1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * Copyright (C) 2010 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_extent_busy.h" 15 #include "xfs_quota.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_trace.h" 21 #include "xfs_error.h" 22 #include "xfs_defer.h" 23 #include "xfs_inode.h" 24 #include "xfs_dquot_item.h" 25 #include "xfs_dquot.h" 26 #include "xfs_icache.h" 27 #include "xfs_rtbitmap.h" 28 29 struct kmem_cache *xfs_trans_cache; 30 31 #if defined(CONFIG_TRACEPOINTS) 32 static void 33 xfs_trans_trace_reservations( 34 struct xfs_mount *mp) 35 { 36 struct xfs_trans_res *res; 37 struct xfs_trans_res *end_res; 38 int i; 39 40 res = (struct xfs_trans_res *)M_RES(mp); 41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); 42 for (i = 0; res < end_res; i++, res++) 43 trace_xfs_trans_resv_calc(mp, i, res); 44 } 45 #else 46 # define xfs_trans_trace_reservations(mp) 47 #endif 48 49 /* 50 * Initialize the precomputed transaction reservation values 51 * in the mount structure. 52 */ 53 void 54 xfs_trans_init( 55 struct xfs_mount *mp) 56 { 57 xfs_trans_resv_calc(mp, M_RES(mp)); 58 xfs_trans_trace_reservations(mp); 59 } 60 61 /* 62 * Free the transaction structure. If there is more clean up 63 * to do when the structure is freed, add it here. 64 */ 65 STATIC void 66 xfs_trans_free( 67 struct xfs_trans *tp) 68 { 69 xfs_extent_busy_sort(&tp->t_busy); 70 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); 71 72 trace_xfs_trans_free(tp, _RET_IP_); 73 xfs_trans_clear_context(tp); 74 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) 75 sb_end_intwrite(tp->t_mountp->m_super); 76 xfs_trans_free_dqinfo(tp); 77 kmem_cache_free(xfs_trans_cache, tp); 78 } 79 80 /* 81 * This is called to create a new transaction which will share the 82 * permanent log reservation of the given transaction. The remaining 83 * unused block and rt extent reservations are also inherited. This 84 * implies that the original transaction is no longer allowed to allocate 85 * blocks. Locks and log items, however, are no inherited. They must 86 * be added to the new transaction explicitly. 87 */ 88 STATIC struct xfs_trans * 89 xfs_trans_dup( 90 struct xfs_trans *tp) 91 { 92 struct xfs_trans *ntp; 93 94 trace_xfs_trans_dup(tp, _RET_IP_); 95 96 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 97 98 /* 99 * Initialize the new transaction structure. 100 */ 101 ntp->t_magic = XFS_TRANS_HEADER_MAGIC; 102 ntp->t_mountp = tp->t_mountp; 103 INIT_LIST_HEAD(&ntp->t_items); 104 INIT_LIST_HEAD(&ntp->t_busy); 105 INIT_LIST_HEAD(&ntp->t_dfops); 106 ntp->t_highest_agno = NULLAGNUMBER; 107 108 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 109 ASSERT(tp->t_ticket != NULL); 110 111 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 112 (tp->t_flags & XFS_TRANS_RESERVE) | 113 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | 114 (tp->t_flags & XFS_TRANS_RES_FDBLKS); 115 /* We gave our writer reference to the new transaction */ 116 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; 117 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 118 119 ASSERT(tp->t_blk_res >= tp->t_blk_res_used); 120 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 121 tp->t_blk_res = tp->t_blk_res_used; 122 123 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 124 tp->t_rtx_res = tp->t_rtx_res_used; 125 126 xfs_trans_switch_context(tp, ntp); 127 128 /* move deferred ops over to the new tp */ 129 xfs_defer_move(ntp, tp); 130 131 xfs_trans_dup_dqinfo(tp, ntp); 132 return ntp; 133 } 134 135 /* 136 * This is called to reserve free disk blocks and log space for the 137 * given transaction. This must be done before allocating any resources 138 * within the transaction. 139 * 140 * This will return ENOSPC if there are not enough blocks available. 141 * It will sleep waiting for available log space. 142 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 143 * is used by long running transactions. If any one of the reservations 144 * fails then they will all be backed out. 145 * 146 * This does not do quota reservations. That typically is done by the 147 * caller afterwards. 148 */ 149 static int 150 xfs_trans_reserve( 151 struct xfs_trans *tp, 152 struct xfs_trans_res *resp, 153 uint blocks, 154 uint rtextents) 155 { 156 struct xfs_mount *mp = tp->t_mountp; 157 int error = 0; 158 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 159 160 /* 161 * Attempt to reserve the needed disk blocks by decrementing 162 * the number needed from the number available. This will 163 * fail if the count would go below zero. 164 */ 165 if (blocks > 0) { 166 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd); 167 if (error != 0) 168 return -ENOSPC; 169 tp->t_blk_res += blocks; 170 } 171 172 /* 173 * Reserve the log space needed for this transaction. 174 */ 175 if (resp->tr_logres > 0) { 176 bool permanent = false; 177 178 ASSERT(tp->t_log_res == 0 || 179 tp->t_log_res == resp->tr_logres); 180 ASSERT(tp->t_log_count == 0 || 181 tp->t_log_count == resp->tr_logcount); 182 183 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { 184 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 185 permanent = true; 186 } else { 187 ASSERT(tp->t_ticket == NULL); 188 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 189 } 190 191 if (tp->t_ticket != NULL) { 192 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); 193 error = xfs_log_regrant(mp, tp->t_ticket); 194 } else { 195 error = xfs_log_reserve(mp, resp->tr_logres, 196 resp->tr_logcount, 197 &tp->t_ticket, permanent); 198 } 199 200 if (error) 201 goto undo_blocks; 202 203 tp->t_log_res = resp->tr_logres; 204 tp->t_log_count = resp->tr_logcount; 205 } 206 207 /* 208 * Attempt to reserve the needed realtime extents by decrementing 209 * the number needed from the number available. This will 210 * fail if the count would go below zero. 211 */ 212 if (rtextents > 0) { 213 error = xfs_mod_frextents(mp, -((int64_t)rtextents)); 214 if (error) { 215 error = -ENOSPC; 216 goto undo_log; 217 } 218 tp->t_rtx_res += rtextents; 219 } 220 221 return 0; 222 223 /* 224 * Error cases jump to one of these labels to undo any 225 * reservations which have already been performed. 