1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * Copyright (C) 2010 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_extent_busy.h" 15 #include "xfs_quota.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_trace.h" 21 #include "xfs_error.h" 22 #include "xfs_defer.h" 23 #include "xfs_inode.h" 24 #include "xfs_dquot_item.h" 25 #include "xfs_dquot.h" 26 #include "xfs_icache.h" 27 #include "xfs_rtbitmap.h" 28 #include "xfs_rtgroup.h" 29 #include "xfs_sb.h" 30 31 struct kmem_cache *xfs_trans_cache; 32 33 #if defined(CONFIG_TRACEPOINTS) 34 static void 35 xfs_trans_trace_reservations( 36 struct xfs_mount *mp) 37 { 38 struct xfs_trans_res *res; 39 struct xfs_trans_res *end_res; 40 int i; 41 42 res = (struct xfs_trans_res *)M_RES(mp); 43 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); 44 for (i = 0; res < end_res; i++, res++) 45 trace_xfs_trans_resv_calc(mp, i, res); 46 } 47 #else 48 # define xfs_trans_trace_reservations(mp) 49 #endif 50 51 /* 52 * Initialize the precomputed transaction reservation values 53 * in the mount structure. 54 */ 55 void 56 xfs_trans_init( 57 struct xfs_mount *mp) 58 { 59 xfs_trans_resv_calc(mp, M_RES(mp)); 60 xfs_trans_trace_reservations(mp); 61 } 62 63 /* 64 * Free the transaction structure. If there is more clean up 65 * to do when the structure is freed, add it here. 66 */ 67 STATIC void 68 xfs_trans_free( 69 struct xfs_trans *tp) 70 { 71 xfs_extent_busy_sort(&tp->t_busy); 72 xfs_extent_busy_clear(&tp->t_busy, false); 73 74 trace_xfs_trans_free(tp, _RET_IP_); 75 xfs_trans_clear_context(tp); 76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) 77 sb_end_intwrite(tp->t_mountp->m_super); 78 xfs_trans_free_dqinfo(tp); 79 kmem_cache_free(xfs_trans_cache, tp); 80 } 81 82 /* 83 * This is called to create a new transaction which will share the 84 * permanent log reservation of the given transaction. The remaining 85 * unused block and rt extent reservations are also inherited. This 86 * implies that the original transaction is no longer allowed to allocate 87 * blocks. Locks and log items, however, are no inherited. They must 88 * be added to the new transaction explicitly. 89 */ 90 STATIC struct xfs_trans * 91 xfs_trans_dup( 92 struct xfs_trans *tp) 93 { 94 struct xfs_trans *ntp; 95 96 trace_xfs_trans_dup(tp, _RET_IP_); 97 98 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 99 100 /* 101 * Initialize the new transaction structure. 102 */ 103 ntp->t_magic = XFS_TRANS_HEADER_MAGIC; 104 ntp->t_mountp = tp->t_mountp; 105 INIT_LIST_HEAD(&ntp->t_items); 106 INIT_LIST_HEAD(&ntp->t_busy); 107 INIT_LIST_HEAD(&ntp->t_dfops); 108 ntp->t_highest_agno = NULLAGNUMBER; 109 110 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 111 ASSERT(tp->t_ticket != NULL); 112 113 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 114 (tp->t_flags & XFS_TRANS_RESERVE) | 115 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | 116 (tp->t_flags & XFS_TRANS_RES_FDBLKS); 117 /* We gave our writer reference to the new transaction */ 118 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; 119 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 120 121 ASSERT(tp->t_blk_res >= tp->t_blk_res_used); 122 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 123 tp->t_blk_res = tp->t_blk_res_used; 124 125 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 126 tp->t_rtx_res = tp->t_rtx_res_used; 127 128 xfs_trans_switch_context(tp, ntp); 129 130 /* move deferred ops over to the new tp */ 131 xfs_defer_move(ntp, tp); 132 133 xfs_trans_dup_dqinfo(tp, ntp); 134 return ntp; 135 } 136 137 /* 138 * This is called to reserve free disk blocks and log space for the 139 * given transaction. This must be done before allocating any resources 140 * within the transaction. 141 * 142 * This will return ENOSPC if there are not enough blocks available. 143 * It will sleep waiting for available log space. 144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 145 * is used by long running transactions. If any one of the reservations 146 * fails then they will all be backed out. 147 * 148 * This does not do quota reservations. That typically is done by the 149 * caller afterwards. 150 */ 151 static int 152 xfs_trans_reserve( 153 struct xfs_trans *tp, 154 struct xfs_trans_res *resp, 155 uint blocks, 156 uint rtextents) 157 { 158 struct xfs_mount *mp = tp->t_mountp; 159 int error = 0; 160 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 161 162 /* 163 * Attempt to reserve the needed disk blocks by decrementing 164 * the number needed from the number available. This will 165 * fail if the count would go below zero. 166 */ 167 if (blocks > 0) { 168 error = xfs_dec_fdblocks(mp, blocks, rsvd); 169 if (error != 0) 170 return -ENOSPC; 171 tp->t_blk_res += blocks; 172 } 173 174 /* 175 * Reserve the log space needed for this transaction. 