xref: /linux/fs/xfs/xfs_trans.c (revision ebc733e54a1a79ea2dde2ba5121ae73a188e20d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 
29 struct kmem_cache	*xfs_trans_cache;
30 
31 #if defined(CONFIG_TRACEPOINTS)
32 static void
33 xfs_trans_trace_reservations(
34 	struct xfs_mount	*mp)
35 {
36 	struct xfs_trans_res	*res;
37 	struct xfs_trans_res	*end_res;
38 	int			i;
39 
40 	res = (struct xfs_trans_res *)M_RES(mp);
41 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 	for (i = 0; res < end_res; i++, res++)
43 		trace_xfs_trans_resv_calc(mp, i, res);
44 }
45 #else
46 # define xfs_trans_trace_reservations(mp)
47 #endif
48 
49 /*
50  * Initialize the precomputed transaction reservation values
51  * in the mount structure.
52  */
53 void
54 xfs_trans_init(
55 	struct xfs_mount	*mp)
56 {
57 	xfs_trans_resv_calc(mp, M_RES(mp));
58 	xfs_trans_trace_reservations(mp);
59 }
60 
61 /*
62  * Free the transaction structure.  If there is more clean up
63  * to do when the structure is freed, add it here.
64  */
65 STATIC void
66 xfs_trans_free(
67 	struct xfs_trans	*tp)
68 {
69 	xfs_extent_busy_sort(&tp->t_busy);
70 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
71 
72 	trace_xfs_trans_free(tp, _RET_IP_);
73 	xfs_trans_clear_context(tp);
74 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
75 		sb_end_intwrite(tp->t_mountp->m_super);
76 	xfs_trans_free_dqinfo(tp);
77 	kmem_cache_free(xfs_trans_cache, tp);
78 }
79 
80 /*
81  * This is called to create a new transaction which will share the
82  * permanent log reservation of the given transaction.  The remaining
83  * unused block and rt extent reservations are also inherited.  This
84  * implies that the original transaction is no longer allowed to allocate
85  * blocks.  Locks and log items, however, are no inherited.  They must
86  * be added to the new transaction explicitly.
87  */
88 STATIC struct xfs_trans *
89 xfs_trans_dup(
90 	struct xfs_trans	*tp)
91 {
92 	struct xfs_trans	*ntp;
93 
94 	trace_xfs_trans_dup(tp, _RET_IP_);
95 
96 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
97 
98 	/*
99 	 * Initialize the new transaction structure.
100 	 */
101 	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
102 	ntp->t_mountp = tp->t_mountp;
103 	INIT_LIST_HEAD(&ntp->t_items);
104 	INIT_LIST_HEAD(&ntp->t_busy);
105 	INIT_LIST_HEAD(&ntp->t_dfops);
106 	ntp->t_highest_agno = NULLAGNUMBER;
107 
108 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
109 	ASSERT(tp->t_ticket != NULL);
110 
111 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
112 		       (tp->t_flags & XFS_TRANS_RESERVE) |
113 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
114 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
115 	/* We gave our writer reference to the new transaction */
116 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
117 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
118 
119 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
120 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
121 	tp->t_blk_res = tp->t_blk_res_used;
122 
123 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
124 	tp->t_rtx_res = tp->t_rtx_res_used;
125 
126 	xfs_trans_switch_context(tp, ntp);
127 
128 	/* move deferred ops over to the new tp */
129 	xfs_defer_move(ntp, tp);
130 
131 	xfs_trans_dup_dqinfo(tp, ntp);
132 	return ntp;
133 }
134 
135 /*
136  * This is called to reserve free disk blocks and log space for the
137  * given transaction.  This must be done before allocating any resources
138  * within the transaction.
139  *
140  * This will return ENOSPC if there are not enough blocks available.
141  * It will sleep waiting for available log space.
142  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143  * is used by long running transactions.  If any one of the reservations
144  * fails then they will all be backed out.
145  *
146  * This does not do quota reservations. That typically is done by the
147  * caller afterwards.
148  */
149 static int
150 xfs_trans_reserve(
151 	struct xfs_trans	*tp,
152 	struct xfs_trans_res	*resp,
153 	uint			blocks,
154 	uint			rtextents)
155 {
156 	struct xfs_mount	*mp = tp->t_mountp;
157 	int			error = 0;
158 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
159 
160 	/*
161 	 * Attempt to reserve the needed disk blocks by decrementing
162 	 * the number needed from the number available.  This will
163 	 * fail if the count would go below zero.
164 	 */
165 	if (blocks > 0) {
166 		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
167 		if (error != 0)
168 			return -ENOSPC;
169 		tp->t_blk_res += blocks;
170 	}
171 
172 	/*
173 	 * Reserve the log space needed for this transaction.
174 	 */
175 	if (resp->tr_logres > 0) {
176 		bool	permanent = false;
177 
178 		ASSERT(tp->t_log_res == 0 ||
179 		       tp->t_log_res == resp->tr_logres);
180 		ASSERT(tp->t_log_count == 0 ||
181 		       tp->t_log_count == resp->tr_logcount);
182 
183 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
184 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
185 			permanent = true;
186 		} else {
187 			ASSERT(tp->t_ticket == NULL);
188 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
189 		}
190 
191 		if (tp->t_ticket != NULL) {
192 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
193 			error = xfs_log_regrant(mp, tp->t_ticket);
194 		} else {
195 			error = xfs_log_reserve(mp, resp->tr_logres,
196 						resp->tr_logcount,
197 						&tp->t_ticket, permanent);
198 		}
199 
200 		if (error)
201 			goto undo_blocks;
202 
203 		tp->t_log_res = resp->tr_logres;
204 		tp->t_log_count = resp->tr_logcount;
205 	}
206 
207 	/*
208 	 * Attempt to reserve the needed realtime extents by decrementing
209 	 * the number needed from the number available.  This will
210 	 * fail if the count would go below zero.