226 */ 227 undo_log: 228 if (resp->tr_logres > 0) { 229 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 230 tp->t_ticket = NULL; 231 tp->t_log_res = 0; 232 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 233 } 234 235 undo_blocks: 236 if (blocks > 0) { 237 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd); 238 tp->t_blk_res = 0; 239 } 240 return error; 241 } 242 243 int 244 xfs_trans_alloc( 245 struct xfs_mount *mp, 246 struct xfs_trans_res *resp, 247 uint blocks, 248 uint rtextents, 249 uint flags, 250 struct xfs_trans **tpp) 251 { 252 struct xfs_trans *tp; 253 bool want_retry = true; 254 int error; 255 256 /* 257 * Allocate the handle before we do our freeze accounting and setting up 258 * GFP_NOFS allocation context so that we avoid lockdep false positives 259 * by doing GFP_KERNEL allocations inside sb_start_intwrite(). 260 */ 261 retry: 262 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 263 if (!(flags & XFS_TRANS_NO_WRITECOUNT)) 264 sb_start_intwrite(mp->m_super); 265 xfs_trans_set_context(tp); 266 267 /* 268 * Zero-reservation ("empty") transactions can't modify anything, so 269 * they're allowed to run while we're frozen. 270 */ 271 WARN_ON(resp->tr_logres > 0 && 272 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 273 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || 274 xfs_has_lazysbcount(mp)); 275 276 tp->t_magic = XFS_TRANS_HEADER_MAGIC; 277 tp->t_flags = flags; 278 tp->t_mountp = mp; 279 INIT_LIST_HEAD(&tp->t_items); 280 INIT_LIST_HEAD(&tp->t_busy); 281 INIT_LIST_HEAD(&tp->t_dfops); 282 tp->t_highest_agno = NULLAGNUMBER; 283 284 error = xfs_trans_reserve(tp, resp, blocks, rtextents); 285 if (error == -ENOSPC && want_retry) { 286 xfs_trans_cancel(tp); 287 288 /* 289 * We weren't able to reserve enough space for the transaction. 290 * Flush the other speculative space allocations to free space. 291 * Do not perform a synchronous scan because callers can hold 292 * other locks. 293 */ 294 error = xfs_blockgc_flush_all(mp); 295 if (error) 296 return error; 297 want_retry = false; 298 goto retry; 299 } 300 if (error) { 301 xfs_trans_cancel(tp); 302 return error; 303 } 304 305 trace_xfs_trans_alloc(tp, _RET_IP_); 306 307 *tpp = tp; 308 return 0; 309 } 310 311 /* 312 * Create an empty transaction with no reservation. This is a defensive 313 * mechanism for routines that query metadata without actually modifying them -- 314 * if the metadata being queried is somehow cross-linked (think a btree block 315 * pointer that points higher in the tree), we risk deadlock. However, blocks 316 * grabbed as part of a transaction can be re-grabbed. The verifiers will 317 * notice the corrupt block and the operation will fail back to userspace 318 * without deadlocking. 319 * 320 * Note the zero-length reservation; this transaction MUST be cancelled without 321 * any dirty data. 322 * 323 * Callers should obtain freeze protection to avoid a conflict with fs freezing 324 * where we can be grabbing buffers at the same time that freeze is trying to 325 * drain the buffer LRU list. 326 */ 327 int 328 xfs_trans_alloc_empty( 329 struct xfs_mount *mp, 330 struct xfs_trans **tpp) 331 { 332 struct xfs_trans_res resv = {0}; 333 334 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); 335 } 336 337 /* 338 * Record the indicated change to the given field for application 339 * to the file system's superblock when the transaction commits. 340 * For now, just store the change in the transaction structure. 341 * 342 * Mark the transaction structure to indicate that the superblock 343 * needs to be updated before committing. 344 * 345 * Because we may not be keeping track of allocated/free inodes and 346 * used filesystem blocks in the superblock, we do not mark the 347 * superblock dirty in this transaction if we modify these fields. 348 * We still need to update the transaction deltas so that they get 349 * applied to the incore superblock, but we don't want them to 350 * cause the superblock to get locked and logged if these are the 351 * only fields in the superblock that the transaction modifies. 352 */ 353 void 354 xfs_trans_mod_sb( 355 xfs_trans_t *tp, 356 uint field, 357 int64_t delta) 358 { 359 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 360 xfs_mount_t *mp = tp->t_mountp; 361 362 switch (field) { 363 case XFS_TRANS_SB_ICOUNT: 364 tp->t_icount_delta += delta; 365 if (xfs_has_lazysbcount(mp)) 366 flags &= ~XFS_TRANS_SB_DIRTY; 367 break; 368 case XFS_TRANS_SB_IFREE: 369 tp->t_ifree_delta += delta; 370 if (xfs_has_lazysbcount(mp)) 371 flags &= ~XFS_TRANS_SB_DIRTY; 372 break; 373 case XFS_TRANS_SB_FDBLOCKS: 374 /* 375 * Track the number of blocks allocated in the transaction. 376 * Make sure it does not exceed the number reserved. If so, 377 * shutdown as this can lead to accounting inconsistency. 378 */ 379 if (delta < 0) { 380 tp->t_blk_res_used += (uint)-delta; 381 if (tp->t_blk_res_used > tp->t_blk_res) 382 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 383 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { 384 int64_t blkres_delta; 385 386 /* 387 * Return freed blocks directly to the reservation 388 * instead of the global pool, being careful not to 389 * overflow the trans counter. This is used to preserve 390 * reservation across chains of transaction rolls that 391 * repeatedly free and allocate blocks. 