176 */ 177 if (resp->tr_logres > 0) { 178 bool permanent = false; 179 180 ASSERT(tp->t_log_res == 0 || 181 tp->t_log_res == resp->tr_logres); 182 ASSERT(tp->t_log_count == 0 || 183 tp->t_log_count == resp->tr_logcount); 184 185 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { 186 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 187 permanent = true; 188 } else { 189 ASSERT(tp->t_ticket == NULL); 190 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 191 } 192 193 if (tp->t_ticket != NULL) { 194 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); 195 error = xfs_log_regrant(mp, tp->t_ticket); 196 } else { 197 error = xfs_log_reserve(mp, resp->tr_logres, 198 resp->tr_logcount, 199 &tp->t_ticket, permanent); 200 } 201 202 if (error) 203 goto undo_blocks; 204 205 tp->t_log_res = resp->tr_logres; 206 tp->t_log_count = resp->tr_logcount; 207 } 208 209 /* 210 * Attempt to reserve the needed realtime extents by decrementing 211 * the number needed from the number available. This will 212 * fail if the count would go below zero. 213 */ 214 if (rtextents > 0) { 215 error = xfs_dec_frextents(mp, rtextents); 216 if (error) { 217 error = -ENOSPC; 218 goto undo_log; 219 } 220 tp->t_rtx_res += rtextents; 221 } 222 223 return 0; 224 225 /* 226 * Error cases jump to one of these labels to undo any 227 * reservations which have already been performed. 228 */ 229 undo_log: 230 if (resp->tr_logres > 0) { 231 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 232 tp->t_ticket = NULL; 233 tp->t_log_res = 0; 234 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 235 } 236 237 undo_blocks: 238 if (blocks > 0) { 239 xfs_add_fdblocks(mp, blocks); 240 tp->t_blk_res = 0; 241 } 242 return error; 243 } 244 245 int 246 xfs_trans_alloc( 247 struct xfs_mount *mp, 248 struct xfs_trans_res *resp, 249 uint blocks, 250 uint rtextents, 251 uint flags, 252 struct xfs_trans **tpp) 253 { 254 struct xfs_trans *tp; 255 bool want_retry = true; 256 int error; 257 258 /* 259 * Allocate the handle before we do our freeze accounting and setting up 260 * GFP_NOFS allocation context so that we avoid lockdep false positives 261 * by doing GFP_KERNEL allocations inside sb_start_intwrite(). 262 */ 263 retry: 264 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 265 if (!(flags & XFS_TRANS_NO_WRITECOUNT)) 266 sb_start_intwrite(mp->m_super); 267 xfs_trans_set_context(tp); 268 269 /* 270 * Zero-reservation ("empty") transactions can't modify anything, so 271 * they're allowed to run while we're frozen. 272 */ 273 WARN_ON(resp->tr_logres > 0 && 274 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 275 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || 276 xfs_has_lazysbcount(mp)); 277 278 tp->t_magic = XFS_TRANS_HEADER_MAGIC; 279 tp->t_flags = flags; 280 tp->t_mountp = mp; 281 INIT_LIST_HEAD(&tp->t_items); 282 INIT_LIST_HEAD(&tp->t_busy); 283 INIT_LIST_HEAD(&tp->t_dfops); 284 tp->t_highest_agno = NULLAGNUMBER; 285 286 error = xfs_trans_reserve(tp, resp, blocks, rtextents); 287 if (error == -ENOSPC && want_retry) { 288 xfs_trans_cancel(tp); 289 290 /* 291 * We weren't able to reserve enough space for the transaction. 292 * Flush the other speculative space allocations to free space. 293 * Do not perform a synchronous scan because callers can hold 294 * other locks. 295 */ 296 error = xfs_blockgc_flush_all(mp); 297 if (error) 298 return error; 299 want_retry = false; 300 goto retry; 301 } 302 if (error) { 303 xfs_trans_cancel(tp); 304 return error; 305 } 306 307 trace_xfs_trans_alloc(tp, _RET_IP_); 308 309 *tpp = tp; 310 return 0; 311 } 312 313 /* 314 * Create an empty transaction with no reservation. This is a defensive 315 * mechanism for routines that query metadata without actually modifying them -- 316 * if the metadata being queried is somehow cross-linked (think a btree block 317 * pointer that points higher in the tree), we risk deadlock. However, blocks 318 * grabbed as part of a transaction can be re-grabbed. The verifiers will 319 * notice the corrupt block and the operation will fail back to userspace 320 * without deadlocking. 321 * 322 * Note the zero-length reservation; this transaction MUST be cancelled without 323 * any dirty data. 324 * 325 * Callers should obtain freeze protection to avoid a conflict with fs freezing 326 * where we can be grabbing buffers at the same time that freeze is trying to 327 * drain the buffer LRU list. 328 */ 329 int 330 xfs_trans_alloc_empty( 331 struct xfs_mount *mp, 332 struct xfs_trans **tpp) 333 { 334 struct xfs_trans_res resv = {0}; 335 336 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); 337 } 338 339 /* 340 * Record the indicated change to the given field for application 341 * to the file system's superblock when the transaction commits. 342 * For now, just store the change in the transaction structure. 343 * 344 * Mark the transaction structure to indicate that the superblock 345 * needs to be updated before committing. 346 * 347 * Because we may not be keeping track of allocated/free inodes and 348 * used filesystem blocks in the superblock, we do not mark the 349 * superblock dirty in this transaction if we modify these fields. 350 * We still need to update the transaction deltas so that they get 351 * applied to the incore superblock, but we don't want them to 352 * cause the superblock to get locked and logged if these are the 353 * only fields in the superblock that the transaction modifies. 354 */ 355 void 356 xfs_trans_mod_sb( 357 xfs_trans_t *tp, 358 uint field, 359 int64_t delta) 360 { 361 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 362 xfs_mount_t *mp = tp->t_mountp; 363 364 switch (field) { 365 case XFS_TRANS_SB_ICOUNT: 366 tp->t_icount_delta += delta; 367 if (xfs_has_lazysbcount(mp)) 368 flags &= ~XFS_TRANS_SB_DIRTY; 369 break; 370 case XFS_TRANS_SB_IFREE: 371 tp->t_ifree_delta += delta; 372 if (xfs_has_lazysbcount(mp)) 373 flags &= ~XFS_TRANS_SB_DIRTY; 374 break; 375 case XFS_TRANS_SB_FDBLOCKS: 376 /* 377 * Track the number of blocks allocated in the transaction. 