xref: /linux/fs/xfs/xfs_trans.c (revision ea04ef19ebdcd22e8a21054a19c2c8fefae011ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 
29 struct kmem_cache	*xfs_trans_cache;
30 
31 #if defined(CONFIG_TRACEPOINTS)
32 static void
33 xfs_trans_trace_reservations(
34 	struct xfs_mount	*mp)
35 {
36 	struct xfs_trans_res	*res;
37 	struct xfs_trans_res	*end_res;
38 	int			i;
39 
40 	res = (struct xfs_trans_res *)M_RES(mp);
41 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 	for (i = 0; res < end_res; i++, res++)
43 		trace_xfs_trans_resv_calc(mp, i, res);
44 }
45 #else
46 # define xfs_trans_trace_reservations(mp)
47 #endif
48 
49 /*
50  * Initialize the precomputed transaction reservation values
51  * in the mount structure.
52  */
53 void
54 xfs_trans_init(
55 	struct xfs_mount	*mp)
56 {
57 	xfs_trans_resv_calc(mp, M_RES(mp));
58 	xfs_trans_trace_reservations(mp);
59 }
60 
61 /*
62  * Free the transaction structure.  If there is more clean up
63  * to do when the structure is freed, add it here.
64  */
65 STATIC void
66 xfs_trans_free(
67 	struct xfs_trans	*tp)
68 {
69 	xfs_extent_busy_sort(&tp->t_busy);
70 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
71 
72 	trace_xfs_trans_free(tp, _RET_IP_);
73 	xfs_trans_clear_context(tp);
74 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
75 		sb_end_intwrite(tp->t_mountp->m_super);
76 	xfs_trans_free_dqinfo(tp);
77 	kmem_cache_free(xfs_trans_cache, tp);
78 }
79 
80 /*
81  * This is called to create a new transaction which will share the
82  * permanent log reservation of the given transaction.  The remaining
83  * unused block and rt extent reservations are also inherited.  This
84  * implies that the original transaction is no longer allowed to allocate
85  * blocks.  Locks and log items, however, are no inherited.  They must
86  * be added to the new transaction explicitly.
87  */
88 STATIC struct xfs_trans *
89 xfs_trans_dup(
90 	struct xfs_trans	*tp)
91 {
92 	struct xfs_trans	*ntp;
93 
94 	trace_xfs_trans_dup(tp, _RET_IP_);
95 
96 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
97 
98 	/*
99 	 * Initialize the new transaction structure.
100 	 */
101 	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
102 	ntp->t_mountp = tp->t_mountp;
103 	INIT_LIST_HEAD(&ntp->t_items);
104 	INIT_LIST_HEAD(&ntp->t_busy);
105 	INIT_LIST_HEAD(&ntp->t_dfops);
106 	ntp->t_highest_agno = NULLAGNUMBER;
107 
108 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
109 	ASSERT(tp->t_ticket != NULL);
110 
111 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
112 		       (tp->t_flags & XFS_TRANS_RESERVE) |
113 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
114 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
115 	/* We gave our writer reference to the new transaction */
116 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
117 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
118 
119 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
120 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
121 	tp->t_blk_res = tp->t_blk_res_used;
122 
123 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
124 	tp->t_rtx_res = tp->t_rtx_res_used;
125 
126 	xfs_trans_switch_context(tp, ntp);
127 
128 	/* move deferred ops over to the new tp */
129 	xfs_defer_move(ntp, tp);
130 
131 	xfs_trans_dup_dqinfo(tp, ntp);
132 	return ntp;
133 }
134 
135 /*
136  * This is called to reserve free disk blocks and log space for the
137  * given transaction.  This must be done before allocating any resources
138  * within the transaction.
139  *
140  * This will return ENOSPC if there are not enough blocks available.
141  * It will sleep waiting for available log space.
142  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143  * is used by long running transactions.  If any one of the reservations
144  * fails then they will all be backed out.
145  *
146  * This does not do quota reservations. That typically is done by the
147  * caller afterwards.
148  */
149 static int
150 xfs_trans_reserve(
151 	struct xfs_trans	*tp,
152 	struct xfs_trans_res	*resp,
153 	uint			blocks,
154 	uint			rtextents)
155 {
156 	struct xfs_mount	*mp = tp->t_mountp;
157 	int			error = 0;
158 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
159 
160 	/*
161 	 * Attempt to reserve the needed disk blocks by decrementing
162 	 * the number needed from the number available.  This will
163 	 * fail if the count would go below zero.
164 	 */
165 	if (blocks > 0) {
166 		error = xfs_dec_fdblocks(mp, blocks, rsvd);
167 		if (error != 0)
168 			return -ENOSPC;
169 		tp->t_blk_res += blocks;
170 	}
171 
172 	/*
173 	 * Reserve the log space needed for this transaction.
174 	 */
175 	if (resp->tr_logres > 0) {
176 		bool	permanent = false;
177 
178 		ASSERT(tp->t_log_res == 0 ||
179 		       tp->t_log_res == resp->tr_logres);
180 		ASSERT(tp->t_log_count == 0 ||
181 		       tp->t_log_count == resp->tr_logcount);
182 
183 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
184 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
185 			permanent = true;
186 		} else {
187 			ASSERT(tp->t_ticket == NULL);
188 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
189 		}
190 
191 		if (tp->t_ticket != NULL) {
192 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
193 			error = xfs_log_regrant(mp, tp->t_ticket);
194 		} else {
195 			error = xfs_log_reserve(mp, resp->tr_logres,
196 						resp->tr_logcount,
197 						&tp->t_ticket, permanent);
198 		}
199 
200 		if (error)
201 			goto undo_blocks;
202 
203 		tp->t_log_res = resp->tr_logres;
204 		tp->t_log_count = resp->tr_logcount;
205 	}
206 
207 	/*
208 	 * Attempt to reserve the needed realtime extents by decrementing
209 	 * the number needed from the number available.  This will
210 	 * fail if the count would go below zero.