211 	 */
212 	if (rtextents > 0) {
213 		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
214 		if (error) {
215 			error = -ENOSPC;
216 			goto undo_log;
217 		}
218 		tp->t_rtx_res += rtextents;
219 	}
220 
221 	return 0;
222 
223 	/*
224 	 * Error cases jump to one of these labels to undo any
225 	 * reservations which have already been performed.
226 	 */
227 undo_log:
228 	if (resp->tr_logres > 0) {
229 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
230 		tp->t_ticket = NULL;
231 		tp->t_log_res = 0;
232 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
233 	}
234 
235 undo_blocks:
236 	if (blocks > 0) {
237 		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
238 		tp->t_blk_res = 0;
239 	}
240 	return error;
241 }
242 
243 int
244 xfs_trans_alloc(
245 	struct xfs_mount	*mp,
246 	struct xfs_trans_res	*resp,
247 	uint			blocks,
248 	uint			rtextents,
249 	uint			flags,
250 	struct xfs_trans	**tpp)
251 {
252 	struct xfs_trans	*tp;
253 	bool			want_retry = true;
254 	int			error;
255 
256 	/*
257 	 * Allocate the handle before we do our freeze accounting and setting up
258 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
259 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
260 	 */
261 retry:
262 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
263 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
264 		sb_start_intwrite(mp->m_super);
265 	xfs_trans_set_context(tp);
266 
267 	/*
268 	 * Zero-reservation ("empty") transactions can't modify anything, so
269 	 * they're allowed to run while we're frozen.
270 	 */
271 	WARN_ON(resp->tr_logres > 0 &&
272 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
273 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
274 	       xfs_has_lazysbcount(mp));
275 
276 	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
277 	tp->t_flags = flags;
278 	tp->t_mountp = mp;
279 	INIT_LIST_HEAD(&tp->t_items);
280 	INIT_LIST_HEAD(&tp->t_busy);
281 	INIT_LIST_HEAD(&tp->t_dfops);
282 	tp->t_highest_agno = NULLAGNUMBER;
283 
284 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 	if (error == -ENOSPC && want_retry) {
286 		xfs_trans_cancel(tp);
287 
288 		/*
289 		 * We weren't able to reserve enough space for the transaction.
290 		 * Flush the other speculative space allocations to free space.
291 		 * Do not perform a synchronous scan because callers can hold
292 		 * other locks.
293 		 */
294 		error = xfs_blockgc_flush_all(mp);
295 		if (error)
296 			return error;
297 		want_retry = false;
298 		goto retry;
299 	}
300 	if (error) {
301 		xfs_trans_cancel(tp);
302 		return error;
303 	}
304 
305 	trace_xfs_trans_alloc(tp, _RET_IP_);
306 
307 	*tpp = tp;
308 	return 0;
309 }
310 
311 /*
312  * Create an empty transaction with no reservation.  This is a defensive
313  * mechanism for routines that query metadata without actually modifying them --
314  * if the metadata being queried is somehow cross-linked (think a btree block
315  * pointer that points higher in the tree), we risk deadlock.  However, blocks
316  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
317  * notice the corrupt block and the operation will fail back to userspace
318  * without deadlocking.
319  *
320  * Note the zero-length reservation; this transaction MUST be cancelled without
321  * any dirty data.
322  *
323  * Callers should obtain freeze protection to avoid a conflict with fs freezing
324  * where we can be grabbing buffers at the same time that freeze is trying to
325  * drain the buffer LRU list.
326  */
327 int
328 xfs_trans_alloc_empty(
329 	struct xfs_mount		*mp,
330 	struct xfs_trans		**tpp)
331 {
332 	struct xfs_trans_res		resv = {0};
333 
334 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336 
337 /*
338  * Record the indicated change to the given field for application
339  * to the file system's superblock when the transaction commits.
340  * For now, just store the change in the transaction structure.
341  *
342  * Mark the transaction structure to indicate that the superblock
343  * needs to be updated before committing.
344  *
345  * Because we may not be keeping track of allocated/free inodes and
346  * used filesystem blocks in the superblock, we do not mark the
347  * superblock dirty in this transaction if we modify these fields.
348  * We still need to update the transaction deltas so that they get
349  * applied to the incore superblock, but we don't want them to
350  * cause the superblock to get locked and logged if these are the
351  * only fields in the superblock that the transaction modifies.
352  */
353 void
354 xfs_trans_mod_sb(
355 	xfs_trans_t	*tp,
356 	uint		field,
357 	int64_t		delta)
358 {
359 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 	xfs_mount_t	*mp = tp->t_mountp;
361 
362 	switch (field) {
363 	case XFS_TRANS_SB_ICOUNT:
364 		tp->t_icount_delta += delta;
365 		if (xfs_has_lazysbcount(mp))
366 			flags &= ~XFS_TRANS_SB_DIRTY;
367 		break;
368 	case XFS_TRANS_SB_IFREE:
369 		tp->t_ifree_delta += delta;
370 		if (xfs_has_lazysbcount(mp))
371 			flags &= ~XFS_TRANS_SB_DIRTY;
372 		break;
373 	case XFS_TRANS_SB_FDBLOCKS:
374 		/*
375 		 * Track the number of blocks allocated in the transaction.
376 		 * Make sure it does not exceed the number reserved. If so,
377 		 * shutdown as this can lead to accounting inconsistency.
378 		 */
379 		if (delta < 0) {
380 			tp->t_blk_res_used += (uint)-delta;
381 			if (tp->t_blk_res_used > tp->t_blk_res)
382 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 			int64_t	blkres_delta;
385 
386 			/*
387 			 * Return freed blocks directly to the reservation
388 			 * instead of the global pool, being careful not to
389 			 * overflow the trans counter. This is used to preserve
390 			 * reservation across chains of transaction rolls that
391 			 * repeatedly free and allocate blocks.