378 * Make sure it does not exceed the number reserved. If so, 379 * shutdown as this can lead to accounting inconsistency. 380 */ 381 if (delta < 0) { 382 tp->t_blk_res_used += (uint)-delta; 383 if (tp->t_blk_res_used > tp->t_blk_res) 384 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 385 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { 386 int64_t blkres_delta; 387 388 /* 389 * Return freed blocks directly to the reservation 390 * instead of the global pool, being careful not to 391 * overflow the trans counter. This is used to preserve 392 * reservation across chains of transaction rolls that 393 * repeatedly free and allocate blocks. 394 */ 395 blkres_delta = min_t(int64_t, delta, 396 UINT_MAX - tp->t_blk_res); 397 tp->t_blk_res += blkres_delta; 398 delta -= blkres_delta; 399 } 400 tp->t_fdblocks_delta += delta; 401 if (xfs_has_lazysbcount(mp)) 402 flags &= ~XFS_TRANS_SB_DIRTY; 403 break; 404 case XFS_TRANS_SB_RES_FDBLOCKS: 405 /* 406 * The allocation has already been applied to the 407 * in-core superblock's counter. This should only 408 * be applied to the on-disk superblock. 409 */ 410 tp->t_res_fdblocks_delta += delta; 411 if (xfs_has_lazysbcount(mp)) 412 flags &= ~XFS_TRANS_SB_DIRTY; 413 break; 414 case XFS_TRANS_SB_FREXTENTS: 415 /* 416 * Track the number of blocks allocated in the 417 * transaction. Make sure it does not exceed the 418 * number reserved. 419 */ 420 if (delta < 0) { 421 tp->t_rtx_res_used += (uint)-delta; 422 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 423 } 424 tp->t_frextents_delta += delta; 425 if (xfs_has_rtgroups(mp)) 426 flags &= ~XFS_TRANS_SB_DIRTY; 427 break; 428 case XFS_TRANS_SB_RES_FREXTENTS: 429 /* 430 * The allocation has already been applied to the 431 * in-core superblock's counter. This should only 432 * be applied to the on-disk superblock. 433 */ 434 ASSERT(delta < 0); 435 tp->t_res_frextents_delta += delta; 436 if (xfs_has_rtgroups(mp)) 437 flags &= ~XFS_TRANS_SB_DIRTY; 438 break; 439 case XFS_TRANS_SB_DBLOCKS: 440 tp->t_dblocks_delta += delta; 441 break; 442 case XFS_TRANS_SB_AGCOUNT: 443 ASSERT(delta > 0); 444 tp->t_agcount_delta += delta; 445 break; 446 case XFS_TRANS_SB_IMAXPCT: 447 tp->t_imaxpct_delta += delta; 448 break; 449 case XFS_TRANS_SB_REXTSIZE: 450 tp->t_rextsize_delta += delta; 451 break; 452 case XFS_TRANS_SB_RBMBLOCKS: 453 tp->t_rbmblocks_delta += delta; 454 break; 455 case XFS_TRANS_SB_RBLOCKS: 456 tp->t_rblocks_delta += delta; 457 break; 458 case XFS_TRANS_SB_REXTENTS: 459 tp->t_rextents_delta += delta; 460 break; 461 case XFS_TRANS_SB_REXTSLOG: 462 tp->t_rextslog_delta += delta; 463 break; 464 case XFS_TRANS_SB_RGCOUNT: 465 ASSERT(delta > 0); 466 tp->t_rgcount_delta += delta; 467 break; 468 default: 469 ASSERT(0); 470 return; 471 } 472 473 tp->t_flags |= flags; 474 } 475 476 /* 477 * xfs_trans_apply_sb_deltas() is called from the commit code 478 * to bring the superblock buffer into the current transaction 479 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 480 * 481 * For now we just look at each field allowed to change and change 482 * it if necessary. 483 */ 484 STATIC void 485 xfs_trans_apply_sb_deltas( 486 xfs_trans_t *tp) 487 { 488 struct xfs_dsb *sbp; 489 struct xfs_buf *bp; 490 int whole = 0; 491 492 bp = xfs_trans_getsb(tp); 493 sbp = bp->b_addr; 494 495 /* 496 * Only update the superblock counters if we are logging them 497 */ 498 if (!xfs_has_lazysbcount((tp->t_mountp))) { 499 if (tp->t_icount_delta) 500 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 501 if (tp->t_ifree_delta) 502 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 503 if (tp->t_fdblocks_delta) 504 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 505 if (tp->t_res_fdblocks_delta) 506 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 507 } 508 509 /* 510 * sb_frextents was added to the lazy sb counters when the rt groups 511 * feature was introduced. This is possible because we know that all 512 * kernels supporting rtgroups will also recompute frextents from the 513 * realtime bitmap. 514 * 515 * For older file systems, updating frextents requires careful handling 516 * because we cannot rely on log recovery in older kernels to recompute 517 * the value from the rtbitmap. This means that the ondisk frextents 518 * must be consistent with the rtbitmap. 519 * 520 * Therefore, log the frextents change to the ondisk superblock and 521 * update the incore superblock so that future calls to xfs_log_sb 522 * write the correct value ondisk. 523 */ 524 if ((tp->t_frextents_delta || tp->t_res_frextents_delta) && 525 !xfs_has_rtgroups(tp->t_mountp)) { 526 struct xfs_mount *mp = tp->t_mountp; 527 int64_t rtxdelta; 528 529 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta; 530 531 spin_lock(&mp->m_sb_lock); 532 be64_add_cpu(&sbp->sb_frextents, rtxdelta); 533 mp->m_sb.sb_frextents += rtxdelta; 534 spin_unlock(&mp->m_sb_lock); 535 } 536 537 if (tp->t_dblocks_delta) { 538 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 539 whole = 1; 540 } 541 if (tp->t_agcount_delta) { 542 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 543 whole = 1; 544 } 545 if (tp->t_imaxpct_delta) { 546 sbp->sb_imax_pct += tp->t_imaxpct_delta; 547 whole = 1; 548 } 549 if (tp->t_rextsize_delta) { 550 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 551 552 /* 553 * Because the ondisk sb records rtgroup size in units of rt 554 * extents, any time we