211 	 */
212 	if (rtextents > 0) {
213 		error = xfs_dec_frextents(mp, rtextents);
214 		if (error) {
215 			error = -ENOSPC;
216 			goto undo_log;
217 		}
218 		tp->t_rtx_res += rtextents;
219 	}
220 
221 	return 0;
222 
223 	/*
224 	 * Error cases jump to one of these labels to undo any
225 	 * reservations which have already been performed.
226 	 */
227 undo_log:
228 	if (resp->tr_logres > 0) {
229 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
230 		tp->t_ticket = NULL;
231 		tp->t_log_res = 0;
232 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
233 	}
234 
235 undo_blocks:
236 	if (blocks > 0) {
237 		xfs_add_fdblocks(mp, blocks);
238 		tp->t_blk_res = 0;
239 	}
240 	return error;
241 }
242 
243 int
244 xfs_trans_alloc(
245 	struct xfs_mount	*mp,
246 	struct xfs_trans_res	*resp,
247 	uint			blocks,
248 	uint			rtextents,
249 	uint			flags,
250 	struct xfs_trans	**tpp)
251 {
252 	struct xfs_trans	*tp;
253 	bool			want_retry = true;
254 	int			error;
255 
256 	/*
257 	 * Allocate the handle before we do our freeze accounting and setting up
258 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
259 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
260 	 */
261 retry:
262 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
263 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
264 		sb_start_intwrite(mp->m_super);
265 	xfs_trans_set_context(tp);
266 
267 	/*
268 	 * Zero-reservation ("empty") transactions can't modify anything, so
269 	 * they're allowed to run while we're frozen.
270 	 */
271 	WARN_ON(resp->tr_logres > 0 &&
272 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
273 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
274 	       xfs_has_lazysbcount(mp));
275 
276 	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
277 	tp->t_flags = flags;
278 	tp->t_mountp = mp;
279 	INIT_LIST_HEAD(&tp->t_items);
280 	INIT_LIST_HEAD(&tp->t_busy);
281 	INIT_LIST_HEAD(&tp->t_dfops);
282 	tp->t_highest_agno = NULLAGNUMBER;
283 
284 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 	if (error == -ENOSPC && want_retry) {
286 		xfs_trans_cancel(tp);
287 
288 		/*
289 		 * We weren't able to reserve enough space for the transaction.
290 		 * Flush the other speculative space allocations to free space.
291 		 * Do not perform a synchronous scan because callers can hold
292 		 * other locks.
293 		 */
294 		error = xfs_blockgc_flush_all(mp);
295 		if (error)
296 			return error;
297 		want_retry = false;
298 		goto retry;
299 	}
300 	if (error) {
301 		xfs_trans_cancel(tp);
302 		return error;
303 	}
304 
305 	trace_xfs_trans_alloc(tp, _RET_IP_);
306 
307 	*tpp = tp;
308 	return 0;
309 }
310 
311 /*
312  * Create an empty transaction with no reservation.  This is a defensive
313  * mechanism for routines that query metadata without actually modifying them --
314  * if the metadata being queried is somehow cross-linked (think a btree block
315  * pointer that points higher in the tree), we risk deadlock.  However, blocks
316  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
317  * notice the corrupt block and the operation will fail back to userspace
318  * without deadlocking.
319  *
320  * Note the zero-length reservation; this transaction MUST be cancelled without
321  * any dirty data.
322  *
323  * Callers should obtain freeze protection to avoid a conflict with fs freezing
324  * where we can be grabbing buffers at the same time that freeze is trying to
325  * drain the buffer LRU list.
326  */
327 int
328 xfs_trans_alloc_empty(
329 	struct xfs_mount		*mp,
330 	struct xfs_trans		**tpp)
331 {
332 	struct xfs_trans_res		resv = {0};
333 
334 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336 
337 /*
338  * Record the indicated change to the given field for application
339  * to the file system's superblock when the transaction commits.
340  * For now, just store the change in the transaction structure.
341  *
342  * Mark the transaction structure to indicate that the superblock
343  * needs to be updated before committing.
344  *
345  * Because we may not be keeping track of allocated/free inodes and
346  * used filesystem blocks in the superblock, we do not mark the
347  * superblock dirty in this transaction if we modify these fields.
348  * We still need to update the transaction deltas so that they get
349  * applied to the incore superblock, but we don't want them to
350  * cause the superblock to get locked and logged if these are the
351  * only fields in the superblock that the transaction modifies.
352  */
353 void
354 xfs_trans_mod_sb(
355 	xfs_trans_t	*tp,
356 	uint		field,
357 	int64_t		delta)
358 {
359 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 	xfs_mount_t	*mp = tp->t_mountp;
361 
362 	switch (field) {
363 	case XFS_TRANS_SB_ICOUNT:
364 		tp->t_icount_delta += delta;
365 		if (xfs_has_lazysbcount(mp))
366 			flags &= ~XFS_TRANS_SB_DIRTY;
367 		break;
368 	case XFS_TRANS_SB_IFREE:
369 		tp->t_ifree_delta += delta;
370 		if (xfs_has_lazysbcount(mp))
371 			flags &= ~XFS_TRANS_SB_DIRTY;
372 		break;
373 	case XFS_TRANS_SB_FDBLOCKS:
374 		/*
375 		 * Track the number of blocks allocated in the transaction.
376 		 * Make sure it does not exceed the number reserved. If so,
377 		 * shutdown as this can lead to accounting inconsistency.
378 		 */
379 		if (delta < 0) {
380 			tp->t_blk_res_used += (uint)-delta;
381 			if (tp->t_blk_res_used > tp->t_blk_res)
382 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 			int64_t	blkres_delta;
385 
386 			/*
387 			 * Return freed blocks directly to the reservation
388 			 * instead of the global pool, being careful not to
389 			 * overflow the trans counter. This is used to preserve
390 			 * reservation across chains of transaction rolls that
391 			 * repeatedly free and allocate blocks.
392 			 */
393 			blkres_delta = min_t(int64_t, delta,
394 					     UINT_MAX - tp->t_blk_res);
395 			tp->t_blk_res += blkres_delta;
396 			delta -= blkres_delta;
397 		}
398 		tp->t_fdblocks_delta += delta;
399 		if (xfs_has_lazysbcount(mp))
400 			flags &= ~XFS_TRANS_SB_DIRTY;
401 		break;
402 	case XFS_TRANS_SB_RES_FDBLOCKS:
403 		/*
404 		 * The allocation has already been applied to the
405 		 * in-core superblock's counter.  This should only
406 		 * be applied to the on-disk superblock.