392 			 */
393 			blkres_delta = min_t(int64_t, delta,
394 					     UINT_MAX - tp->t_blk_res);
395 			tp->t_blk_res += blkres_delta;
396 			delta -= blkres_delta;
397 		}
398 		tp->t_fdblocks_delta += delta;
399 		if (xfs_has_lazysbcount(mp))
400 			flags &= ~XFS_TRANS_SB_DIRTY;
401 		break;
402 	case XFS_TRANS_SB_RES_FDBLOCKS:
403 		/*
404 		 * The allocation has already been applied to the
405 		 * in-core superblock's counter.  This should only
406 		 * be applied to the on-disk superblock.
407 		 */
408 		tp->t_res_fdblocks_delta += delta;
409 		if (xfs_has_lazysbcount(mp))
410 			flags &= ~XFS_TRANS_SB_DIRTY;
411 		break;
412 	case XFS_TRANS_SB_FREXTENTS:
413 		/*
414 		 * Track the number of blocks allocated in the
415 		 * transaction.  Make sure it does not exceed the
416 		 * number reserved.
417 		 */
418 		if (delta < 0) {
419 			tp->t_rtx_res_used += (uint)-delta;
420 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 		}
422 		tp->t_frextents_delta += delta;
423 		break;
424 	case XFS_TRANS_SB_RES_FREXTENTS:
425 		/*
426 		 * The allocation has already been applied to the
427 		 * in-core superblock's counter.  This should only
428 		 * be applied to the on-disk superblock.
429 		 */
430 		ASSERT(delta < 0);
431 		tp->t_res_frextents_delta += delta;
432 		break;
433 	case XFS_TRANS_SB_DBLOCKS:
434 		tp->t_dblocks_delta += delta;
435 		break;
436 	case XFS_TRANS_SB_AGCOUNT:
437 		ASSERT(delta > 0);
438 		tp->t_agcount_delta += delta;
439 		break;
440 	case XFS_TRANS_SB_IMAXPCT:
441 		tp->t_imaxpct_delta += delta;
442 		break;
443 	case XFS_TRANS_SB_REXTSIZE:
444 		tp->t_rextsize_delta += delta;
445 		break;
446 	case XFS_TRANS_SB_RBMBLOCKS:
447 		tp->t_rbmblocks_delta += delta;
448 		break;
449 	case XFS_TRANS_SB_RBLOCKS:
450 		tp->t_rblocks_delta += delta;
451 		break;
452 	case XFS_TRANS_SB_REXTENTS:
453 		tp->t_rextents_delta += delta;
454 		break;
455 	case XFS_TRANS_SB_REXTSLOG:
456 		tp->t_rextslog_delta += delta;
457 		break;
458 	default:
459 		ASSERT(0);
460 		return;
461 	}
462 
463 	tp->t_flags |= flags;
464 }
465 
466 /*
467  * xfs_trans_apply_sb_deltas() is called from the commit code
468  * to bring the superblock buffer into the current transaction
469  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
470  *
471  * For now we just look at each field allowed to change and change
472  * it if necessary.
473  */
474 STATIC void
475 xfs_trans_apply_sb_deltas(
476 	xfs_trans_t	*tp)
477 {
478 	struct xfs_dsb	*sbp;
479 	struct xfs_buf	*bp;
480 	int		whole = 0;
481 
482 	bp = xfs_trans_getsb(tp);
483 	sbp = bp->b_addr;
484 
485 	/*
486 	 * Only update the superblock counters if we are logging them
487 	 */
488 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
489 		if (tp->t_icount_delta)
490 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
491 		if (tp->t_ifree_delta)
492 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
493 		if (tp->t_fdblocks_delta)
494 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
495 		if (tp->t_res_fdblocks_delta)
496 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
497 	}
498 
499 	/*
500 	 * Updating frextents requires careful handling because it does not
501 	 * behave like the lazysb counters because we cannot rely on log
502 	 * recovery in older kenels to recompute the value from the rtbitmap.
503 	 * This means that the ondisk frextents must be consistent with the
504 	 * rtbitmap.
505 	 *
506 	 * Therefore, log the frextents change to the ondisk superblock and
507 	 * update the incore superblock so that future calls to xfs_log_sb
508 	 * write the correct value ondisk.
509 	 *
510 	 * Don't touch m_frextents because it includes incore reservations,
511 	 * and those are handled by the unreserve function.
512 	 */
513 	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
514 		struct xfs_mount	*mp = tp->t_mountp;
515 		int64_t			rtxdelta;
516 
517 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
518 
519 		spin_lock(&mp->m_sb_lock);
520 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
521 		mp->m_sb.sb_frextents += rtxdelta;
522 		spin_unlock(&mp->m_sb_lock);
523 	}
524 
525 	if (tp->t_dblocks_delta) {
526 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
527 		whole = 1;
528 	}
529 	if (tp->t_agcount_delta) {
530 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
531 		whole = 1;
532 	}
533 	if (tp->t_imaxpct_delta) {
534 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
535 		whole = 1;
536 	}
537 	if (tp->t_rextsize_delta) {
538 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
539 		whole = 1;
540 	}
541 	if (tp->t_rbmblocks_delta) {
542 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
543 		whole = 1;
544 	}
545 	if (tp->t_rblocks_delta) {
546 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
547 		whole = 1;
548 	}
549 	if (tp->t_rextents_delta) {
550 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
551 		whole = 1;
552 	}
553 	if (tp->t_rextslog_delta) {
554 		sbp->sb_rextslog += tp->t_rextslog_delta;
555 		whole = 1;
556 	}
557 
558 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
559 	if (whole)
560 		/*
561 		 * Log the whole thing, the fields are noncontiguous.