update the rt extent size we have to 555 * recompute the ondisk rtgroup block log. The incore values 556 * will be recomputed in xfs_trans_unreserve_and_mod_sb. 557 */ 558 if (xfs_has_rtgroups(tp->t_mountp)) { 559 sbp->sb_rgblklog = xfs_compute_rgblklog( 560 be32_to_cpu(sbp->sb_rgextents), 561 be32_to_cpu(sbp->sb_rextsize)); 562 } 563 whole = 1; 564 } 565 if (tp->t_rbmblocks_delta) { 566 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 567 whole = 1; 568 } 569 if (tp->t_rblocks_delta) { 570 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 571 whole = 1; 572 } 573 if (tp->t_rextents_delta) { 574 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 575 whole = 1; 576 } 577 if (tp->t_rextslog_delta) { 578 sbp->sb_rextslog += tp->t_rextslog_delta; 579 whole = 1; 580 } 581 if (tp->t_rgcount_delta) { 582 be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta); 583 whole = 1; 584 } 585 586 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 587 if (whole) 588 /* 589 * Log the whole thing, the fields are noncontiguous. 590 */ 591 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); 592 else 593 /* 594 * Since all the modifiable fields are contiguous, we 595 * can get away with this. 596 */ 597 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), 598 offsetof(struct xfs_dsb, sb_frextents) + 599 sizeof(sbp->sb_frextents) - 1); 600 } 601 602 /* 603 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and 604 * apply superblock counter changes to the in-core superblock. The 605 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 606 * applied to the in-core superblock. The idea is that that has already been 607 * done. 608 * 609 * If we are not logging superblock counters, then the inode allocated/free and 610 * used block counts are not updated in the on disk superblock. In this case, 611 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 612 * still need to update the incore superblock with the changes. 613 * 614 * Deltas for the inode count are +/-64, hence we use a large batch size of 128 615 * so we don't need to take the counter lock on every update. 616 */ 617 #define XFS_ICOUNT_BATCH 128 618 619 void 620 xfs_trans_unreserve_and_mod_sb( 621 struct xfs_trans *tp) 622 { 623 struct xfs_mount *mp = tp->t_mountp; 624 int64_t blkdelta = tp->t_blk_res; 625 int64_t rtxdelta = tp->t_rtx_res; 626 int64_t idelta = 0; 627 int64_t ifreedelta = 0; 628 629 /* 630 * Calculate the deltas. 631 * 632 * t_fdblocks_delta and t_frextents_delta can be positive or negative: 633 * 634 * - positive values indicate blocks freed in the transaction. 635 * - negative values indicate blocks allocated in the transaction 636 * 637 * Negative values can only happen if the transaction has a block 638 * reservation that covers the allocated block. The end result is 639 * that the calculated delta values must always be positive and we 640 * can only put back previous allocated or reserved blocks here. 641 */ 642 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0); 643 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 644 blkdelta += tp->t_fdblocks_delta; 645 ASSERT(blkdelta >= 0); 646 } 647 648 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0); 649 if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 650 rtxdelta += tp->t_frextents_delta; 651 ASSERT(rtxdelta >= 0); 652 } 653 654 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 655 idelta = tp->t_icount_delta; 656 ifreedelta = tp->t_ifree_delta; 657 } 658 659 /* apply the per-cpu counters */ 660 if (blkdelta) 661 xfs_add_fdblocks(mp, blkdelta); 662 663 if (idelta) 664 percpu_counter_add_batch(&mp->m_icount, idelta, 665 XFS_ICOUNT_BATCH); 666 667 if (ifreedelta) 668 percpu_counter_add(&mp->m_ifree, ifreedelta); 669 670 if (rtxdelta) 671 xfs_add_frextents(mp, rtxdelta); 672 673 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY)) 674 return; 675 676 /* apply remaining deltas */ 677 spin_lock(&mp->m_sb_lock); 678 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; 679 mp->m_sb.sb_icount += idelta; 680 mp->m_sb.sb_ifree += ifreedelta; 681 /* 682 * Do not touch sb_frextents here because it is handled in 683 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy 684 * counter anyway. 685 */ 686 mp->m_sb.sb_dblocks += tp->t_dblocks_delta; 687 mp->m_sb.sb_agcount += tp->t_agcount_delta; 688 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; 689 if (tp->t_rextsize_delta) 690 xfs_mount_sb_set_rextsize(mp, &mp->m_sb, 691 mp->m_sb.sb_rextsize + tp->t_rextsize_delta); 692 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; 693 mp->m_sb.sb_rblocks += tp->t_rblocks_delta; 694 mp->m_sb.sb_rextents += tp->t_rextents_delta; 695 mp->m_sb.sb_rextslog += tp->t_rextslog_delta; 696 mp->m_sb.sb_rgcount += tp->t_rgcount_delta; 697 spin_unlock(&mp->m_sb_lock); 698 699 /* 700 * Debug checks outside of the spinlock so they don't lock up the 701 * machine if they fail. 702 */ 703 ASSERT(mp->m_sb.sb_imax_pct >= 0); 704 ASSERT(mp->m_sb.sb_rextslog >= 0); 705 } 706 707 /* Add the given log item to the transaction's list of log items. */ 708 void 709 xfs_trans_add_item( 710 struct xfs_trans *tp, 711 struct xfs_log_item *lip) 712 { 713 ASSERT(lip->li_log == tp->t_mountp->m_log); 714 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 715 ASSERT(list_empty(&lip->li_trans)); 716 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); 717 718 list_add_tail(&lip->li_trans, &tp->t_items); 719 trace_xfs_trans_add_item(tp, _RET_IP_); 720 } 721 722 /* 723 * Unlink the log item from the transaction. the log item is no longer 724 * considered dirty in this transaction, as the linked transaction has 725 * finished, either by abort or commit completion. 