407 		 */
408 		tp->t_res_fdblocks_delta += delta;
409 		if (xfs_has_lazysbcount(mp))
410 			flags &= ~XFS_TRANS_SB_DIRTY;
411 		break;
412 	case XFS_TRANS_SB_FREXTENTS:
413 		/*
414 		 * Track the number of blocks allocated in the
415 		 * transaction.  Make sure it does not exceed the
416 		 * number reserved.
417 		 */
418 		if (delta < 0) {
419 			tp->t_rtx_res_used += (uint)-delta;
420 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 		}
422 		tp->t_frextents_delta += delta;
423 		break;
424 	case XFS_TRANS_SB_RES_FREXTENTS:
425 		/*
426 		 * The allocation has already been applied to the
427 		 * in-core superblock's counter.  This should only
428 		 * be applied to the on-disk superblock.
429 		 */
430 		ASSERT(delta < 0);
431 		tp->t_res_frextents_delta += delta;
432 		break;
433 	case XFS_TRANS_SB_DBLOCKS:
434 		tp->t_dblocks_delta += delta;
435 		break;
436 	case XFS_TRANS_SB_AGCOUNT:
437 		ASSERT(delta > 0);
438 		tp->t_agcount_delta += delta;
439 		break;
440 	case XFS_TRANS_SB_IMAXPCT:
441 		tp->t_imaxpct_delta += delta;
442 		break;
443 	case XFS_TRANS_SB_REXTSIZE:
444 		tp->t_rextsize_delta += delta;
445 		break;
446 	case XFS_TRANS_SB_RBMBLOCKS:
447 		tp->t_rbmblocks_delta += delta;
448 		break;
449 	case XFS_TRANS_SB_RBLOCKS:
450 		tp->t_rblocks_delta += delta;
451 		break;
452 	case XFS_TRANS_SB_REXTENTS:
453 		tp->t_rextents_delta += delta;
454 		break;
455 	case XFS_TRANS_SB_REXTSLOG:
456 		tp->t_rextslog_delta += delta;
457 		break;
458 	default:
459 		ASSERT(0);
460 		return;
461 	}
462 
463 	tp->t_flags |= flags;
464 }
465 
466 /*
467  * xfs_trans_apply_sb_deltas() is called from the commit code
468  * to bring the superblock buffer into the current transaction
469  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
470  *
471  * For now we just look at each field allowed to change and change
472  * it if necessary.
473  */
474 STATIC void
475 xfs_trans_apply_sb_deltas(
476 	xfs_trans_t	*tp)
477 {
478 	struct xfs_dsb	*sbp;
479 	struct xfs_buf	*bp;
480 	int		whole = 0;
481 
482 	bp = xfs_trans_getsb(tp);
483 	sbp = bp->b_addr;
484 
485 	/*
486 	 * Only update the superblock counters if we are logging them
487 	 */
488 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
489 		if (tp->t_icount_delta)
490 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
491 		if (tp->t_ifree_delta)
492 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
493 		if (tp->t_fdblocks_delta)
494 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
495 		if (tp->t_res_fdblocks_delta)
496 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
497 	}
498 
499 	/*
500 	 * Updating frextents requires careful handling because it does not
501 	 * behave like the lazysb counters because we cannot rely on log
502 	 * recovery in older kenels to recompute the value from the rtbitmap.
503 	 * This means that the ondisk frextents must be consistent with the
504 	 * rtbitmap.
505 	 *
506 	 * Therefore, log the frextents change to the ondisk superblock and
507 	 * update the incore superblock so that future calls to xfs_log_sb
508 	 * write the correct value ondisk.
509 	 *
510 	 * Don't touch m_frextents because it includes incore reservations,
511 	 * and those are handled by the unreserve function.
512 	 */
513 	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
514 		struct xfs_mount	*mp = tp->t_mountp;
515 		int64_t			rtxdelta;
516 
517 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
518 
519 		spin_lock(&mp->m_sb_lock);
520 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
521 		mp->m_sb.sb_frextents += rtxdelta;
522 		spin_unlock(&mp->m_sb_lock);
523 	}
524 
525 	if (tp->t_dblocks_delta) {
526 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
527 		whole = 1;
528 	}
529 	if (tp->t_agcount_delta) {
530 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
531 		whole = 1;
532 	}
533 	if (tp->t_imaxpct_delta) {
534 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
535 		whole = 1;
536 	}
537 	if (tp->t_rextsize_delta) {
538 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
539 		whole = 1;
540 	}
541 	if (tp->t_rbmblocks_delta) {
542 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
543 		whole = 1;
544 	}
545 	if (tp->t_rblocks_delta) {
546 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
547 		whole = 1;
548 	}
549 	if (tp->t_rextents_delta) {
550 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
551 		whole = 1;
552 	}
553 	if (tp->t_rextslog_delta) {
554 		sbp->sb_rextslog += tp->t_rextslog_delta;
555 		whole = 1;
556 	}
557 
558 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
559 	if (whole)
560 		/*
561 		 * Log the whole thing, the fields are noncontiguous.
562 		 */
563 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
564 	else
565 		/*
566 		 * Since all the modifiable fields are contiguous, we
567 		 * can get away with this.
568 		 */
569 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
570 				  offsetof(struct xfs_dsb, sb_frextents) +
571 				  sizeof(sbp->sb_frextents) - 1);
572 }
573 
574 /*
575  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
576  * apply superblock counter changes to the in-core superblock.  The
577  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
578  * applied to the in-core superblock.  The idea is that that has already been
579  * done.
580  *
581  * If we are not logging superblock counters, then the inode allocated/free and
582  * used block counts are not updated in the on disk superblock. In this case,
583  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
584  * still need to update the incore superblock with the changes.
585  *
586  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
587  * so we don't need to take the counter lock on every update.