562 		 */
563 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
564 	else
565 		/*
566 		 * Since all the modifiable fields are contiguous, we
567 		 * can get away with this.
568 		 */
569 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
570 				  offsetof(struct xfs_dsb, sb_frextents) +
571 				  sizeof(sbp->sb_frextents) - 1);
572 }
573 
574 /*
575  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
576  * apply superblock counter changes to the in-core superblock.  The
577  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
578  * applied to the in-core superblock.  The idea is that that has already been
579  * done.
580  *
581  * If we are not logging superblock counters, then the inode allocated/free and
582  * used block counts are not updated in the on disk superblock. In this case,
583  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
584  * still need to update the incore superblock with the changes.
585  *
586  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
587  * so we don't need to take the counter lock on every update.
588  */
589 #define XFS_ICOUNT_BATCH	128
590 
591 void
592 xfs_trans_unreserve_and_mod_sb(
593 	struct xfs_trans	*tp)
594 {
595 	struct xfs_mount	*mp = tp->t_mountp;
596 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
597 	int64_t			blkdelta = 0;
598 	int64_t			rtxdelta = 0;
599 	int64_t			idelta = 0;
600 	int64_t			ifreedelta = 0;
601 	int			error;
602 
603 	/* calculate deltas */
604 	if (tp->t_blk_res > 0)
605 		blkdelta = tp->t_blk_res;
606 	if ((tp->t_fdblocks_delta != 0) &&
607 	    (xfs_has_lazysbcount(mp) ||
608 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
609 	        blkdelta += tp->t_fdblocks_delta;
610 
611 	if (tp->t_rtx_res > 0)
612 		rtxdelta = tp->t_rtx_res;
613 	if ((tp->t_frextents_delta != 0) &&
614 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
615 		rtxdelta += tp->t_frextents_delta;
616 
617 	if (xfs_has_lazysbcount(mp) ||
618 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
619 		idelta = tp->t_icount_delta;
620 		ifreedelta = tp->t_ifree_delta;
621 	}
622 
623 	/* apply the per-cpu counters */
624 	if (blkdelta) {
625 		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
626 		ASSERT(!error);
627 	}
628 
629 	if (idelta)
630 		percpu_counter_add_batch(&mp->m_icount, idelta,
631 					 XFS_ICOUNT_BATCH);
632 
633 	if (ifreedelta)
634 		percpu_counter_add(&mp->m_ifree, ifreedelta);
635 
636 	if (rtxdelta) {
637 		error = xfs_mod_frextents(mp, rtxdelta);
638 		ASSERT(!error);
639 	}
640 
641 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
642 		return;
643 
644 	/* apply remaining deltas */
645 	spin_lock(&mp->m_sb_lock);
646 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
647 	mp->m_sb.sb_icount += idelta;
648 	mp->m_sb.sb_ifree += ifreedelta;
649 	/*
650 	 * Do not touch sb_frextents here because we are dealing with incore
651 	 * reservation.  sb_frextents is not part of the lazy sb counters so it
652 	 * must be consistent with the ondisk rtbitmap and must never include
653 	 * incore reservations.
654 	 */
655 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
656 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
657 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
658 	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
659 	if (tp->t_rextsize_delta) {
660 		mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize);
661 		mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize);
662 	}
663 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
664 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
665 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
666 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
667 	spin_unlock(&mp->m_sb_lock);
668 
669 	/*
670 	 * Debug checks outside of the spinlock so they don't lock up the
671 	 * machine if they fail.
672 	 */
673 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
674 	ASSERT(mp->m_sb.sb_rextslog >= 0);
675 	return;
676 }
677 
678 /* Add the given log item to the transaction's list of log items. */
679 void
680 xfs_trans_add_item(
681 	struct xfs_trans	*tp,
682 	struct xfs_log_item	*lip)
683 {
684 	ASSERT(lip->li_log == tp->t_mountp->m_log);
685 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
686 	ASSERT(list_empty(&lip->li_trans));
687 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
688 
689 	list_add_tail(&lip->li_trans, &tp->t_items);
690 	trace_xfs_trans_add_item(tp, _RET_IP_);
691 }
692 
693 /*
694  * Unlink the log item from the transaction. the log item is no longer
695  * considered dirty in this transaction, as the linked transaction has
696  * finished, either by abort or commit completion.
697  */
698 void
699 xfs_trans_del_item(
700 	struct xfs_log_item	*lip)
701 {
702 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
703 	list_del_init(&lip->li_trans);
704 }
705 
706 /* Detach and unlock all of the items in a transaction */
707 static void
708 xfs_trans_free_items(
709 	struct xfs_trans	*tp,
710 	bool			abort)
711 {
712 	struct xfs_log_item	*lip, *next;
713 
714 	trace_xfs_trans_free_items(tp, _RET_IP_);
715 
716 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
717 		xfs_trans_del_item(lip);
718 		if (abort)
719 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
720 		if (lip->li_ops->iop_release)
721 			lip->li_ops->iop_release(lip);
722 	}
723 }
724 
725 static inline void
726 xfs_log_item_batch_insert(
727 	struct xfs_ail		*ailp,
728 	struct xfs_ail_cursor	*cur,
729 	struct xfs_log_item	**log_items,
730 	int			nr_items,
731 	xfs_lsn_t		commit_lsn)
732 {
733 	int	i;
734 
735 	spin_lock(&ailp->ail_lock);
736 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
737 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
738 
739 	for (i = 0; i < nr_items; i++) {
740 		struct xfs_log_item *lip = log_items[i];
741 
742 		if (lip->li_ops->iop_unpin)
743 			lip->li_ops->iop_unpin(lip, 0);
744 	}
745 }
746 
747 /*
748  * Bulk operation version of xfs_trans_committed that takes a log vector of
749  * items to insert into the AIL. This uses bulk AIL insertion techniques to
750  * minimise lock traffic.