726 */ 727 void 728 xfs_trans_del_item( 729 struct xfs_log_item *lip) 730 { 731 clear_bit(XFS_LI_DIRTY, &lip->li_flags); 732 list_del_init(&lip->li_trans); 733 } 734 735 /* Detach and unlock all of the items in a transaction */ 736 static void 737 xfs_trans_free_items( 738 struct xfs_trans *tp, 739 bool abort) 740 { 741 struct xfs_log_item *lip, *next; 742 743 trace_xfs_trans_free_items(tp, _RET_IP_); 744 745 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 746 xfs_trans_del_item(lip); 747 if (abort) 748 set_bit(XFS_LI_ABORTED, &lip->li_flags); 749 if (lip->li_ops->iop_release) 750 lip->li_ops->iop_release(lip); 751 } 752 } 753 754 /* 755 * Sort transaction items prior to running precommit operations. This will 756 * attempt to order the items such that they will always be locked in the same 757 * order. Items that have no sort function are moved to the end of the list 758 * and so are locked last. 759 * 760 * This may need refinement as different types of objects add sort functions. 761 * 762 * Function is more complex than it needs to be because we are comparing 64 bit 763 * values and the function only returns 32 bit values. 764 */ 765 static int 766 xfs_trans_precommit_sort( 767 void *unused_arg, 768 const struct list_head *a, 769 const struct list_head *b) 770 { 771 struct xfs_log_item *lia = container_of(a, 772 struct xfs_log_item, li_trans); 773 struct xfs_log_item *lib = container_of(b, 774 struct xfs_log_item, li_trans); 775 int64_t diff; 776 777 /* 778 * If both items are non-sortable, leave them alone. If only one is 779 * sortable, move the non-sortable item towards the end of the list. 780 */ 781 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort) 782 return 0; 783 if (!lia->li_ops->iop_sort) 784 return 1; 785 if (!lib->li_ops->iop_sort) 786 return -1; 787 788 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib); 789 if (diff < 0) 790 return -1; 791 if (diff > 0) 792 return 1; 793 return 0; 794 } 795 796 /* 797 * Run transaction precommit functions. 798 * 799 * If there is an error in any of the callouts, then stop immediately and 800 * trigger a shutdown to abort the transaction. There is no recovery possible 801 * from errors at this point as the transaction is dirty.... 802 */ 803 static int 804 xfs_trans_run_precommits( 805 struct xfs_trans *tp) 806 { 807 struct xfs_mount *mp = tp->t_mountp; 808 struct xfs_log_item *lip, *n; 809 int error = 0; 810 811 /* 812 * Sort the item list to avoid ABBA deadlocks with other transactions 813 * running precommit operations that lock multiple shared items such as 814 * inode cluster buffers. 815 */ 816 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort); 817 818 /* 819 * Precommit operations can remove the log item from the transaction 820 * if the log item exists purely to delay modifications until they 821 * can be ordered against other operations. Hence we have to use 822 * list_for_each_entry_safe() here. 823 */ 824 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) { 825 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 826 continue; 827 if (lip->li_ops->iop_precommit) { 828 error = lip->li_ops->iop_precommit(tp, lip); 829 if (error) 830 break; 831 } 832 } 833 if (error) 834 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 835 return error; 836 } 837 838 /* 839 * Commit the given transaction to the log. 840 * 841 * XFS disk error handling mechanism is not based on a typical 842 * transaction abort mechanism. Logically after the filesystem 843 * gets marked 'SHUTDOWN', we can't let any new transactions 844 * be durable - ie. committed to disk - because some metadata might 845 * be inconsistent. In such cases, this returns an error, and the 846 * caller may assume that all locked objects joined to the transaction 847 * have already been unlocked as if the commit had succeeded. 848 * Do not reference the transaction structure after this call. 849 */ 850 static int 851 __xfs_trans_commit( 852 struct xfs_trans *tp, 853 bool regrant) 854 { 855 struct xfs_mount *mp = tp->t_mountp; 856 struct xlog *log = mp->m_log; 857 xfs_csn_t commit_seq = 0; 858 int error = 0; 859 int sync = tp->t_flags & XFS_TRANS_SYNC; 860 861 trace_xfs_trans_commit(tp, _RET_IP_); 862 863 error = xfs_trans_run_precommits(tp); 864 if (error) { 865 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) 866 xfs_defer_cancel(tp); 867 goto out_unreserve; 868 } 869 870 /* 871 * Finish deferred items on final commit. Only permanent transactions 872 * should ever have deferred ops. 873 */ 874 WARN_ON_ONCE(!list_empty(&tp->t_dfops) && 875 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 876 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { 877 error = xfs_defer_finish_noroll(&tp); 878 if (error) 879 goto out_unreserve; 880 881 /* Run precommits from final tx in defer chain. */ 882 error = xfs_trans_run_precommits(tp); 883 if (error) 884 goto out_unreserve; 885 } 886 887 /* 888 * If there is nothing to be logged by the transaction, 889 * then unlock all of the items associated with the 890 * transaction and free the transaction structure. 