588  */
589 #define XFS_ICOUNT_BATCH	128
590 
591 void
592 xfs_trans_unreserve_and_mod_sb(
593 	struct xfs_trans	*tp)
594 {
595 	struct xfs_mount	*mp = tp->t_mountp;
596 	int64_t			blkdelta = tp->t_blk_res;
597 	int64_t			rtxdelta = tp->t_rtx_res;
598 	int64_t			idelta = 0;
599 	int64_t			ifreedelta = 0;
600 
601 	/*
602 	 * Calculate the deltas.
603 	 *
604 	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
605 	 *
606 	 *  - positive values indicate blocks freed in the transaction.
607 	 *  - negative values indicate blocks allocated in the transaction
608 	 *
609 	 * Negative values can only happen if the transaction has a block
610 	 * reservation that covers the allocated block.  The end result is
611 	 * that the calculated delta values must always be positive and we
612 	 * can only put back previous allocated or reserved blocks here.
613 	 */
614 	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
615 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 	        blkdelta += tp->t_fdblocks_delta;
617 		ASSERT(blkdelta >= 0);
618 	}
619 
620 	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
621 	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
622 		rtxdelta += tp->t_frextents_delta;
623 		ASSERT(rtxdelta >= 0);
624 	}
625 
626 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
627 		idelta = tp->t_icount_delta;
628 		ifreedelta = tp->t_ifree_delta;
629 	}
630 
631 	/* apply the per-cpu counters */
632 	if (blkdelta)
633 		xfs_add_fdblocks(mp, blkdelta);
634 
635 	if (idelta)
636 		percpu_counter_add_batch(&mp->m_icount, idelta,
637 					 XFS_ICOUNT_BATCH);
638 
639 	if (ifreedelta)
640 		percpu_counter_add(&mp->m_ifree, ifreedelta);
641 
642 	if (rtxdelta)
643 		xfs_add_frextents(mp, rtxdelta);
644 
645 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
646 		return;
647 
648 	/* apply remaining deltas */
649 	spin_lock(&mp->m_sb_lock);
650 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
651 	mp->m_sb.sb_icount += idelta;
652 	mp->m_sb.sb_ifree += ifreedelta;
653 	/*
654 	 * Do not touch sb_frextents here because we are dealing with incore
655 	 * reservation.  sb_frextents is not part of the lazy sb counters so it
656 	 * must be consistent with the ondisk rtbitmap and must never include
657 	 * incore reservations.
658 	 */
659 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
660 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
661 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
662 	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
663 	if (tp->t_rextsize_delta) {
664 		mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize);
665 		mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize);
666 	}
667 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
668 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
669 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
670 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
671 	spin_unlock(&mp->m_sb_lock);
672 
673 	/*
674 	 * Debug checks outside of the spinlock so they don't lock up the
675 	 * machine if they fail.
676 	 */
677 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
678 	ASSERT(mp->m_sb.sb_rextslog >= 0);
679 }
680 
681 /* Add the given log item to the transaction's list of log items. */
682 void
683 xfs_trans_add_item(
684 	struct xfs_trans	*tp,
685 	struct xfs_log_item	*lip)
686 {
687 	ASSERT(lip->li_log == tp->t_mountp->m_log);
688 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
689 	ASSERT(list_empty(&lip->li_trans));
690 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
691 
692 	list_add_tail(&lip->li_trans, &tp->t_items);
693 	trace_xfs_trans_add_item(tp, _RET_IP_);
694 }
695 
696 /*
697  * Unlink the log item from the transaction. the log item is no longer
698  * considered dirty in this transaction, as the linked transaction has
699  * finished, either by abort or commit completion.
700  */
701 void
702 xfs_trans_del_item(
703 	struct xfs_log_item	*lip)
704 {
705 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
706 	list_del_init(&lip->li_trans);
707 }
708 
709 /* Detach and unlock all of the items in a transaction */
710 static void
711 xfs_trans_free_items(
712 	struct xfs_trans	*tp,
713 	bool			abort)
714 {
715 	struct xfs_log_item	*lip, *next;
716 
717 	trace_xfs_trans_free_items(tp, _RET_IP_);
718 
719 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
720 		xfs_trans_del_item(lip);
721 		if (abort)
722 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
723 		if (lip->li_ops->iop_release)
724 			lip->li_ops->iop_release(lip);
725 	}
726 }
727 
728 static inline void
729 xfs_log_item_batch_insert(
730 	struct xfs_ail		*ailp,
731 	struct xfs_ail_cursor	*cur,
732 	struct xfs_log_item	**log_items,
733 	int			nr_items,
734 	xfs_lsn_t		commit_lsn)
735 {
736 	int	i;
737 
738 	spin_lock(&ailp->ail_lock);
739 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
740 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
741 
742 	for (i = 0; i < nr_items; i++) {
743 		struct xfs_log_item *lip = log_items[i];
744 
745 		if (lip->li_ops->iop_unpin)
746 			lip->li_ops->iop_unpin(lip, 0);
747 	}
748 }
749 
750 /*
751  * Bulk operation version of xfs_trans_committed that takes a log vector of
752  * items to insert into the AIL. This uses bulk AIL insertion techniques to
753  * minimise lock traffic.
754  *
755  * If we are called with the aborted flag set, it is because a log write during
756  * a CIL checkpoint commit has failed. In this case, all the items in the
757  * checkpoint have already gone through iop_committed and iop_committing, which
758  * means that checkpoint commit abort handling is treated exactly the same
759  * as an iclog write error even though we haven't started any IO yet. Hence in
760  * this case all we need to do is iop_committed processing, followed by an
761  * iop_unpin(aborted) call.
762  *
763  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
764  * at the end of the AIL, the insert cursor avoids the need to walk
765  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
766  * call. This saves a lot of needless list walking and is a net win, even
767  * though it slightly increases that amount of AIL lock traffic to set it up
768  * and tear it down.
