); 641 } 642 spin_unlock(&ailp->xa_lock); 643 644 finish_wait(&ailp->xa_empty, &wait); 645 } 646 647 /* 648 * xfs_trans_ail_update - bulk AIL insertion operation. 649 * 650 * @xfs_trans_ail_update takes an array of log items that all need to be 651 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 652 * be added. Otherwise, it will be repositioned by removing it and re-adding 653 * it to the AIL. If we move the first item in the AIL, update the log tail to 654 * match the new minimum LSN in the AIL. 655 * 656 * This function takes the AIL lock once to execute the update operations on 657 * all the items in the array, and as such should not be called with the AIL 658 * lock held. As a result, once we have the AIL lock, we need to check each log 659 * item LSN to confirm it needs to be moved forward in the AIL. 660 * 661 * To optimise the insert operation, we delete all the items from the AIL in 662 * the first pass, moving them into a temporary list, then splice the temporary 663 * list into the correct position in the AIL. This avoids needing to do an 664 * insert operation on every item. 665 * 666 * This function must be called with the AIL lock held. The lock is dropped 667 * before returning. 668 */ 669 void 670 xfs_trans_ail_update_bulk( 671 struct xfs_ail *ailp, 672 struct xfs_ail_cursor *cur, 673 struct xfs_log_item **log_items, 674 int nr_items, 675 xfs_lsn_t lsn) __releases(ailp->xa_lock) 676 { 677 xfs_log_item_t *mlip; 678 int mlip_changed = 0; 679 int i; 680 LIST_HEAD(tmp); 681 682 ASSERT(nr_items > 0); /* Not required, but true. */ 683 mlip = xfs_ail_min(ailp); 684 685 for (i = 0; i < nr_items; i++) { 686 struct xfs_log_item *lip = log_items[i]; 687 if (lip->li_flags & XFS_LI_IN_AIL) { 688 /* check if we really need to move the item */ 689 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 690 continue; 691 692 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 693 xfs_ail_delete(ailp, lip); 694 if (mlip == lip) 695 mlip_changed = 1; 696 } else { 697 lip->li_flags |= XFS_LI_IN_AIL; 698 trace_xfs_ail_insert(lip, 0, lsn); 699 } 700 lip->li_lsn = lsn; 701 list_add(&lip->li_ail, &tmp); 702 } 703 704 if (!list_empty(&tmp)) 705 xfs_ail_splice(ailp, cur, &tmp, lsn); 706 707 if (mlip_changed) { 708 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) 709 xlog_assign_tail_lsn_locked(ailp->xa_mount); 710 spin_unlock(&ailp->xa_lock); 711 712 xfs_log_space_wake(ailp->xa_mount); 713 } else { 714 spin_unlock(&ailp->xa_lock); 715 } 716 } 717 718 bool 719 xfs_ail_delete_one( 720 struct xfs_ail *ailp, 721 struct xfs_log_item *lip) 722 { 723 struct xfs_log_item *mlip = xfs_ail_min(ailp); 724 725 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 726 xfs_ail_delete(ailp, lip); 727 xfs_clear_li_failed(lip); 728 lip->li_flags &= ~XFS_LI_IN_AIL; 729 lip->li_lsn = 0; 730 731 return mlip == lip; 732 } 733 734 /** 735 * Remove a log items from the AIL 736 * 737 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to 738 * removed from the AIL. The caller is already holding the AIL lock, and done 739 * all the checks necessary to ensure the items passed in via @log_items are 740 * ready for deletion. This includes checking that the items are in the AIL. 741 * 742 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL 743 * flag from the item and reset the item's lsn to 0. If we remove the first 744 * item in the AIL, update the log tail to match the new minimum LSN in the 745 * AIL. 746 * 747 * This function will not drop the AIL lock until all items are removed from 748 * the AIL to minimise the amount of lock traffic on the AIL. This does not 749 * greatly increase the AIL hold time, but does significantly reduce the amount 750 * of traffic on the lock, especially during IO completion. 751 * 752 * This function must be called with the AIL lock held. The lock is dropped 753 * before returning. 754 */ 755 void 756 xfs_trans_ail_delete( 757 struct xfs_ail *ailp, 758 struct xfs_log_item *lip, 759 int shutdown_type) __releases(ailp->xa_lock) 760 { 761 struct xfs_mount *mp = ailp->xa_mount; 762 bool mlip_changed; 763 764 if (!(lip->li_flags & XFS_LI_IN_AIL)) { 765 spin_unlock(&ailp->xa_lock); 766 if (!XFS_FORCED_SHUTDOWN(mp)) { 767 xfs_alert_tag(mp, XFS_PTAG_AILDELETE, 768 "%s: attempting to delete a log item that is not in the AIL", 769 __func__); 770 xfs_force_shutdown(mp, shutdown_type); 771 } 772 return; 773 } 774 775 mlip_changed = xfs_ail_delete_one(ailp, lip); 776 if (mlip_changed) { 777 if (!XFS_FORCED_SHUTDOWN(mp)) 778 xlog_assign_tail_lsn_locked(mp); 779 if (list_empty(&ailp->xa_ail)) 780 wake_up_all(&ailp->xa_empty); 781 } 782 783 spin_unlock(&ailp->xa_lock); 784 if (mlip_changed) 785 xfs_log_space_wake(ailp->xa_mount); 786 } 787 788 int 789 xfs_trans_ail_init( 790 xfs_mount_t *mp) 791 { 792 struct xfs_ail *ailp; 793 794 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); 795 if (!ailp) 796 return -ENOMEM; 797 798 ailp->xa_mount = mp; 799 INIT_LIST_HEAD(&ailp->xa_ail); 800 INIT_LIST_HEAD(&ailp->xa_cursors); 801 spin_lock_init(&ailp->xa_lock); 802 INIT_LIST_HEAD(&ailp->xa_buf_list); 803 init_waitqueue_head(&ailp->xa_empty); 804 805 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 806 ailp->xa_mount->m_fsname); 807 if (IS_ERR(ailp->xa_task)) 808 goto out_free_ailp; 809 810 mp->m_ail = ailp; 811 return 0; 812 813 out_free_ailp: 814 kmem_free(ailp); 815 return -ENOMEM; 816 } 817 818 void 819 xfs_trans_ail_destroy( 820 xfs_mount_t *mp) 821 { 822 struct xfs_ail *ailp = mp->m_ail; 823 824 kthread_stop(ailp->xa_task); 825 kmem_free(ailp); 826 } 827