891 * Also make sure to return any reserved blocks to 892 * the free pool. 893 */ 894 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 895 goto out_unreserve; 896 897 /* 898 * We must check against log shutdown here because we cannot abort log 899 * items and leave them dirty, inconsistent and unpinned in memory while 900 * the log is active. This leaves them open to being written back to 901 * disk, and that will lead to on-disk corruption. 902 */ 903 if (xlog_is_shutdown(log)) { 904 error = -EIO; 905 goto out_unreserve; 906 } 907 908 ASSERT(tp->t_ticket != NULL); 909 910 /* 911 * If we need to update the superblock, then do it now. 912 */ 913 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 914 xfs_trans_apply_sb_deltas(tp); 915 xfs_trans_apply_dquot_deltas(tp); 916 917 xlog_cil_commit(log, tp, &commit_seq, regrant); 918 919 xfs_trans_free(tp); 920 921 /* 922 * If the transaction needs to be synchronous, then force the 923 * log out now and wait for it. 924 */ 925 if (sync) { 926 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); 927 XFS_STATS_INC(mp, xs_trans_sync); 928 } else { 929 XFS_STATS_INC(mp, xs_trans_async); 930 } 931 932 return error; 933 934 out_unreserve: 935 xfs_trans_unreserve_and_mod_sb(tp); 936 937 /* 938 * It is indeed possible for the transaction to be not dirty but 939 * the dqinfo portion to be. All that means is that we have some 940 * (non-persistent) quota reservations that need to be unreserved. 941 */ 942 xfs_trans_unreserve_and_mod_dquots(tp); 943 if (tp->t_ticket) { 944 if (regrant && !xlog_is_shutdown(log)) 945 xfs_log_ticket_regrant(log, tp->t_ticket); 946 else 947 xfs_log_ticket_ungrant(log, tp->t_ticket); 948 tp->t_ticket = NULL; 949 } 950 xfs_trans_free_items(tp, !!error); 951 xfs_trans_free(tp); 952 953 XFS_STATS_INC(mp, xs_trans_empty); 954 return error; 955 } 956 957 int 958 xfs_trans_commit( 959 struct xfs_trans *tp) 960 { 961 return __xfs_trans_commit(tp, false); 962 } 963 964 /* 965 * Unlock all of the transaction's items and free the transaction. If the 966 * transaction is dirty, we must shut down the filesystem because there is no 967 * way to restore them to their previous state. 968 * 969 * If the transaction has made a log reservation, make sure to release it as 970 * well. 971 * 972 * This is a high level function (equivalent to xfs_trans_commit()) and so can 973 * be called after the transaction has effectively been aborted due to the mount 974 * being shut down. However, if the mount has not been shut down and the 975 * transaction is dirty we will shut the mount down and, in doing so, that 976 * guarantees that the log is shut down, too. Hence we don't need to be as 977 * careful with shutdown state and dirty items here as we need to be in 978 * xfs_trans_commit(). 979 */ 980 void 981 xfs_trans_cancel( 982 struct xfs_trans *tp) 983 { 984 struct xfs_mount *mp = tp->t_mountp; 985 struct xlog *log = mp->m_log; 986 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); 987 988 trace_xfs_trans_cancel(tp, _RET_IP_); 989 990 /* 991 * It's never valid to cancel a transaction with deferred ops attached, 992 * because the transaction is effectively dirty. Complain about this 993 * loudly before freeing the in-memory defer items and shutting down the 994 * filesystem. 995 */ 996 if (!list_empty(&tp->t_dfops)) { 997 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 998 dirty = true; 999 xfs_defer_cancel(tp); 1000 } 1001 1002 /* 1003 * See if the caller is relying on us to shut down the filesystem. We 1004 * only want an error report if there isn't already a shutdown in 1005 * progress, so we only need to check against the mount shutdown state 1006 * here. 1007 */ 1008 if (dirty && !xfs_is_shutdown(mp)) { 1009 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1010 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1011 } 1012 #ifdef DEBUG 1013 /* Log items need to be consistent until the log is shut down. */ 1014 if (!dirty && !xlog_is_shutdown(log)) { 1015 struct xfs_log_item *lip; 1016 1017 list_for_each_entry(lip, &tp->t_items, li_trans) 1018 ASSERT(!xlog_item_is_intent_done(lip)); 1019 } 1020 #endif 1021 xfs_trans_unreserve_and_mod_sb(tp); 1022 xfs_trans_unreserve_and_mod_dquots(tp); 1023 1024 if (tp->t_ticket) { 1025 xfs_log_ticket_ungrant(log, tp->t_ticket); 1026 tp->t_ticket = NULL; 1027 } 1028 1029 xfs_trans_free_items(tp, dirty); 1030 xfs_trans_free(tp); 1031 } 1032 1033 /* 1034 * Roll from one trans in the sequence of PERMANENT transactions to 1035 * the next: permanent transactions are only flushed out when 1036 * committed with xfs_trans_commit(), but we still want as soon 1037 * as possible to let chunks of it go to the log. So we commit the 1038 * chunk we've been working on and get a new transaction to continue. 1039 */ 1040 int 1041 xfs_trans_roll( 1042 struct xfs_trans **tpp) 1043 { 1044 struct xfs_trans *trans = *tpp; 1045 struct xfs_trans_res tres; 1046 int error; 1047 1048 trace_xfs_trans_roll(trans, _RET_IP_); 1049 1050 /* 1051 * Copy the critical parameters from one trans to the next. 1052 */ 1053 tres.tr_logres = trans->t_log_res; 1054 tres.tr_logcount = trans->t_log_count; 1055 1056 *tpp = xfs_trans_dup(trans); 1057 1058 /* 1059 * Commit the current transaction. 1060 * If this commit failed, then it'd just unlock those items that 1061 * are not marked ihold. That also means that a filesystem shutdown 1062 * is in progress. The caller takes the responsibility to cancel 1063 * the duplicate transaction that gets returned. 