751  *
752  * If we are called with the aborted flag set, it is because a log write during
753  * a CIL checkpoint commit has failed. In this case, all the items in the
754  * checkpoint have already gone through iop_committed and iop_committing, which
755  * means that checkpoint commit abort handling is treated exactly the same
756  * as an iclog write error even though we haven't started any IO yet. Hence in
757  * this case all we need to do is iop_committed processing, followed by an
758  * iop_unpin(aborted) call.
759  *
760  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
761  * at the end of the AIL, the insert cursor avoids the need to walk
762  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
763  * call. This saves a lot of needless list walking and is a net win, even
764  * though it slightly increases that amount of AIL lock traffic to set it up
765  * and tear it down.
766  */
767 void
768 xfs_trans_committed_bulk(
769 	struct xfs_ail		*ailp,
770 	struct list_head	*lv_chain,
771 	xfs_lsn_t		commit_lsn,
772 	bool			aborted)
773 {
774 #define LOG_ITEM_BATCH_SIZE	32
775 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
776 	struct xfs_log_vec	*lv;
777 	struct xfs_ail_cursor	cur;
778 	int			i = 0;
779 
780 	spin_lock(&ailp->ail_lock);
781 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
782 	spin_unlock(&ailp->ail_lock);
783 
784 	/* unpin all the log items */
785 	list_for_each_entry(lv, lv_chain, lv_list) {
786 		struct xfs_log_item	*lip = lv->lv_item;
787 		xfs_lsn_t		item_lsn;
788 
789 		if (aborted)
790 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
791 
792 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
793 			lip->li_ops->iop_release(lip);
794 			continue;
795 		}
796 
797 		if (lip->li_ops->iop_committed)
798 			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
799 		else
800 			item_lsn = commit_lsn;
801 
802 		/* item_lsn of -1 means the item needs no further processing */
803 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
804 			continue;
805 
806 		/*
807 		 * if we are aborting the operation, no point in inserting the
808 		 * object into the AIL as we are in a shutdown situation.
809 		 */
810 		if (aborted) {
811 			ASSERT(xlog_is_shutdown(ailp->ail_log));
812 			if (lip->li_ops->iop_unpin)
813 				lip->li_ops->iop_unpin(lip, 1);
814 			continue;
815 		}
816 
817 		if (item_lsn != commit_lsn) {
818 
819 			/*
820 			 * Not a bulk update option due to unusual item_lsn.
821 			 * Push into AIL immediately, rechecking the lsn once
822 			 * we have the ail lock. Then unpin the item. This does
823 			 * not affect the AIL cursor the bulk insert path is
824 			 * using.
825 			 */
826 			spin_lock(&ailp->ail_lock);
827 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
828 				xfs_trans_ail_update(ailp, lip, item_lsn);
829 			else
830 				spin_unlock(&ailp->ail_lock);
831 			if (lip->li_ops->iop_unpin)
832 				lip->li_ops->iop_unpin(lip, 0);
833 			continue;
834 		}
835 
836 		/* Item is a candidate for bulk AIL insert.  */
837 		log_items[i++] = lv->lv_item;
838 		if (i >= LOG_ITEM_BATCH_SIZE) {
839 			xfs_log_item_batch_insert(ailp, &cur, log_items,
840 					LOG_ITEM_BATCH_SIZE, commit_lsn);
841 			i = 0;
842 		}
843 	}
844 
845 	/* make sure we insert the remainder! */
846 	if (i)
847 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
848 
849 	spin_lock(&ailp->ail_lock);
850 	xfs_trans_ail_cursor_done(&cur);
851 	spin_unlock(&ailp->ail_lock);
852 }
853 
854 /*
855  * Sort transaction items prior to running precommit operations. This will
856  * attempt to order the items such that they will always be locked in the same
857  * order. Items that have no sort function are moved to the end of the list
858  * and so are locked last.
859  *
860  * This may need refinement as different types of objects add sort functions.
861  *
862  * Function is more complex than it needs to be because we are comparing 64 bit
863  * values and the function only returns 32 bit values.
864  */
865 static int
866 xfs_trans_precommit_sort(
867 	void			*unused_arg,
868 	const struct list_head	*a,
869 	const struct list_head	*b)
870 {
871 	struct xfs_log_item	*lia = container_of(a,
872 					struct xfs_log_item, li_trans);
873 	struct xfs_log_item	*lib = container_of(b,
874 					struct xfs_log_item, li_trans);
875 	int64_t			diff;
876 
877 	/*
878 	 * If both items are non-sortable, leave them alone. If only one is
879 	 * sortable, move the non-sortable item towards the end of the list.
880 	 */
881 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
882 		return 0;
883 	if (!lia->li_ops->iop_sort)
884 		return 1;
885 	if (!lib->li_ops->iop_sort)
886 		return -1;
887 
888 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
889 	if (diff < 0)
890 		return -1;
891 	if (diff > 0)
892 		return 1;
893 	return 0;
894 }
895 
896 /*
897  * Run transaction precommit functions.
898  *
899  * If there is an error in any of the callouts, then stop immediately and
900  * trigger a shutdown to abort the transaction. There is no recovery possible
901  * from errors at this point as the transaction is dirty....
902  */
903 static int
904 xfs_trans_run_precommits(
905 	struct xfs_trans	*tp)
906 {
907 	struct xfs_mount	*mp = tp->t_mountp;
908 	struct xfs_log_item	*lip, *n;
909 	int			error = 0;
910 
911 	/*
912 	 * Sort the item list to avoid ABBA deadlocks with other transactions
913 	 * running precommit operations that lock multiple shared items such as
914 	 * inode cluster buffers.