769  */
770 void
771 xfs_trans_committed_bulk(
772 	struct xfs_ail		*ailp,
773 	struct list_head	*lv_chain,
774 	xfs_lsn_t		commit_lsn,
775 	bool			aborted)
776 {
777 #define LOG_ITEM_BATCH_SIZE	32
778 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
779 	struct xfs_log_vec	*lv;
780 	struct xfs_ail_cursor	cur;
781 	int			i = 0;
782 
783 	spin_lock(&ailp->ail_lock);
784 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
785 	spin_unlock(&ailp->ail_lock);
786 
787 	/* unpin all the log items */
788 	list_for_each_entry(lv, lv_chain, lv_list) {
789 		struct xfs_log_item	*lip = lv->lv_item;
790 		xfs_lsn_t		item_lsn;
791 
792 		if (aborted)
793 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
794 
795 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
796 			lip->li_ops->iop_release(lip);
797 			continue;
798 		}
799 
800 		if (lip->li_ops->iop_committed)
801 			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
802 		else
803 			item_lsn = commit_lsn;
804 
805 		/* item_lsn of -1 means the item needs no further processing */
806 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
807 			continue;
808 
809 		/*
810 		 * if we are aborting the operation, no point in inserting the
811 		 * object into the AIL as we are in a shutdown situation.
812 		 */
813 		if (aborted) {
814 			ASSERT(xlog_is_shutdown(ailp->ail_log));
815 			if (lip->li_ops->iop_unpin)
816 				lip->li_ops->iop_unpin(lip, 1);
817 			continue;
818 		}
819 
820 		if (item_lsn != commit_lsn) {
821 
822 			/*
823 			 * Not a bulk update option due to unusual item_lsn.
824 			 * Push into AIL immediately, rechecking the lsn once
825 			 * we have the ail lock. Then unpin the item. This does
826 			 * not affect the AIL cursor the bulk insert path is
827 			 * using.
828 			 */
829 			spin_lock(&ailp->ail_lock);
830 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
831 				xfs_trans_ail_update(ailp, lip, item_lsn);
832 			else
833 				spin_unlock(&ailp->ail_lock);
834 			if (lip->li_ops->iop_unpin)
835 				lip->li_ops->iop_unpin(lip, 0);
836 			continue;
837 		}
838 
839 		/* Item is a candidate for bulk AIL insert.  */
840 		log_items[i++] = lv->lv_item;
841 		if (i >= LOG_ITEM_BATCH_SIZE) {
842 			xfs_log_item_batch_insert(ailp, &cur, log_items,
843 					LOG_ITEM_BATCH_SIZE, commit_lsn);
844 			i = 0;
845 		}
846 	}
847 
848 	/* make sure we insert the remainder! */
849 	if (i)
850 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
851 
852 	spin_lock(&ailp->ail_lock);
853 	xfs_trans_ail_cursor_done(&cur);
854 	spin_unlock(&ailp->ail_lock);
855 }
856 
857 /*
858  * Sort transaction items prior to running precommit operations. This will
859  * attempt to order the items such that they will always be locked in the same
860  * order. Items that have no sort function are moved to the end of the list
861  * and so are locked last.
862  *
863  * This may need refinement as different types of objects add sort functions.
864  *
865  * Function is more complex than it needs to be because we are comparing 64 bit
866  * values and the function only returns 32 bit values.
867  */
868 static int
869 xfs_trans_precommit_sort(
870 	void			*unused_arg,
871 	const struct list_head	*a,
872 	const struct list_head	*b)
873 {
874 	struct xfs_log_item	*lia = container_of(a,
875 					struct xfs_log_item, li_trans);
876 	struct xfs_log_item	*lib = container_of(b,
877 					struct xfs_log_item, li_trans);
878 	int64_t			diff;
879 
880 	/*
881 	 * If both items are non-sortable, leave them alone. If only one is
882 	 * sortable, move the non-sortable item towards the end of the list.
883 	 */
884 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
885 		return 0;
886 	if (!lia->li_ops->iop_sort)
887 		return 1;
888 	if (!lib->li_ops->iop_sort)
889 		return -1;
890 
891 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
892 	if (diff < 0)
893 		return -1;
894 	if (diff > 0)
895 		return 1;
896 	return 0;
897 }
898 
899 /*
900  * Run transaction precommit functions.
901  *
902  * If there is an error in any of the callouts, then stop immediately and
903  * trigger a shutdown to abort the transaction. There is no recovery possible
904  * from errors at this point as the transaction is dirty....
905  */
906 static int
907 xfs_trans_run_precommits(
908 	struct xfs_trans	*tp)
909 {
910 	struct xfs_mount	*mp = tp->t_mountp;
911 	struct xfs_log_item	*lip, *n;
912 	int			error = 0;
913 
914 	/*
915 	 * Sort the item list to avoid ABBA deadlocks with other transactions
916 	 * running precommit operations that lock multiple shared items such as
917 	 * inode cluster buffers.
918 	 */
919 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
920 
921 	/*
922 	 * Precommit operations can remove the log item from the transaction
923 	 * if the log item exists purely to delay modifications until they
924 	 * can be ordered against other operations. Hence we have to use
925 	 * list_for_each_entry_safe() here.
926 	 */
927 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
928 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
929 			continue;
930 		if (lip->li_ops->iop_precommit) {
931 			error = lip->li_ops->iop_precommit(tp, lip);
932 			if (error)
933 				break;
934 		}
935 	}
936 	if (error)
937 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
938 	return error;
939 }
940 
941 /*
942  * Commit the given transaction to the log.
943  *
944  * XFS disk error handling mechanism is not based on a typical
945  * transaction abort mechanism. Logically after the filesystem
946  * gets marked 'SHUTDOWN', we can't let any new transactions
947  * be durable - ie. committed to disk - because some metadata might
948  * be inconsistent. In such cases, this returns an error, and the
949  * caller may assume that all locked objects joined to the transaction
950  * have already been unlocked as if the commit had succeeded.
951  * Do not reference the transaction structure after this call.