1064 */ 1065 error = __xfs_trans_commit(trans, true); 1066 if (error) 1067 return error; 1068 1069 /* 1070 * Reserve space in the log for the next transaction. 1071 * This also pushes items in the "AIL", the list of logged items, 1072 * out to disk if they are taking up space at the tail of the log 1073 * that we want to use. This requires that either nothing be locked 1074 * across this call, or that anything that is locked be logged in 1075 * the prior and the next transactions. 1076 */ 1077 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1078 return xfs_trans_reserve(*tpp, &tres, 0, 0); 1079 } 1080 1081 /* 1082 * Allocate an transaction, lock and join the inode to it, and reserve quota. 1083 * 1084 * The caller must ensure that the on-disk dquots attached to this inode have 1085 * already been allocated and initialized. The caller is responsible for 1086 * releasing ILOCK_EXCL if a new transaction is returned. 1087 */ 1088 int 1089 xfs_trans_alloc_inode( 1090 struct xfs_inode *ip, 1091 struct xfs_trans_res *resv, 1092 unsigned int dblocks, 1093 unsigned int rblocks, 1094 bool force, 1095 struct xfs_trans **tpp) 1096 { 1097 struct xfs_trans *tp; 1098 struct xfs_mount *mp = ip->i_mount; 1099 bool retried = false; 1100 int error; 1101 1102 retry: 1103 error = xfs_trans_alloc(mp, resv, dblocks, 1104 xfs_extlen_to_rtxlen(mp, rblocks), 1105 force ? XFS_TRANS_RESERVE : 0, &tp); 1106 if (error) 1107 return error; 1108 1109 xfs_ilock(ip, XFS_ILOCK_EXCL); 1110 xfs_trans_ijoin(tp, ip, 0); 1111 1112 error = xfs_qm_dqattach_locked(ip, false); 1113 if (error) { 1114 /* Caller should have allocated the dquots! */ 1115 ASSERT(error != -ENOENT); 1116 goto out_cancel; 1117 } 1118 1119 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); 1120 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1121 xfs_trans_cancel(tp); 1122 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1123 xfs_blockgc_free_quota(ip, 0); 1124 retried = true; 1125 goto retry; 1126 } 1127 if (error) 1128 goto out_cancel; 1129 1130 *tpp = tp; 1131 return 0; 1132 1133 out_cancel: 1134 xfs_trans_cancel(tp); 1135 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1136 return error; 1137 } 1138 1139 /* 1140 * Try to reserve more blocks for a transaction. 1141 * 1142 * This is for callers that need to attach resources to a transaction, scan 1143 * those resources to determine the space reservation requirements, and then 1144 * modify the attached resources. In other words, online repair. This can 1145 * fail due to ENOSPC, so the caller must be able to cancel the transaction 1146 * without shutting down the fs. 1147 */ 1148 int 1149 xfs_trans_reserve_more( 1150 struct xfs_trans *tp, 1151 unsigned int blocks, 1152 unsigned int rtextents) 1153 { 1154 struct xfs_trans_res resv = { }; 1155 1156 return xfs_trans_reserve(tp, &resv, blocks, rtextents); 1157 } 1158 1159 /* 1160 * Try to reserve more blocks and file quota for a transaction. Same 1161 * conditions of usage as xfs_trans_reserve_more. 1162 */ 1163 int 1164 xfs_trans_reserve_more_inode( 1165 struct xfs_trans *tp, 1166 struct xfs_inode *ip, 1167 unsigned int dblocks, 1168 unsigned int rblocks, 1169 bool force_quota) 1170 { 1171 struct xfs_trans_res resv = { }; 1172 struct xfs_mount *mp = ip->i_mount; 1173 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks); 1174 int error; 1175 1176 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1177 1178 error = xfs_trans_reserve(tp, &resv, dblocks, rtx); 1179 if (error) 1180 return error; 1181 1182 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino)) 1183 return 0; 1184 1185 if (tp->t_flags & XFS_TRANS_RESERVE) 1186 force_quota = true; 1187 1188 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, 1189 force_quota); 1190 if (!error) 1191 return 0; 1192 1193 /* Quota failed, give back the new reservation. */ 1194 xfs_add_fdblocks(mp, dblocks); 1195 tp->t_blk_res -= dblocks; 1196 xfs_add_frextents(mp, rtx); 1197 tp->t_rtx_res -= rtx; 1198 return error; 1199 } 1200 1201 /* 1202 * Allocate an transaction in preparation for inode creation by reserving quota 1203 * against the given dquots. Callers are not required to hold any inode locks. 1204 */ 1205 int 1206 xfs_trans_alloc_icreate( 1207 struct xfs_mount *mp, 1208 struct xfs_trans_res *resv, 1209 struct xfs_dquot *udqp, 1210 struct xfs_dquot *gdqp, 1211 struct xfs_dquot *pdqp, 1212 unsigned int dblocks, 1213 struct xfs_trans **tpp) 1214 { 1215 struct xfs_trans *tp; 1216 bool retried = false; 1217 int error; 1218 1219 retry: 1220 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); 1221 if (error) 1222 return error; 1223 1224 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); 1225 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1226 xfs_trans_cancel(tp); 1227 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1228 retried = true; 1229 goto retry; 1230 } 1231 if (error) { 1232 xfs_trans_cancel(tp); 1233 return error; 1234 } 1235 1236 *tpp = tp; 1237 return 0; 1238 } 1239 1240 /* 1241 * Allocate an transaction, lock and join the inode to it, and reserve quota 1242 * in preparation for inode attribute changes that include uid, gid, or prid 1243 * changes. 1244 * 1245 * The caller must ensure that the on-disk dquots attached to this inode have 1246 * already been allocated and initialized. The ILOCK will be dropped when the 1247 * transaction is committed or cancelled. 