915 	 */
916 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
917 
918 	/*
919 	 * Precommit operations can remove the log item from the transaction
920 	 * if the log item exists purely to delay modifications until they
921 	 * can be ordered against other operations. Hence we have to use
922 	 * list_for_each_entry_safe() here.
923 	 */
924 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
925 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
926 			continue;
927 		if (lip->li_ops->iop_precommit) {
928 			error = lip->li_ops->iop_precommit(tp, lip);
929 			if (error)
930 				break;
931 		}
932 	}
933 	if (error)
934 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
935 	return error;
936 }
937 
938 /*
939  * Commit the given transaction to the log.
940  *
941  * XFS disk error handling mechanism is not based on a typical
942  * transaction abort mechanism. Logically after the filesystem
943  * gets marked 'SHUTDOWN', we can't let any new transactions
944  * be durable - ie. committed to disk - because some metadata might
945  * be inconsistent. In such cases, this returns an error, and the
946  * caller may assume that all locked objects joined to the transaction
947  * have already been unlocked as if the commit had succeeded.
948  * Do not reference the transaction structure after this call.
949  */
950 static int
951 __xfs_trans_commit(
952 	struct xfs_trans	*tp,
953 	bool			regrant)
954 {
955 	struct xfs_mount	*mp = tp->t_mountp;
956 	struct xlog		*log = mp->m_log;
957 	xfs_csn_t		commit_seq = 0;
958 	int			error = 0;
959 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
960 
961 	trace_xfs_trans_commit(tp, _RET_IP_);
962 
963 	error = xfs_trans_run_precommits(tp);
964 	if (error) {
965 		if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
966 			xfs_defer_cancel(tp);
967 		goto out_unreserve;
968 	}
969 
970 	/*
971 	 * Finish deferred items on final commit. Only permanent transactions
972 	 * should ever have deferred ops.
973 	 */
974 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
975 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
976 	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
977 		error = xfs_defer_finish_noroll(&tp);
978 		if (error)
979 			goto out_unreserve;
980 
981 		/* Run precommits from final tx in defer chain. */
982 		error = xfs_trans_run_precommits(tp);
983 		if (error)
984 			goto out_unreserve;
985 	}
986 
987 	/*
988 	 * If there is nothing to be logged by the transaction,
989 	 * then unlock all of the items associated with the
990 	 * transaction and free the transaction structure.
991 	 * Also make sure to return any reserved blocks to
992 	 * the free pool.
993 	 */
994 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
995 		goto out_unreserve;
996 
997 	/*
998 	 * We must check against log shutdown here because we cannot abort log
999 	 * items and leave them dirty, inconsistent and unpinned in memory while
1000 	 * the log is active. This leaves them open to being written back to
1001 	 * disk, and that will lead to on-disk corruption.
1002 	 */
1003 	if (xlog_is_shutdown(log)) {
1004 		error = -EIO;
1005 		goto out_unreserve;
1006 	}
1007 
1008 	ASSERT(tp->t_ticket != NULL);
1009 
1010 	/*
1011 	 * If we need to update the superblock, then do it now.
1012 	 */
1013 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1014 		xfs_trans_apply_sb_deltas(tp);
1015 	xfs_trans_apply_dquot_deltas(tp);
1016 
1017 	xlog_cil_commit(log, tp, &commit_seq, regrant);
1018 
1019 	xfs_trans_free(tp);
1020 
1021 	/*
1022 	 * If the transaction needs to be synchronous, then force the
1023 	 * log out now and wait for it.
1024 	 */
1025 	if (sync) {
1026 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1027 		XFS_STATS_INC(mp, xs_trans_sync);
1028 	} else {
1029 		XFS_STATS_INC(mp, xs_trans_async);
1030 	}
1031 
1032 	return error;
1033 
1034 out_unreserve:
1035 	xfs_trans_unreserve_and_mod_sb(tp);
1036 
1037 	/*
1038 	 * It is indeed possible for the transaction to be not dirty but
1039 	 * the dqinfo portion to be.  All that means is that we have some
1040 	 * (non-persistent) quota reservations that need to be unreserved.
1041 	 */
1042 	xfs_trans_unreserve_and_mod_dquots(tp);
1043 	if (tp->t_ticket) {
1044 		if (regrant && !xlog_is_shutdown(log))
1045 			xfs_log_ticket_regrant(log, tp->t_ticket);
1046 		else
1047 			xfs_log_ticket_ungrant(log, tp->t_ticket);
1048 		tp->t_ticket = NULL;
1049 	}
1050 	xfs_trans_free_items(tp, !!error);
1051 	xfs_trans_free(tp);
1052 
1053 	XFS_STATS_INC(mp, xs_trans_empty);
1054 	return error;
1055 }
1056 
1057 int
1058 xfs_trans_commit(
1059 	struct xfs_trans	*tp)
1060 {
1061 	return __xfs_trans_commit(tp, false);
1062 }
1063 
1064 /*
1065  * Unlock all of the transaction's items and free the transaction.  If the
1066  * transaction is dirty, we must shut down the filesystem because there is no
1067  * way to restore them to their previous state.
1068  *
1069  * If the transaction has made a log reservation, make sure to release it as
1070  * well.
1071  *
1072  * This is a high level function (equivalent to xfs_trans_commit()) and so can
1073  * be called after the transaction has effectively been aborted due to the mount
1074  * being shut down. However, if the mount has not been shut down and the
1075  * transaction is dirty we will shut the mount down and, in doing so, that
1076  * guarantees that the log is shut down, too. Hence we don't need to be as
1077  * careful with shutdown state and dirty items here as we need to be in
1078  * xfs_trans_commit().
1079  */
1080 void
1081 xfs_trans_cancel(
1082 	struct xfs_trans	*tp)
1083 {
1084 	struct xfs_mount	*mp = tp->t_mountp;
1085 	struct xlog		*log = mp->m_log;
1086 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1087 
1088 	trace_xfs_trans_cancel(tp, _RET_IP_);
1089 
1090 	/*
1091 	 * It's never valid to cancel a transaction with deferred ops attached,
1092 	 * because the transaction is effectively dirty.  Complain about this
1093 	 * loudly before freeing the in-memory defer items and shutting down the
1094 	 * filesystem.