392 */ 393 blkres_delta = min_t(int64_t, delta, 394 UINT_MAX - tp->t_blk_res); 395 tp->t_blk_res += blkres_delta; 396 delta -= blkres_delta; 397 } 398 tp->t_fdblocks_delta += delta; 399 if (xfs_has_lazysbcount(mp)) 400 flags &= ~XFS_TRANS_SB_DIRTY; 401 break; 402 case XFS_TRANS_SB_RES_FDBLOCKS: 403 /* 404 * The allocation has already been applied to the 405 * in-core superblock's counter. This should only 406 * be applied to the on-disk superblock. 407 */ 408 tp->t_res_fdblocks_delta += delta; 409 if (xfs_has_lazysbcount(mp)) 410 flags &= ~XFS_TRANS_SB_DIRTY; 411 break; 412 case XFS_TRANS_SB_FREXTENTS: 413 /* 414 * Track the number of blocks allocated in the 415 * transaction. Make sure it does not exceed the 416 * number reserved. 417 */ 418 if (delta < 0) { 419 tp->t_rtx_res_used += (uint)-delta; 420 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 421 } 422 tp->t_frextents_delta += delta; 423 break; 424 case XFS_TRANS_SB_RES_FREXTENTS: 425 /* 426 * The allocation has already been applied to the 427 * in-core superblock's counter. This should only 428 * be applied to the on-disk superblock. 429 */ 430 ASSERT(delta < 0); 431 tp->t_res_frextents_delta += delta; 432 break; 433 case XFS_TRANS_SB_DBLOCKS: 434 tp->t_dblocks_delta += delta; 435 break; 436 case XFS_TRANS_SB_AGCOUNT: 437 ASSERT(delta > 0); 438 tp->t_agcount_delta += delta; 439 break; 440 case XFS_TRANS_SB_IMAXPCT: 441 tp->t_imaxpct_delta += delta; 442 break; 443 case XFS_TRANS_SB_REXTSIZE: 444 tp->t_rextsize_delta += delta; 445 break; 446 case XFS_TRANS_SB_RBMBLOCKS: 447 tp->t_rbmblocks_delta += delta; 448 break; 449 case XFS_TRANS_SB_RBLOCKS: 450 tp->t_rblocks_delta += delta; 451 break; 452 case XFS_TRANS_SB_REXTENTS: 453 tp->t_rextents_delta += delta; 454 break; 455 case XFS_TRANS_SB_REXTSLOG: 456 tp->t_rextslog_delta += delta; 457 break; 458 default: 459 ASSERT(0); 460 return; 461 } 462 463 tp->t_flags |= flags; 464 } 465 466 /* 467 * xfs_trans_apply_sb_deltas() is called from the commit code 468 * to bring the superblock buffer into the current transaction 469 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 470 * 471 * For now we just look at each field allowed to change and change 472 * it if necessary. 473 */ 474 STATIC void 475 xfs_trans_apply_sb_deltas( 476 xfs_trans_t *tp) 477 { 478 struct xfs_dsb *sbp; 479 struct xfs_buf *bp; 480 int whole = 0; 481 482 bp = xfs_trans_getsb(tp); 483 sbp = bp->b_addr; 484 485 /* 486 * Only update the superblock counters if we are logging them 487 */ 488 if (!xfs_has_lazysbcount((tp->t_mountp))) { 489 if (tp->t_icount_delta) 490 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 491 if (tp->t_ifree_delta) 492 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 493 if (tp->t_fdblocks_delta) 494 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 495 if (tp->t_res_fdblocks_delta) 496 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 497 } 498 499 /* 500 * Updating frextents requires careful handling because it does not 501 * behave like the lazysb counters because we cannot rely on log 502 * recovery in older kenels to recompute the value from the rtbitmap. 503 * This means that the ondisk frextents must be consistent with the 504 * rtbitmap. 505 * 506 * Therefore, log the frextents change to the ondisk superblock and 507 * update the incore superblock so that future calls to xfs_log_sb 508 * write the correct value ondisk. 509 * 510 * Don't touch m_frextents because it includes incore reservations, 511 * and those are handled by the unreserve function. 512 */ 513 if (tp->t_frextents_delta || tp->t_res_frextents_delta) { 514 struct xfs_mount *mp = tp->t_mountp; 515 int64_t rtxdelta; 516 517 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta; 518 519 spin_lock(&mp->m_sb_lock); 520 be64_add_cpu(&sbp->sb_frextents, rtxdelta); 521 mp->m_sb.sb_frextents += rtxdelta; 522 spin_unlock(&mp->m_sb_lock); 523 } 524 525 if (tp->t_dblocks_delta) { 526 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 527 whole = 1; 528 } 529 if (tp->t_agcount_delta) { 530 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 531 whole = 1; 532 } 533 if (tp->t_imaxpct_delta) { 534 sbp->sb_imax_pct += tp->t_imaxpct_delta; 535 whole = 1; 536 } 537 if (tp->t_rextsize_delta) { 538 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 539 whole = 1; 540 } 541 if (tp->t_rbmblocks_delta) { 542 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 543 whole = 1; 544 } 545 if (tp->t_rblocks_delta) { 546 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 547 whole = 1; 548 } 549 if (tp->t_rextents_delta) { 550 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 551 whole = 1; 552 } 553 if (tp->t_rextslog_delta) { 554 sbp->sb_rextslog += tp->t_rextslog_delta; 555 whole = 1; 556 } 557 558 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 559 if (whole) 560 /* 561 * Log the whole thing, the fields are noncontiguous. 562 */ 563 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); 564 else 565 /* 566 * Since all the modifiable fields are contiguous, we 567 * can get away with this. 568 */ 569 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), 570 offsetof(struct xfs_dsb, sb_frextents) + 571 sizeof(sbp->sb_frextents) - 1); 572 } 573 574 /* 575 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and 576 * apply superblock counter changes to the in-core superblock. The 577 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 578 * applied to the in-core superblock. The idea is that that has already been 579 * done. 580 * 581 * If we are not logging superblock counters, then the inode allocated/free and 582 * used block counts are not updated in the on disk superblock. In this case, 583 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 584 * still need to update the incore superblock with the changes. 