952  */
953 static int
954 __xfs_trans_commit(
955 	struct xfs_trans	*tp,
956 	bool			regrant)
957 {
958 	struct xfs_mount	*mp = tp->t_mountp;
959 	struct xlog		*log = mp->m_log;
960 	xfs_csn_t		commit_seq = 0;
961 	int			error = 0;
962 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
963 
964 	trace_xfs_trans_commit(tp, _RET_IP_);
965 
966 	error = xfs_trans_run_precommits(tp);
967 	if (error) {
968 		if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
969 			xfs_defer_cancel(tp);
970 		goto out_unreserve;
971 	}
972 
973 	/*
974 	 * Finish deferred items on final commit. Only permanent transactions
975 	 * should ever have deferred ops.
976 	 */
977 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
978 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
979 	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
980 		error = xfs_defer_finish_noroll(&tp);
981 		if (error)
982 			goto out_unreserve;
983 
984 		/* Run precommits from final tx in defer chain. */
985 		error = xfs_trans_run_precommits(tp);
986 		if (error)
987 			goto out_unreserve;
988 	}
989 
990 	/*
991 	 * If there is nothing to be logged by the transaction,
992 	 * then unlock all of the items associated with the
993 	 * transaction and free the transaction structure.
994 	 * Also make sure to return any reserved blocks to
995 	 * the free pool.
996 	 */
997 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
998 		goto out_unreserve;
999 
1000 	/*
1001 	 * We must check against log shutdown here because we cannot abort log
1002 	 * items and leave them dirty, inconsistent and unpinned in memory while
1003 	 * the log is active. This leaves them open to being written back to
1004 	 * disk, and that will lead to on-disk corruption.
1005 	 */
1006 	if (xlog_is_shutdown(log)) {
1007 		error = -EIO;
1008 		goto out_unreserve;
1009 	}
1010 
1011 	ASSERT(tp->t_ticket != NULL);
1012 
1013 	/*
1014 	 * If we need to update the superblock, then do it now.
1015 	 */
1016 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1017 		xfs_trans_apply_sb_deltas(tp);
1018 	xfs_trans_apply_dquot_deltas(tp);
1019 
1020 	xlog_cil_commit(log, tp, &commit_seq, regrant);
1021 
1022 	xfs_trans_free(tp);
1023 
1024 	/*
1025 	 * If the transaction needs to be synchronous, then force the
1026 	 * log out now and wait for it.
1027 	 */
1028 	if (sync) {
1029 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1030 		XFS_STATS_INC(mp, xs_trans_sync);
1031 	} else {
1032 		XFS_STATS_INC(mp, xs_trans_async);
1033 	}
1034 
1035 	return error;
1036 
1037 out_unreserve:
1038 	xfs_trans_unreserve_and_mod_sb(tp);
1039 
1040 	/*
1041 	 * It is indeed possible for the transaction to be not dirty but
1042 	 * the dqinfo portion to be.  All that means is that we have some
1043 	 * (non-persistent) quota reservations that need to be unreserved.
1044 	 */
1045 	xfs_trans_unreserve_and_mod_dquots(tp);
1046 	if (tp->t_ticket) {
1047 		if (regrant && !xlog_is_shutdown(log))
1048 			xfs_log_ticket_regrant(log, tp->t_ticket);
1049 		else
1050 			xfs_log_ticket_ungrant(log, tp->t_ticket);
1051 		tp->t_ticket = NULL;
1052 	}
1053 	xfs_trans_free_items(tp, !!error);
1054 	xfs_trans_free(tp);
1055 
1056 	XFS_STATS_INC(mp, xs_trans_empty);
1057 	return error;
1058 }
1059 
1060 int
1061 xfs_trans_commit(
1062 	struct xfs_trans	*tp)
1063 {
1064 	return __xfs_trans_commit(tp, false);
1065 }
1066 
1067 /*
1068  * Unlock all of the transaction's items and free the transaction.  If the
1069  * transaction is dirty, we must shut down the filesystem because there is no
1070  * way to restore them to their previous state.
1071  *
1072  * If the transaction has made a log reservation, make sure to release it as
1073  * well.
1074  *
1075  * This is a high level function (equivalent to xfs_trans_commit()) and so can
1076  * be called after the transaction has effectively been aborted due to the mount
1077  * being shut down. However, if the mount has not been shut down and the
1078  * transaction is dirty we will shut the mount down and, in doing so, that
1079  * guarantees that the log is shut down, too. Hence we don't need to be as
1080  * careful with shutdown state and dirty items here as we need to be in
1081  * xfs_trans_commit().
1082  */
1083 void
1084 xfs_trans_cancel(
1085 	struct xfs_trans	*tp)
1086 {
1087 	struct xfs_mount	*mp = tp->t_mountp;
1088 	struct xlog		*log = mp->m_log;
1089 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1090 
1091 	trace_xfs_trans_cancel(tp, _RET_IP_);
1092 
1093 	/*
1094 	 * It's never valid to cancel a transaction with deferred ops attached,
1095 	 * because the transaction is effectively dirty.  Complain about this
1096 	 * loudly before freeing the in-memory defer items and shutting down the
1097 	 * filesystem.
1098 	 */
1099 	if (!list_empty(&tp->t_dfops)) {
1100 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1101 		dirty = true;
1102 		xfs_defer_cancel(tp);
1103 	}
1104 
1105 	/*
1106 	 * See if the caller is relying on us to shut down the filesystem. We
1107 	 * only want an error report if there isn't already a shutdown in
1108 	 * progress, so we only need to check against the mount shutdown state
1109 	 * here.
1110 	 */
1111 	if (dirty && !xfs_is_shutdown(mp)) {
1112 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1113 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1114 	}
1115 #ifdef DEBUG
1116 	/* Log items need to be consistent until the log is shut down. */
1117 	if (!dirty && !xlog_is_shutdown(log)) {
1118 		struct xfs_log_item *lip;
1119 
1120 		list_for_each_entry(lip, &tp->t_items, li_trans)
1121 			ASSERT(!xlog_item_is_intent_done(lip));
1122 	}
1123 #endif
1124 	xfs_trans_unreserve_and_mod_sb(tp);
1125 	xfs_trans_unreserve_and_mod_dquots(tp);
1126 
1127 	if (tp->t_ticket) {
1128 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1129 		tp->t_ticket = NULL;
1130 	}
1131 
1132 	xfs_trans_free_items(tp, dirty);
1133 	xfs_trans_free(tp);
1134 }
1135 
1136 /*
1137  * Roll from one trans in the sequence of PERMANENT transactions to
1138  * the next: permanent transactions are only flushed out when
1139  * committed with xfs_trans_commit(), but we still want as soon
1140  * as possible to let chunks of it go to the log. So we commit the
1141  * chunk we've been working on and get a new transaction to continue.