1095 	 */
1096 	if (!list_empty(&tp->t_dfops)) {
1097 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1098 		dirty = true;
1099 		xfs_defer_cancel(tp);
1100 	}
1101 
1102 	/*
1103 	 * See if the caller is relying on us to shut down the filesystem. We
1104 	 * only want an error report if there isn't already a shutdown in
1105 	 * progress, so we only need to check against the mount shutdown state
1106 	 * here.
1107 	 */
1108 	if (dirty && !xfs_is_shutdown(mp)) {
1109 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1110 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1111 	}
1112 #ifdef DEBUG
1113 	/* Log items need to be consistent until the log is shut down. */
1114 	if (!dirty && !xlog_is_shutdown(log)) {
1115 		struct xfs_log_item *lip;
1116 
1117 		list_for_each_entry(lip, &tp->t_items, li_trans)
1118 			ASSERT(!xlog_item_is_intent_done(lip));
1119 	}
1120 #endif
1121 	xfs_trans_unreserve_and_mod_sb(tp);
1122 	xfs_trans_unreserve_and_mod_dquots(tp);
1123 
1124 	if (tp->t_ticket) {
1125 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1126 		tp->t_ticket = NULL;
1127 	}
1128 
1129 	xfs_trans_free_items(tp, dirty);
1130 	xfs_trans_free(tp);
1131 }
1132 
1133 /*
1134  * Roll from one trans in the sequence of PERMANENT transactions to
1135  * the next: permanent transactions are only flushed out when
1136  * committed with xfs_trans_commit(), but we still want as soon
1137  * as possible to let chunks of it go to the log. So we commit the
1138  * chunk we've been working on and get a new transaction to continue.
1139  */
1140 int
1141 xfs_trans_roll(
1142 	struct xfs_trans	**tpp)
1143 {
1144 	struct xfs_trans	*trans = *tpp;
1145 	struct xfs_trans_res	tres;
1146 	int			error;
1147 
1148 	trace_xfs_trans_roll(trans, _RET_IP_);
1149 
1150 	/*
1151 	 * Copy the critical parameters from one trans to the next.
1152 	 */
1153 	tres.tr_logres = trans->t_log_res;
1154 	tres.tr_logcount = trans->t_log_count;
1155 
1156 	*tpp = xfs_trans_dup(trans);
1157 
1158 	/*
1159 	 * Commit the current transaction.
1160 	 * If this commit failed, then it'd just unlock those items that
1161 	 * are not marked ihold. That also means that a filesystem shutdown
1162 	 * is in progress. The caller takes the responsibility to cancel
1163 	 * the duplicate transaction that gets returned.
1164 	 */
1165 	error = __xfs_trans_commit(trans, true);
1166 	if (error)
1167 		return error;
1168 
1169 	/*
1170 	 * Reserve space in the log for the next transaction.
1171 	 * This also pushes items in the "AIL", the list of logged items,
1172 	 * out to disk if they are taking up space at the tail of the log
1173 	 * that we want to use.  This requires that either nothing be locked
1174 	 * across this call, or that anything that is locked be logged in
1175 	 * the prior and the next transactions.
1176 	 */
1177 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1178 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1179 }
1180 
1181 /*
1182  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1183  *
1184  * The caller must ensure that the on-disk dquots attached to this inode have
1185  * already been allocated and initialized.  The caller is responsible for
1186  * releasing ILOCK_EXCL if a new transaction is returned.
1187  */
1188 int
1189 xfs_trans_alloc_inode(
1190 	struct xfs_inode	*ip,
1191 	struct xfs_trans_res	*resv,
1192 	unsigned int		dblocks,
1193 	unsigned int		rblocks,
1194 	bool			force,
1195 	struct xfs_trans	**tpp)
1196 {
1197 	struct xfs_trans	*tp;
1198 	struct xfs_mount	*mp = ip->i_mount;
1199 	bool			retried = false;
1200 	int			error;
1201 
1202 retry:
1203 	error = xfs_trans_alloc(mp, resv, dblocks,
1204 			xfs_extlen_to_rtxlen(mp, rblocks),
1205 			force ? XFS_TRANS_RESERVE : 0, &tp);
1206 	if (error)
1207 		return error;
1208 
1209 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210 	xfs_trans_ijoin(tp, ip, 0);
1211 
1212 	error = xfs_qm_dqattach_locked(ip, false);
1213 	if (error) {
1214 		/* Caller should have allocated the dquots! */
1215 		ASSERT(error != -ENOENT);
1216 		goto out_cancel;
1217 	}
1218 
1219 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1220 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1221 		xfs_trans_cancel(tp);
1222 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1223 		xfs_blockgc_free_quota(ip, 0);
1224 		retried = true;
1225 		goto retry;
1226 	}
1227 	if (error)
1228 		goto out_cancel;
1229 
1230 	*tpp = tp;
1231 	return 0;
1232 
1233 out_cancel:
1234 	xfs_trans_cancel(tp);
1235 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1236 	return error;
1237 }
1238 
1239 /*
1240  * Allocate an transaction in preparation for inode creation by reserving quota
1241  * against the given dquots.  Callers are not required to hold any inode locks.