585 * 586 * Deltas for the inode count are +/-64, hence we use a large batch size of 128 587 * so we don't need to take the counter lock on every update. 588 */ 589 #define XFS_ICOUNT_BATCH 128 590 591 void 592 xfs_trans_unreserve_and_mod_sb( 593 struct xfs_trans *tp) 594 { 595 struct xfs_mount *mp = tp->t_mountp; 596 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 597 int64_t blkdelta = 0; 598 int64_t rtxdelta = 0; 599 int64_t idelta = 0; 600 int64_t ifreedelta = 0; 601 int error; 602 603 /* calculate deltas */ 604 if (tp->t_blk_res > 0) 605 blkdelta = tp->t_blk_res; 606 if ((tp->t_fdblocks_delta != 0) && 607 (xfs_has_lazysbcount(mp) || 608 (tp->t_flags & XFS_TRANS_SB_DIRTY))) 609 blkdelta += tp->t_fdblocks_delta; 610 611 if (tp->t_rtx_res > 0) 612 rtxdelta = tp->t_rtx_res; 613 if ((tp->t_frextents_delta != 0) && 614 (tp->t_flags & XFS_TRANS_SB_DIRTY)) 615 rtxdelta += tp->t_frextents_delta; 616 617 if (xfs_has_lazysbcount(mp) || 618 (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 619 idelta = tp->t_icount_delta; 620 ifreedelta = tp->t_ifree_delta; 621 } 622 623 /* apply the per-cpu counters */ 624 if (blkdelta) { 625 error = xfs_mod_fdblocks(mp, blkdelta, rsvd); 626 ASSERT(!error); 627 } 628 629 if (idelta) 630 percpu_counter_add_batch(&mp->m_icount, idelta, 631 XFS_ICOUNT_BATCH); 632 633 if (ifreedelta) 634 percpu_counter_add(&mp->m_ifree, ifreedelta); 635 636 if (rtxdelta) { 637 error = xfs_mod_frextents(mp, rtxdelta); 638 ASSERT(!error); 639 } 640 641 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY)) 642 return; 643 644 /* apply remaining deltas */ 645 spin_lock(&mp->m_sb_lock); 646 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; 647 mp->m_sb.sb_icount += idelta; 648 mp->m_sb.sb_ifree += ifreedelta; 649 /* 650 * Do not touch sb_frextents here because we are dealing with incore 651 * reservation. sb_frextents is not part of the lazy sb counters so it 652 * must be consistent with the ondisk rtbitmap and must never include 653 * incore reservations. 654 */ 655 mp->m_sb.sb_dblocks += tp->t_dblocks_delta; 656 mp->m_sb.sb_agcount += tp->t_agcount_delta; 657 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; 658 mp->m_sb.sb_rextsize += tp->t_rextsize_delta; 659 if (tp->t_rextsize_delta) { 660 mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize); 661 mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize); 662 } 663 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; 664 mp->m_sb.sb_rblocks += tp->t_rblocks_delta; 665 mp->m_sb.sb_rextents += tp->t_rextents_delta; 666 mp->m_sb.sb_rextslog += tp->t_rextslog_delta; 667 spin_unlock(&mp->m_sb_lock); 668 669 /* 670 * Debug checks outside of the spinlock so they don't lock up the 671 * machine if they fail. 672 */ 673 ASSERT(mp->m_sb.sb_imax_pct >= 0); 674 ASSERT(mp->m_sb.sb_rextslog >= 0); 675 return; 676 } 677 678 /* Add the given log item to the transaction's list of log items. */ 679 void 680 xfs_trans_add_item( 681 struct xfs_trans *tp, 682 struct xfs_log_item *lip) 683 { 684 ASSERT(lip->li_log == tp->t_mountp->m_log); 685 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 686 ASSERT(list_empty(&lip->li_trans)); 687 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); 688 689 list_add_tail(&lip->li_trans, &tp->t_items); 690 trace_xfs_trans_add_item(tp, _RET_IP_); 691 } 692 693 /* 694 * Unlink the log item from the transaction. the log item is no longer 695 * considered dirty in this transaction, as the linked transaction has 696 * finished, either by abort or commit completion. 697 */ 698 void 699 xfs_trans_del_item( 700 struct xfs_log_item *lip) 701 { 702 clear_bit(XFS_LI_DIRTY, &lip->li_flags); 703 list_del_init(&lip->li_trans); 704 } 705 706 /* Detach and unlock all of the items in a transaction */ 707 static void 708 xfs_trans_free_items( 709 struct xfs_trans *tp, 710 bool abort) 711 { 712 struct xfs_log_item *lip, *next; 713 714 trace_xfs_trans_free_items(tp, _RET_IP_); 715 716 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 717 xfs_trans_del_item(lip); 718 if (abort) 719 set_bit(XFS_LI_ABORTED, &lip->li_flags); 720 if (lip->li_ops->iop_release) 721 lip->li_ops->iop_release(lip); 722 } 723 } 724 725 static inline void 726 xfs_log_item_batch_insert( 727 struct xfs_ail *ailp, 728 struct xfs_ail_cursor *cur, 729 struct xfs_log_item **log_items, 730 int nr_items, 731 xfs_lsn_t commit_lsn) 732 { 733 int i; 734 735 spin_lock(&ailp->ail_lock); 736 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 737 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 738 739 for (i = 0; i < nr_items; i++) { 740 struct xfs_log_item *lip = log_items[i]; 741 742 if (lip->li_ops->iop_unpin) 743 lip->li_ops->iop_unpin(lip, 0); 744 } 745 } 746 747 /* 748 * Bulk operation version of xfs_trans_committed that takes a log vector of 749 * items to insert into the AIL. This uses bulk AIL insertion techniques to 750 * minimise lock traffic. 