1142  */
1143 int
1144 xfs_trans_roll(
1145 	struct xfs_trans	**tpp)
1146 {
1147 	struct xfs_trans	*trans = *tpp;
1148 	struct xfs_trans_res	tres;
1149 	int			error;
1150 
1151 	trace_xfs_trans_roll(trans, _RET_IP_);
1152 
1153 	/*
1154 	 * Copy the critical parameters from one trans to the next.
1155 	 */
1156 	tres.tr_logres = trans->t_log_res;
1157 	tres.tr_logcount = trans->t_log_count;
1158 
1159 	*tpp = xfs_trans_dup(trans);
1160 
1161 	/*
1162 	 * Commit the current transaction.
1163 	 * If this commit failed, then it'd just unlock those items that
1164 	 * are not marked ihold. That also means that a filesystem shutdown
1165 	 * is in progress. The caller takes the responsibility to cancel
1166 	 * the duplicate transaction that gets returned.
1167 	 */
1168 	error = __xfs_trans_commit(trans, true);
1169 	if (error)
1170 		return error;
1171 
1172 	/*
1173 	 * Reserve space in the log for the next transaction.
1174 	 * This also pushes items in the "AIL", the list of logged items,
1175 	 * out to disk if they are taking up space at the tail of the log
1176 	 * that we want to use.  This requires that either nothing be locked
1177 	 * across this call, or that anything that is locked be logged in
1178 	 * the prior and the next transactions.
1179 	 */
1180 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1181 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1182 }
1183 
1184 /*
1185  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1186  *
1187  * The caller must ensure that the on-disk dquots attached to this inode have
1188  * already been allocated and initialized.  The caller is responsible for
1189  * releasing ILOCK_EXCL if a new transaction is returned.
1190  */
1191 int
1192 xfs_trans_alloc_inode(
1193 	struct xfs_inode	*ip,
1194 	struct xfs_trans_res	*resv,
1195 	unsigned int		dblocks,
1196 	unsigned int		rblocks,
1197 	bool			force,
1198 	struct xfs_trans	**tpp)
1199 {
1200 	struct xfs_trans	*tp;
1201 	struct xfs_mount	*mp = ip->i_mount;
1202 	bool			retried = false;
1203 	int			error;
1204 
1205 retry:
1206 	error = xfs_trans_alloc(mp, resv, dblocks,
1207 			xfs_extlen_to_rtxlen(mp, rblocks),
1208 			force ? XFS_TRANS_RESERVE : 0, &tp);
1209 	if (error)
1210 		return error;
1211 
1212 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1213 	xfs_trans_ijoin(tp, ip, 0);
1214 
1215 	error = xfs_qm_dqattach_locked(ip, false);
1216 	if (error) {
1217 		/* Caller should have allocated the dquots! */
1218 		ASSERT(error != -ENOENT);
1219 		goto out_cancel;
1220 	}
1221 
1222 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1223 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1224 		xfs_trans_cancel(tp);
1225 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1226 		xfs_blockgc_free_quota(ip, 0);
1227 		retried = true;
1228 		goto retry;
1229 	}
1230 	if (error)
1231 		goto out_cancel;
1232 
1233 	*tpp = tp;
1234 	return 0;
1235 
1236 out_cancel:
1237 	xfs_trans_cancel(tp);
1238 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1239 	return error;
1240 }
1241 
1242 /*
1243  * Try to reserve more blocks for a transaction.
1244  *
1245  * This is for callers that need to attach resources to a transaction, scan
1246  * those resources to determine the space reservation requirements, and then
1247  * modify the attached resources.  In other words, online repair.  This can
1248  * fail due to ENOSPC, so the caller must be able to cancel the transaction
1249  * without shutting down the fs.
1250  */
1251 int
1252 xfs_trans_reserve_more(
1253 	struct xfs_trans	*tp,
1254 	unsigned int		blocks,
1255 	unsigned int		rtextents)
1256 {
1257 	struct xfs_trans_res	resv = { };
1258 
1259 	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1260 }
1261 
1262 /*
1263  * Try to reserve more blocks and file quota for a transaction.  Same
1264  * conditions of usage as xfs_trans_reserve_more.
1265  */
1266 int
1267 xfs_trans_reserve_more_inode(
1268 	struct xfs_trans	*tp,
1269 	struct xfs_inode	*ip,
1270 	unsigned int		dblocks,
1271 	unsigned int		rblocks,
1272 	bool			force_quota)
1273 {
1274 	struct xfs_trans_res	resv = { };
1275 	struct xfs_mount	*mp = ip->i_mount;
1276 	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1277 	int			error;
1278 
1279 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1280 
1281 	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1282 	if (error)
1283 		return error;
1284 
1285 	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1286 		return 0;
1287 
1288 	if (tp->t_flags & XFS_TRANS_RESERVE)
1289 		force_quota = true;
1290 
1291 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1292 			force_quota);
1293 	if (!error)
1294 		return 0;
1295 
1296 	/* Quota failed, give back the new reservation. */
1297 	xfs_add_fdblocks(mp, dblocks);
1298 	tp->t_blk_res -= dblocks;
1299 	xfs_add_frextents(mp, rtx);
1300 	tp->t_rtx_res -= rtx;
1301 	return error;
1302 }
1303 
1304 /*
1305  * Allocate an transaction in preparation for inode creation by reserving quota
1306  * against the given dquots.  Callers are not required to hold any inode locks.