1248 */ 1249 int 1250 xfs_trans_alloc_ichange( 1251 struct xfs_inode *ip, 1252 struct xfs_dquot *new_udqp, 1253 struct xfs_dquot *new_gdqp, 1254 struct xfs_dquot *new_pdqp, 1255 bool force, 1256 struct xfs_trans **tpp) 1257 { 1258 struct xfs_trans *tp; 1259 struct xfs_mount *mp = ip->i_mount; 1260 struct xfs_dquot *udqp; 1261 struct xfs_dquot *gdqp; 1262 struct xfs_dquot *pdqp; 1263 bool retried = false; 1264 int error; 1265 1266 retry: 1267 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1268 if (error) 1269 return error; 1270 1271 xfs_ilock(ip, XFS_ILOCK_EXCL); 1272 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1273 1274 error = xfs_qm_dqattach_locked(ip, false); 1275 if (error) { 1276 /* Caller should have allocated the dquots! */ 1277 ASSERT(error != -ENOENT); 1278 goto out_cancel; 1279 } 1280 1281 /* 1282 * For each quota type, skip quota reservations if the inode's dquots 1283 * now match the ones that came from the caller, or the caller didn't 1284 * pass one in. The inode's dquots can change if we drop the ILOCK to 1285 * perform a blockgc scan, so we must preserve the caller's arguments. 1286 */ 1287 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; 1288 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; 1289 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; 1290 if (udqp || gdqp || pdqp) { 1291 xfs_filblks_t dblocks, rblocks; 1292 unsigned int qflags = XFS_QMOPT_RES_REGBLKS; 1293 bool isrt = XFS_IS_REALTIME_INODE(ip); 1294 1295 if (force) 1296 qflags |= XFS_QMOPT_FORCE_RES; 1297 1298 if (isrt) { 1299 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1300 if (error) 1301 goto out_cancel; 1302 } 1303 1304 xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks); 1305 1306 if (isrt) 1307 rblocks += ip->i_delayed_blks; 1308 else 1309 dblocks += ip->i_delayed_blks; 1310 1311 /* 1312 * Reserve enough quota to handle blocks on disk and reserved 1313 * for a delayed allocation. We'll actually transfer the 1314 * delalloc reservation between dquots at chown time, even 1315 * though that part is only semi-transactional. 1316 */ 1317 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1318 pdqp, dblocks, 1, qflags); 1319 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1320 xfs_trans_cancel(tp); 1321 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1322 retried = true; 1323 goto retry; 1324 } 1325 if (error) 1326 goto out_cancel; 1327 1328 /* Do the same for realtime. */ 1329 qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES); 1330 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1331 pdqp, rblocks, 0, qflags); 1332 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1333 xfs_trans_cancel(tp); 1334 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1335 retried = true; 1336 goto retry; 1337 } 1338 if (error) 1339 goto out_cancel; 1340 } 1341 1342 *tpp = tp; 1343 return 0; 1344 1345 out_cancel: 1346 xfs_trans_cancel(tp); 1347 return error; 1348 } 1349 1350 /* 1351 * Allocate an transaction, lock and join the directory and child inodes to it, 1352 * and reserve quota for a directory update. If there isn't sufficient space, 1353 * @dblocks will be set to zero for a reservationless directory update and 1354 * @nospace_error will be set to a negative errno describing the space 1355 * constraint we hit. 1356 * 1357 * The caller must ensure that the on-disk dquots attached to this inode have 1358 * already been allocated and initialized. The ILOCKs will be dropped when the 1359 * transaction is committed or cancelled. 1360 * 1361 * Caller is responsible for unlocking the inodes manually upon return 1362 */ 1363 int 1364 xfs_trans_alloc_dir( 1365 struct xfs_inode *dp, 1366 struct xfs_trans_res *resv, 1367 struct xfs_inode *ip, 1368 unsigned int *dblocks, 1369 struct xfs_trans **tpp, 1370 int *nospace_error) 1371 { 1372 struct xfs_trans *tp; 1373 struct xfs_mount *mp = ip->i_mount; 1374 unsigned int resblks; 1375 bool retried = false; 1376 int error; 1377 1378 retry: 1379 *nospace_error = 0; 1380 resblks = *dblocks; 1381 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1382 if (error == -ENOSPC) { 1383 *nospace_error = error; 1384 resblks = 0; 1385 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1386 } 1387 if (error) 1388 return error; 1389 1390 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 1391 1392 xfs_trans_ijoin(tp, dp, 0); 1393 xfs_trans_ijoin(tp, ip, 0); 1394 1395 error = xfs_qm_dqattach_locked(dp, false); 1396 if (error) { 1397 /* Caller should have allocated the dquots! */ 1398 ASSERT(error != -ENOENT); 1399 goto out_cancel; 1400 } 1401 1402 error = xfs_qm_dqattach_locked(ip, false); 1403 if (error) { 1404 /* Caller should have allocated the dquots! */ 1405 ASSERT(error != -ENOENT); 1406 goto out_cancel; 1407 } 1408 1409 if (resblks == 0) 1410 goto done; 1411 1412 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false); 1413 if (error == -EDQUOT || error == -ENOSPC) { 1414 if (!retried) { 1415 xfs_trans_cancel(tp); 1416 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1417 if (dp != ip) 1418 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1419 xfs_blockgc_free_quota(dp, 0); 1420 retried = true; 1421 goto retry; 1422 } 1423 1424 *nospace_error = error; 1425 resblks = 0; 1426 error = 0; 1427 } 1428 if (error) 1429 goto out_cancel; 1430 1431 done: 1432 *tpp = tp; 1433 *dblocks = resblks; 1434 return 0; 1435 1436 out_cancel: 1437 xfs_trans_cancel(tp); 1438 return error; 1439 } 1440