751 * 752 * If we are called with the aborted flag set, it is because a log write during 753 * a CIL checkpoint commit has failed. In this case, all the items in the 754 * checkpoint have already gone through iop_committed and iop_committing, which 755 * means that checkpoint commit abort handling is treated exactly the same 756 * as an iclog write error even though we haven't started any IO yet. Hence in 757 * this case all we need to do is iop_committed processing, followed by an 758 * iop_unpin(aborted) call. 759 * 760 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 761 * at the end of the AIL, the insert cursor avoids the need to walk 762 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 763 * call. This saves a lot of needless list walking and is a net win, even 764 * though it slightly increases that amount of AIL lock traffic to set it up 765 * and tear it down. 766 */ 767 void 768 xfs_trans_committed_bulk( 769 struct xfs_ail *ailp, 770 struct list_head *lv_chain, 771 xfs_lsn_t commit_lsn, 772 bool aborted) 773 { 774 #define LOG_ITEM_BATCH_SIZE 32 775 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 776 struct xfs_log_vec *lv; 777 struct xfs_ail_cursor cur; 778 int i = 0; 779 780 spin_lock(&ailp->ail_lock); 781 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 782 spin_unlock(&ailp->ail_lock); 783 784 /* unpin all the log items */ 785 list_for_each_entry(lv, lv_chain, lv_list) { 786 struct xfs_log_item *lip = lv->lv_item; 787 xfs_lsn_t item_lsn; 788 789 if (aborted) 790 set_bit(XFS_LI_ABORTED, &lip->li_flags); 791 792 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 793 lip->li_ops->iop_release(lip); 794 continue; 795 } 796 797 if (lip->li_ops->iop_committed) 798 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); 799 else 800 item_lsn = commit_lsn; 801 802 /* item_lsn of -1 means the item needs no further processing */ 803 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 804 continue; 805 806 /* 807 * if we are aborting the operation, no point in inserting the 808 * object into the AIL as we are in a shutdown situation. 809 */ 810 if (aborted) { 811 ASSERT(xlog_is_shutdown(ailp->ail_log)); 812 if (lip->li_ops->iop_unpin) 813 lip->li_ops->iop_unpin(lip, 1); 814 continue; 815 } 816 817 if (item_lsn != commit_lsn) { 818 819 /* 820 * Not a bulk update option due to unusual item_lsn. 821 * Push into AIL immediately, rechecking the lsn once 822 * we have the ail lock. Then unpin the item. This does 823 * not affect the AIL cursor the bulk insert path is 824 * using. 825 */ 826 spin_lock(&ailp->ail_lock); 827 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 828 xfs_trans_ail_update(ailp, lip, item_lsn); 829 else 830 spin_unlock(&ailp->ail_lock); 831 if (lip->li_ops->iop_unpin) 832 lip->li_ops->iop_unpin(lip, 0); 833 continue; 834 } 835 836 /* Item is a candidate for bulk AIL insert. */ 837 log_items[i++] = lv->lv_item; 838 if (i >= LOG_ITEM_BATCH_SIZE) { 839 xfs_log_item_batch_insert(ailp, &cur, log_items, 840 LOG_ITEM_BATCH_SIZE, commit_lsn); 841 i = 0; 842 } 843 } 844 845 /* make sure we insert the remainder! */ 846 if (i) 847 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 848 849 spin_lock(&ailp->ail_lock); 850 xfs_trans_ail_cursor_done(&cur); 851 spin_unlock(&ailp->ail_lock); 852 } 853 854 /* 855 * Sort transaction items prior to running precommit operations. This will 856 * attempt to order the items such that they will always be locked in the same 857 * order. Items that have no sort function are moved to the end of the list 858 * and so are locked last. 859 * 860 * This may need refinement as different types of objects add sort functions. 861 * 862 * Function is more complex than it needs to be because we are comparing 64 bit 863 * values and the function only returns 32 bit values. 864 */ 865 static int 866 xfs_trans_precommit_sort( 867 void *unused_arg, 868 const struct list_head *a, 869 const struct list_head *b) 870 { 871 struct xfs_log_item *lia = container_of(a, 872 struct xfs_log_item, li_trans); 873 struct xfs_log_item *lib = container_of(b, 874 struct xfs_log_item, li_trans); 875 int64_t diff; 876 877 /* 878 * If both items are non-sortable, leave them alone. If only one is 879 * sortable, move the non-sortable item towards the end of the list. 880 */ 881 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort) 882 return 0; 883 if (!lia->li_ops->iop_sort) 884 return 1; 885 if (!lib->li_ops->iop_sort) 886 return -1; 887 888 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib); 889 if (diff < 0) 890 return -1; 891 if (diff > 0) 892 return 1; 893 return 0; 894 } 895 896 /* 897 * Run transaction precommit functions. 898 * 899 * If there is an error in any of the callouts, then stop immediately and 900 * trigger a shutdown to abort the transaction. There is no recovery possible 901 * from errors at this point as the transaction is dirty.... 902 */ 903 static int 904 xfs_trans_run_precommits( 905 struct xfs_trans *tp) 906 { 907 struct xfs_mount *mp = tp->t_mountp; 908 struct xfs_log_item *lip, *n; 909 int error = 0; 910 911 /* 912 * Sort the item list to avoid ABBA deadlocks with other transactions 913 * running precommit operations that lock multiple shared items such as 914 * inode cluster buffers. 915 */ 916 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort); 917 918 /* 919 * Precommit operations can remove the log item from the transaction 920 * if the log item exists purely to delay modifications until they 921 * can be ordered against other operations. Hence we have to use 922 * list_for_each_entry_safe() here. 923 */ 924 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) { 925 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 926 continue; 927 if (lip->li_ops->iop_precommit) { 928 error = lip->li_ops->iop_precommit(tp, lip); 929 if (error) 930 break; 931 } 932 } 933 if (error) 934 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 935 return error; 936 } 937 938 /* 939 * Commit the given transaction to the log. 940 * 941 * XFS disk error handling mechanism is not based on a typical 942 * transaction abort mechanism. Logically after the filesystem 943 * gets marked 'SHUTDOWN', we can't let any new transactions 944 * be durable - ie. committed to disk - because some metadata might 945 * be inconsistent. In such cases, this returns an error, and the 946 * caller may assume that all locked objects joined to the transaction 947 * have already been unlocked as if the commit had succeeded. 