1242  */
1243 int
1244 xfs_trans_alloc_icreate(
1245 	struct xfs_mount	*mp,
1246 	struct xfs_trans_res	*resv,
1247 	struct xfs_dquot	*udqp,
1248 	struct xfs_dquot	*gdqp,
1249 	struct xfs_dquot	*pdqp,
1250 	unsigned int		dblocks,
1251 	struct xfs_trans	**tpp)
1252 {
1253 	struct xfs_trans	*tp;
1254 	bool			retried = false;
1255 	int			error;
1256 
1257 retry:
1258 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1259 	if (error)
1260 		return error;
1261 
1262 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1263 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1264 		xfs_trans_cancel(tp);
1265 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1266 		retried = true;
1267 		goto retry;
1268 	}
1269 	if (error) {
1270 		xfs_trans_cancel(tp);
1271 		return error;
1272 	}
1273 
1274 	*tpp = tp;
1275 	return 0;
1276 }
1277 
1278 /*
1279  * Allocate an transaction, lock and join the inode to it, and reserve quota
1280  * in preparation for inode attribute changes that include uid, gid, or prid
1281  * changes.
1282  *
1283  * The caller must ensure that the on-disk dquots attached to this inode have
1284  * already been allocated and initialized.  The ILOCK will be dropped when the
1285  * transaction is committed or cancelled.
1286  */
1287 int
1288 xfs_trans_alloc_ichange(
1289 	struct xfs_inode	*ip,
1290 	struct xfs_dquot	*new_udqp,
1291 	struct xfs_dquot	*new_gdqp,
1292 	struct xfs_dquot	*new_pdqp,
1293 	bool			force,
1294 	struct xfs_trans	**tpp)
1295 {
1296 	struct xfs_trans	*tp;
1297 	struct xfs_mount	*mp = ip->i_mount;
1298 	struct xfs_dquot	*udqp;
1299 	struct xfs_dquot	*gdqp;
1300 	struct xfs_dquot	*pdqp;
1301 	bool			retried = false;
1302 	int			error;
1303 
1304 retry:
1305 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1306 	if (error)
1307 		return error;
1308 
1309 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1310 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1311 
1312 	error = xfs_qm_dqattach_locked(ip, false);
1313 	if (error) {
1314 		/* Caller should have allocated the dquots! */
1315 		ASSERT(error != -ENOENT);
1316 		goto out_cancel;
1317 	}
1318 
1319 	/*
1320 	 * For each quota type, skip quota reservations if the inode's dquots
1321 	 * now match the ones that came from the caller, or the caller didn't
1322 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1323 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1324 	 */
1325 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1326 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1327 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1328 	if (udqp || gdqp || pdqp) {
1329 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1330 
1331 		if (force)
1332 			qflags |= XFS_QMOPT_FORCE_RES;
1333 
1334 		/*
1335 		 * Reserve enough quota to handle blocks on disk and reserved
1336 		 * for a delayed allocation.  We'll actually transfer the
1337 		 * delalloc reservation between dquots at chown time, even
1338 		 * though that part is only semi-transactional.
1339 		 */
1340 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1341 				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1342 				1, qflags);
1343 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1344 			xfs_trans_cancel(tp);
1345 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1346 			retried = true;
1347 			goto retry;
1348 		}
1349 		if (error)
1350 			goto out_cancel;
1351 	}
1352 
1353 	*tpp = tp;
1354 	return 0;
1355 
1356 out_cancel:
1357 	xfs_trans_cancel(tp);
1358 	return error;
1359 }
1360 
1361 /*
1362  * Allocate an transaction, lock and join the directory and child inodes to it,
1363  * and reserve quota for a directory update.  If there isn't sufficient space,
1364  * @dblocks will be set to zero for a reservationless directory update and
1365  * @nospace_error will be set to a negative errno describing the space
1366  * constraint we hit.
1367  *
1368  * The caller must ensure that the on-disk dquots attached to this inode have
1369  * already been allocated and initialized.  The ILOCKs will be dropped when the
1370  * transaction is committed or cancelled.
1371  */
1372 int
1373 xfs_trans_alloc_dir(
1374 	struct xfs_inode	*dp,
1375 	struct xfs_trans_res	*resv,
1376 	struct xfs_inode	*ip,
1377 	unsigned int		*dblocks,
1378 	struct xfs_trans	**tpp,
1379 	int			*nospace_error)
1380 {
1381 	struct xfs_trans	*tp;
1382 	struct xfs_mount	*mp = ip->i_mount;
1383 	unsigned int		resblks;
1384 	bool			retried = false;
1385 	int			error;
1386 
1387 retry:
1388 	*nospace_error = 0;
1389 	resblks = *dblocks;
1390 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1391 	if (error == -ENOSPC) {
1392 		*nospace_error = error;
1393 		resblks = 0;
1394 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1395 	}
1396 	if (error)
1397 		return error;
1398 
1399 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1400 
1401 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1402 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1403 
1404 	error = xfs_qm_dqattach_locked(dp, false);
1405 	if (error) {
1406 		/* Caller should have allocated the dquots! */
1407 		ASSERT(error != -ENOENT);
1408 		goto out_cancel;
1409 	}
1410 
1411 	error = xfs_qm_dqattach_locked(ip, false);
1412 	if (error) {
1413 		/* Caller should have allocated the dquots! */
1414 		ASSERT(error != -ENOENT);
1415 		goto out_cancel;
1416 	}
1417 
1418 	if (resblks == 0)
1419 		goto done;
1420 
1421 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1422 	if (error == -EDQUOT || error == -ENOSPC) {
1423 		if (!retried) {
1424 			xfs_trans_cancel(tp);
1425 			xfs_blockgc_free_quota(dp, 0);
1426 			retried = true;
1427 			goto retry;
1428 		}
1429 
1430 		*nospace_error = error;
1431 		resblks = 0;
1432 		error = 0;
1433 	}
1434 	if (error)
1435 		goto out_cancel;
1436 
1437 done:
1438 	*tpp = tp;
1439 	*dblocks = resblks;
1440 	return 0;
1441 
1442 out_cancel:
1443 	xfs_trans_cancel(tp);
1444 	return error;
1445 }
1446