1307  */
1308 int
1309 xfs_trans_alloc_icreate(
1310 	struct xfs_mount	*mp,
1311 	struct xfs_trans_res	*resv,
1312 	struct xfs_dquot	*udqp,
1313 	struct xfs_dquot	*gdqp,
1314 	struct xfs_dquot	*pdqp,
1315 	unsigned int		dblocks,
1316 	struct xfs_trans	**tpp)
1317 {
1318 	struct xfs_trans	*tp;
1319 	bool			retried = false;
1320 	int			error;
1321 
1322 retry:
1323 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1324 	if (error)
1325 		return error;
1326 
1327 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1328 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1329 		xfs_trans_cancel(tp);
1330 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1331 		retried = true;
1332 		goto retry;
1333 	}
1334 	if (error) {
1335 		xfs_trans_cancel(tp);
1336 		return error;
1337 	}
1338 
1339 	*tpp = tp;
1340 	return 0;
1341 }
1342 
1343 /*
1344  * Allocate an transaction, lock and join the inode to it, and reserve quota
1345  * in preparation for inode attribute changes that include uid, gid, or prid
1346  * changes.
1347  *
1348  * The caller must ensure that the on-disk dquots attached to this inode have
1349  * already been allocated and initialized.  The ILOCK will be dropped when the
1350  * transaction is committed or cancelled.
1351  */
1352 int
1353 xfs_trans_alloc_ichange(
1354 	struct xfs_inode	*ip,
1355 	struct xfs_dquot	*new_udqp,
1356 	struct xfs_dquot	*new_gdqp,
1357 	struct xfs_dquot	*new_pdqp,
1358 	bool			force,
1359 	struct xfs_trans	**tpp)
1360 {
1361 	struct xfs_trans	*tp;
1362 	struct xfs_mount	*mp = ip->i_mount;
1363 	struct xfs_dquot	*udqp;
1364 	struct xfs_dquot	*gdqp;
1365 	struct xfs_dquot	*pdqp;
1366 	bool			retried = false;
1367 	int			error;
1368 
1369 retry:
1370 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1371 	if (error)
1372 		return error;
1373 
1374 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1375 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1376 
1377 	error = xfs_qm_dqattach_locked(ip, false);
1378 	if (error) {
1379 		/* Caller should have allocated the dquots! */
1380 		ASSERT(error != -ENOENT);
1381 		goto out_cancel;
1382 	}
1383 
1384 	/*
1385 	 * For each quota type, skip quota reservations if the inode's dquots
1386 	 * now match the ones that came from the caller, or the caller didn't
1387 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1388 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1389 	 */
1390 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1391 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1392 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1393 	if (udqp || gdqp || pdqp) {
1394 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1395 
1396 		if (force)
1397 			qflags |= XFS_QMOPT_FORCE_RES;
1398 
1399 		/*
1400 		 * Reserve enough quota to handle blocks on disk and reserved
1401 		 * for a delayed allocation.  We'll actually transfer the
1402 		 * delalloc reservation between dquots at chown time, even
1403 		 * though that part is only semi-transactional.
1404 		 */
1405 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1406 				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1407 				1, qflags);
1408 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1409 			xfs_trans_cancel(tp);
1410 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1411 			retried = true;
1412 			goto retry;
1413 		}
1414 		if (error)
1415 			goto out_cancel;
1416 	}
1417 
1418 	*tpp = tp;
1419 	return 0;
1420 
1421 out_cancel:
1422 	xfs_trans_cancel(tp);
1423 	return error;
1424 }
1425 
1426 /*
1427  * Allocate an transaction, lock and join the directory and child inodes to it,
1428  * and reserve quota for a directory update.  If there isn't sufficient space,
1429  * @dblocks will be set to zero for a reservationless directory update and
1430  * @nospace_error will be set to a negative errno describing the space
1431  * constraint we hit.
1432  *
1433  * The caller must ensure that the on-disk dquots attached to this inode have
1434  * already been allocated and initialized.  The ILOCKs will be dropped when the
1435  * transaction is committed or cancelled.
1436  *
1437  * Caller is responsible for unlocking the inodes manually upon return
1438  */
1439 int
1440 xfs_trans_alloc_dir(
1441 	struct xfs_inode	*dp,
1442 	struct xfs_trans_res	*resv,
1443 	struct xfs_inode	*ip,
1444 	unsigned int		*dblocks,
1445 	struct xfs_trans	**tpp,
1446 	int			*nospace_error)
1447 {
1448 	struct xfs_trans	*tp;
1449 	struct xfs_mount	*mp = ip->i_mount;
1450 	unsigned int		resblks;
1451 	bool			retried = false;
1452 	int			error;
1453 
1454 retry:
1455 	*nospace_error = 0;
1456 	resblks = *dblocks;
1457 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1458 	if (error == -ENOSPC) {
1459 		*nospace_error = error;
1460 		resblks = 0;
1461 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1462 	}
1463 	if (error)
1464 		return error;
1465 
1466 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1467 
1468 	xfs_trans_ijoin(tp, dp, 0);
1469 	xfs_trans_ijoin(tp, ip, 0);
1470 
1471 	error = xfs_qm_dqattach_locked(dp, false);
1472 	if (error) {
1473 		/* Caller should have allocated the dquots! */
1474 		ASSERT(error != -ENOENT);
1475 		goto out_cancel;
1476 	}
1477 
1478 	error = xfs_qm_dqattach_locked(ip, false);
1479 	if (error) {
1480 		/* Caller should have allocated the dquots! */
1481 		ASSERT(error != -ENOENT);
1482 		goto out_cancel;
1483 	}
1484 
1485 	if (resblks == 0)
1486 		goto done;
1487 
1488 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1489 	if (error == -EDQUOT || error == -ENOSPC) {
1490 		if (!retried) {
1491 			xfs_trans_cancel(tp);
1492 			xfs_iunlock(dp, XFS_ILOCK_EXCL);
1493 			if (dp != ip)
1494 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1495 			xfs_blockgc_free_quota(dp, 0);
1496 			retried = true;
1497 			goto retry;
1498 		}
1499 
1500 		*nospace_error = error;
1501 		resblks = 0;
1502 		error = 0;
1503 	}
1504 	if (error)
1505 		goto out_cancel;
1506 
1507 done:
1508 	*tpp = tp;
1509 	*dblocks = resblks;
1510 	return 0;
1511 
1512 out_cancel:
1513 	xfs_trans_cancel(tp);
1514 	return error;
1515 }
1516