948 * Do not reference the transaction structure after this call. 949 */ 950 static int 951 __xfs_trans_commit( 952 struct xfs_trans *tp, 953 bool regrant) 954 { 955 struct xfs_mount *mp = tp->t_mountp; 956 struct xlog *log = mp->m_log; 957 xfs_csn_t commit_seq = 0; 958 int error = 0; 959 int sync = tp->t_flags & XFS_TRANS_SYNC; 960 961 trace_xfs_trans_commit(tp, _RET_IP_); 962 963 error = xfs_trans_run_precommits(tp); 964 if (error) { 965 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) 966 xfs_defer_cancel(tp); 967 goto out_unreserve; 968 } 969 970 /* 971 * Finish deferred items on final commit. Only permanent transactions 972 * should ever have deferred ops. 973 */ 974 WARN_ON_ONCE(!list_empty(&tp->t_dfops) && 975 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 976 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { 977 error = xfs_defer_finish_noroll(&tp); 978 if (error) 979 goto out_unreserve; 980 981 /* Run precommits from final tx in defer chain. */ 982 error = xfs_trans_run_precommits(tp); 983 if (error) 984 goto out_unreserve; 985 } 986 987 /* 988 * If there is nothing to be logged by the transaction, 989 * then unlock all of the items associated with the 990 * transaction and free the transaction structure. 991 * Also make sure to return any reserved blocks to 992 * the free pool. 993 */ 994 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 995 goto out_unreserve; 996 997 /* 998 * We must check against log shutdown here because we cannot abort log 999 * items and leave them dirty, inconsistent and unpinned in memory while 1000 * the log is active. This leaves them open to being written back to 1001 * disk, and that will lead to on-disk corruption. 1002 */ 1003 if (xlog_is_shutdown(log)) { 1004 error = -EIO; 1005 goto out_unreserve; 1006 } 1007 1008 ASSERT(tp->t_ticket != NULL); 1009 1010 /* 1011 * If we need to update the superblock, then do it now. 1012 */ 1013 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 1014 xfs_trans_apply_sb_deltas(tp); 1015 xfs_trans_apply_dquot_deltas(tp); 1016 1017 xlog_cil_commit(log, tp, &commit_seq, regrant); 1018 1019 xfs_trans_free(tp); 1020 1021 /* 1022 * If the transaction needs to be synchronous, then force the 1023 * log out now and wait for it. 1024 */ 1025 if (sync) { 1026 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); 1027 XFS_STATS_INC(mp, xs_trans_sync); 1028 } else { 1029 XFS_STATS_INC(mp, xs_trans_async); 1030 } 1031 1032 return error; 1033 1034 out_unreserve: 1035 xfs_trans_unreserve_and_mod_sb(tp); 1036 1037 /* 1038 * It is indeed possible for the transaction to be not dirty but 1039 * the dqinfo portion to be. All that means is that we have some 1040 * (non-persistent) quota reservations that need to be unreserved. 1041 */ 1042 xfs_trans_unreserve_and_mod_dquots(tp); 1043 if (tp->t_ticket) { 1044 if (regrant && !xlog_is_shutdown(log)) 1045 xfs_log_ticket_regrant(log, tp->t_ticket); 1046 else 1047 xfs_log_ticket_ungrant(log, tp->t_ticket); 1048 tp->t_ticket = NULL; 1049 } 1050 xfs_trans_free_items(tp, !!error); 1051 xfs_trans_free(tp); 1052 1053 XFS_STATS_INC(mp, xs_trans_empty); 1054 return error; 1055 } 1056 1057 int 1058 xfs_trans_commit( 1059 struct xfs_trans *tp) 1060 { 1061 return __xfs_trans_commit(tp, false); 1062 } 1063 1064 /* 1065 * Unlock all of the transaction's items and free the transaction. If the 1066 * transaction is dirty, we must shut down the filesystem because there is no 1067 * way to restore them to their previous state. 1068 * 1069 * If the transaction has made a log reservation, make sure to release it as 1070 * well. 1071 * 1072 * This is a high level function (equivalent to xfs_trans_commit()) and so can 1073 * be called after the transaction has effectively been aborted due to the mount 1074 * being shut down. However, if the mount has not been shut down and the 1075 * transaction is dirty we will shut the mount down and, in doing so, that 1076 * guarantees that the log is shut down, too. Hence we don't need to be as 1077 * careful with shutdown state and dirty items here as we need to be in 1078 * xfs_trans_commit(). 1079 */ 1080 void 1081 xfs_trans_cancel( 1082 struct xfs_trans *tp) 1083 { 1084 struct xfs_mount *mp = tp->t_mountp; 1085 struct xlog *log = mp->m_log; 1086 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); 1087 1088 trace_xfs_trans_cancel(tp, _RET_IP_); 1089 1090 /* 1091 * It's never valid to cancel a transaction with deferred ops attached, 1092 * because the transaction is effectively dirty. Complain about this 1093 * loudly before freeing the in-memory defer items and shutting down the 1094 * filesystem. 1095 */ 1096 if (!list_empty(&tp->t_dfops)) { 1097 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1098 dirty = true; 1099 xfs_defer_cancel(tp); 1100 } 1101 1102 /* 1103 * See if the caller is relying on us to shut down the filesystem. We 1104 * only want an error report if there isn't already a shutdown in 1105 * progress, so we only need to check against the mount shutdown state 1106 * here. 1107 */ 1108 if (dirty && !xfs_is_shutdown(mp)) { 1109 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1110 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1111 } 1112 #ifdef DEBUG 1113 /* Log items need to be consistent until the log is shut down. */ 1114 if (!dirty && !xlog_is_shutdown(log)) { 1115 struct xfs_log_item *lip; 1116 1117 list_for_each_entry(lip, &tp->t_items, li_trans) 1118 ASSERT(!xlog_item_is_intent_done(lip)); 1119 } 1120 #endif 1121 xfs_trans_unreserve_and_mod_sb(tp); 1122 xfs_trans_unreserve_and_mod_dquots(tp); 1123 1124 if (tp->t_ticket) { 1125 xfs_log_ticket_ungrant(log, tp->t_ticket); 1126 tp->t_ticket = NULL; 1127 } 1128 1129 xfs_trans_free_items(tp, dirty); 1130 xfs_trans_free(tp); 1131 } 1132 1133 /* 1134 * Roll from one trans in the sequence of PERMANENT transactions to 1135 * the next: permanent transactions are only flushed out when 1136 * committed with xfs_trans_commit(), but we still want as soon 1137 * as possible to let chunks of it go to the log. So we commit the 1138 * chunk we've been working on and get a new transaction to continue. 1139 */ 1140 int 1141 xfs_trans_roll( 1142 struct xfs_trans **tpp) 1143 { 1144 struct xfs_trans *trans = *tpp; 1145 struct xfs_trans_res tres; 1146 int error; 1147 1148 trace_xfs_trans_roll(trans, _RET_IP_); 1149 1150 /* 1151 * Copy the critical parameters from one trans to the next. 1152 */ 1153 tres.tr_logres = trans->t_log_res; 1154 tres.tr_logcount = trans->t_log_count; 1155 1156 *tpp = xfs_trans_dup(trans); 1157 1158 /* 1159 * Commit the current transaction. 1160 * If this commit failed, then it'd just unlock those items that 1161 * are not marked ihold. That also means that a filesystem shutdown 1162 * is in progress. The caller takes the responsibility to cancel 1163 * the duplicate transaction that gets returned. 1164 */ 1165 error = __xfs_trans_commit(trans, true); 1166 if (error) 1167 return error; 1168 1169 /* 1170 * Reserve space in the log for the next transaction. 1171 * This also pushes items in the "AIL", the list of logged items, 1172 * out to disk if they are taking up space at the tail of the log 1173 * that we want to use. This requires that either nothing be locked 1174 * across this call, or that anything that is locked be logged in 1175 * the prior and the next transactions. 1176 */ 1177 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1178 return xfs_trans_reserve(*tpp, &tres, 0, 0); 1179 } 1180 1181 /* 1182 * Allocate an transaction, lock and join the inode to it, and reserve quota. 1183 * 1184 * The caller must ensure that the on-disk dquots attached to this inode have 1185 * already been allocated and initialized. The caller is responsible for 1186 * releasing ILOCK_EXCL if a new transaction is returned. 1187 */ 1188 int 1189 xfs_trans_alloc_inode( 1190 struct xfs_inode *ip, 1191 struct xfs_trans_res *resv, 1192 unsigned int dblocks, 1193 unsigned int rblocks, 1194 bool force, 1195 struct xfs_trans **tpp) 1196 { 1197 struct xfs_trans *tp; 1198 struct xfs_mount *mp = ip->i_mount; 1199 bool retried = false; 1200 int error; 1201 1202 retry: 1203 error = xfs_trans_alloc(mp, resv, dblocks, 1204 xfs_extlen_to_rtxlen(mp, rblocks), 1205 force ? XFS_TRANS_RESERVE : 0, &tp); 1206 if (error) 1207 return error; 1208 1209 xfs_ilock(ip, XFS_ILOCK_EXCL); 1210 xfs_trans_ijoin(tp, ip, 0); 1211 1212 error = xfs_qm_dqattach_locked(ip, false); 1213 if (error) { 1214 /* Caller should have allocated the dquots! */ 1215 ASSERT(error != -ENOENT); 1216 goto out_cancel; 1217 } 1218 1219 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); 1220 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1221 xfs_trans_cancel(tp); 1222 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1223 xfs_blockgc_free_quota(ip, 0); 1224 retried = true; 1225 goto retry; 1226 } 1227 if (error) 1228 goto out_cancel; 1229 1230 *tpp = tp; 1231 return 0; 1232 1233 out_cancel: 1234 xfs_trans_cancel(tp); 1235 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1236 return error; 1237 } 1238 1239 /* 1240 * Try to reserve more blocks for a transaction. 1241 * 1242 * This is for callers that need to attach resources to a transaction, scan 1243 * those resources to determine the space reservation requirements, and then 1244 * modify the attached resources. In other words, online repair. This can 1245 * fail due to ENOSPC, so the caller must be able to cancel the transaction 1246 * without shutting down the fs. 1247 */ 1248 int 1249 xfs_trans_reserve_more( 1250 struct xfs_trans *tp, 1251 unsigned int blocks, 1252 unsigned int rtextents) 1253 { 1254 struct xfs_trans_res resv = { }; 1255 1256 return xfs_trans_reserve(tp, &resv, blocks, rtextents); 1257 } 1258 1259 /* 1260 * Try to reserve more blocks and file quota for a transaction. Same 1261 * conditions of usage as xfs_trans_reserve_more. 1262 */ 1263 int 1264 xfs_trans_reserve_more_inode( 1265 struct xfs_trans *tp, 1266 struct xfs_inode *ip, 1267 unsigned int dblocks, 1268 unsigned int rblocks, 1269 bool force_quota) 1270 { 1271 struct xfs_trans_res resv = { }; 1272 struct xfs_mount *mp = ip->i_mount; 1273 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks); 1274 int error; 1275 1276 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1277 1278 error = xfs_trans_reserve(tp, &resv, dblocks, rtx); 1279 if (error) 1280 return error; 1281 1282 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino)) 1283 return 0; 1284 1285 if (tp->t_flags & XFS_TRANS_RESERVE) 1286 force_quota = true; 1287 1288 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, 1289 force_quota); 1290 if (!error) 1291 return 0; 1292 1293 /* Quota failed, give back the new reservation. */ 1294 xfs_mod_fdblocks(mp, dblocks, tp->t_flags & XFS_TRANS_RESERVE); 1295 tp->t_blk_res -= dblocks; 1296 xfs_mod_frextents(mp, rtx); 1297 tp->t_rtx_res -= rtx; 1298 return error; 1299 } 1300 1301 /* 1302 * Allocate an transaction in preparation for inode creation by reserving quota 1303 * against the given dquots. Callers are not required to hold any inode locks. 1304 */ 1305 int 1306 xfs_trans_alloc_icreate( 1307 struct xfs_mount *mp, 1308 struct xfs_trans_res *resv, 1309 struct xfs_dquot *udqp, 1310 struct xfs_dquot *gdqp, 1311 struct xfs_dquot *pdqp, 1312 unsigned int dblocks, 1313 struct xfs_trans **tpp) 1314 { 1315 struct xfs_trans *tp; 1316 bool retried = false; 1317 int error; 1318 1319 retry: 1320 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); 1321 if (error) 1322 return error; 1323 1324 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); 1325 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1326 xfs_trans_cancel(tp); 1327 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1328 retried = true; 1329 goto retry; 1330 } 1331 if (error) { 1332 xfs_trans_cancel(tp); 1333 return error; 1334 } 1335 1336 *tpp = tp; 1337 return 0; 1338 } 1339 1340 /* 1341 * Allocate an transaction, lock and join the inode to it, and reserve quota 1342 * in preparation for inode attribute changes that include uid, gid, or prid 1343 * changes. 1344 * 1345 * The caller must ensure that the on-disk dquots attached to this inode have 1346 * already been allocated and initialized. The ILOCK will be dropped when the 1347 * transaction is committed or cancelled. 1348 */ 1349 int 1350 xfs_trans_alloc_ichange( 1351 struct xfs_inode *ip, 1352 struct xfs_dquot *new_udqp, 1353 struct xfs_dquot *new_gdqp, 1354 struct xfs_dquot *new_pdqp, 1355 bool force, 1356 struct xfs_trans **tpp) 1357 { 1358 struct xfs_trans *tp; 1359 struct xfs_mount *mp = ip->i_mount; 1360 struct xfs_dquot *udqp; 1361 struct xfs_dquot *gdqp; 1362 struct xfs_dquot *pdqp; 1363 bool retried = false; 1364 int error; 1365 1366 retry: 1367 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1368 if (error) 1369 return error; 1370 1371 xfs_ilock(ip, XFS_ILOCK_EXCL); 1372 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1373 1374 error = xfs_qm_dqattach_locked(ip, false); 1375 if (error) { 1376 /* Caller should have allocated the dquots! */ 1377 ASSERT(error != -ENOENT); 1378 goto out_cancel; 1379 } 1380 1381 /* 1382 * For each quota type, skip quota reservations if the inode's dquots 1383 * now match the ones that came from the caller, or the caller didn't 1384 * pass one in. The inode's dquots can change if we drop the ILOCK to 1385 * perform a blockgc scan, so we must preserve the caller's arguments. 1386 */ 1387 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; 1388 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; 1389 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; 1390 if (udqp || gdqp || pdqp) { 1391 unsigned int qflags = XFS_QMOPT_RES_REGBLKS; 1392 1393 if (force) 1394 qflags |= XFS_QMOPT_FORCE_RES; 1395 1396 /* 1397 * Reserve enough quota to handle blocks on disk and reserved 1398 * for a delayed allocation. We'll actually transfer the 1399 * delalloc reservation between dquots at chown time, even 1400 * though that part is only semi-transactional. 1401 */ 1402 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1403 pdqp, ip->i_nblocks + ip->i_delayed_blks, 1404 1, qflags); 1405 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1406 xfs_trans_cancel(tp); 1407 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1408 retried = true; 1409 goto retry; 1410 } 1411 if (error) 1412 goto out_cancel; 1413 } 1414 1415 *tpp = tp; 1416 return 0; 1417 1418 out_cancel: 1419 xfs_trans_cancel(tp); 1420 return error; 1421 } 1422 1423 /* 1424 * Allocate an transaction, lock and join the directory and child inodes to it, 1425 * and reserve quota for a directory update. If there isn't sufficient space, 1426 * @dblocks will be set to zero for a reservationless directory update and 1427 * @nospace_error will be set to a negative errno describing the space 1428 * constraint we hit. 1429 * 1430 * The caller must ensure that the on-disk dquots attached to this inode have 1431 * already been allocated and initialized. The ILOCKs will be dropped when the 1432 * transaction is committed or cancelled. 1433 */ 1434 int 1435 xfs_trans_alloc_dir( 1436 struct xfs_inode *dp, 1437 struct xfs_trans_res *resv, 1438 struct xfs_inode *ip, 1439 unsigned int *dblocks, 1440 struct xfs_trans **tpp, 1441 int *nospace_error) 1442 { 1443 struct xfs_trans *tp; 1444 struct xfs_mount *mp = ip->i_mount; 1445 unsigned int resblks; 1446 bool retried = false; 1447 int error; 1448 1449 retry: 1450 *nospace_error = 0; 1451 resblks = *dblocks; 1452 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1453 if (error == -ENOSPC) { 1454 *nospace_error = error; 1455 resblks = 0; 1456 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1457 } 1458 if (error) 1459 return error; 1460 1461 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 1462 1463 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1464 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1465 1466 error = xfs_qm_dqattach_locked(dp, false); 1467 if (error) { 1468 /* Caller should have allocated the dquots! */ 1469 ASSERT(error != -ENOENT); 1470 goto out_cancel; 1471 } 1472 1473 error = xfs_qm_dqattach_locked(ip, false); 1474 if (error) { 1475 /* Caller should have allocated the dquots! */ 1476 ASSERT(error != -ENOENT); 1477 goto out_cancel; 1478 } 1479 1480 if (resblks == 0) 1481 goto done; 1482 1483 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false); 1484 if (error == -EDQUOT || error == -ENOSPC) { 1485 if (!retried) { 1486 xfs_trans_cancel(tp); 1487 xfs_blockgc_free_quota(dp, 0); 1488 retried = true; 1489 goto retry; 1490 } 1491 1492 *nospace_error = error; 1493 resblks = 0; 1494 error = 0; 1495 } 1496 if (error) 1497 goto out_cancel; 1498 1499 done: 1500 *tpp = tp; 1501 *dblocks = resblks; 1502 return 0; 1503 1504 out_cancel: 1505 xfs_trans_cancel(tp); 1506 return error; 1507 } 1508