1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 4 * Copyright (C) 2010 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_extent_busy.h" 15 #include "xfs_quota.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_trace.h" 21 #include "xfs_error.h" 22 #include "xfs_defer.h" 23 #include "xfs_inode.h" 24 #include "xfs_dquot_item.h" 25 #include "xfs_dquot.h" 26 #include "xfs_icache.h" 27 #include "xfs_rtbitmap.h" 28 29 struct kmem_cache *xfs_trans_cache; 30 31 #if defined(CONFIG_TRACEPOINTS) 32 static void 33 xfs_trans_trace_reservations( 34 struct xfs_mount *mp) 35 { 36 struct xfs_trans_res *res; 37 struct xfs_trans_res *end_res; 38 int i; 39 40 res = (struct xfs_trans_res *)M_RES(mp); 41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); 42 for (i = 0; res < end_res; i++, res++) 43 trace_xfs_trans_resv_calc(mp, i, res); 44 } 45 #else 46 # define xfs_trans_trace_reservations(mp) 47 #endif 48 49 /* 50 * Initialize the precomputed transaction reservation values 51 * in the mount structure. 52 */ 53 void 54 xfs_trans_init( 55 struct xfs_mount *mp) 56 { 57 xfs_trans_resv_calc(mp, M_RES(mp)); 58 xfs_trans_trace_reservations(mp); 59 } 60 61 /* 62 * Free the transaction structure. If there is more clean up 63 * to do when the structure is freed, add it here. 64 */ 65 STATIC void 66 xfs_trans_free( 67 struct xfs_trans *tp) 68 { 69 xfs_extent_busy_sort(&tp->t_busy); 70 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); 71 72 trace_xfs_trans_free(tp, _RET_IP_); 73 xfs_trans_clear_context(tp); 74 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) 75 sb_end_intwrite(tp->t_mountp->m_super); 76 xfs_trans_free_dqinfo(tp); 77 kmem_cache_free(xfs_trans_cache, tp); 78 } 79 80 /* 81 * This is called to create a new transaction which will share the 82 * permanent log reservation of the given transaction. The remaining 83 * unused block and rt extent reservations are also inherited. This 84 * implies that the original transaction is no longer allowed to allocate 85 * blocks. Locks and log items, however, are no inherited. They must 86 * be added to the new transaction explicitly. 87 */ 88 STATIC struct xfs_trans * 89 xfs_trans_dup( 90 struct xfs_trans *tp) 91 { 92 struct xfs_trans *ntp; 93 94 trace_xfs_trans_dup(tp, _RET_IP_); 95 96 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 97 98 /* 99 * Initialize the new transaction structure. 100 */ 101 ntp->t_magic = XFS_TRANS_HEADER_MAGIC; 102 ntp->t_mountp = tp->t_mountp; 103 INIT_LIST_HEAD(&ntp->t_items); 104 INIT_LIST_HEAD(&ntp->t_busy); 105 INIT_LIST_HEAD(&ntp->t_dfops); 106 ntp->t_highest_agno = NULLAGNUMBER; 107 108 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 109 ASSERT(tp->t_ticket != NULL); 110 111 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | 112 (tp->t_flags & XFS_TRANS_RESERVE) | 113 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | 114 (tp->t_flags & XFS_TRANS_RES_FDBLKS); 115 /* We gave our writer reference to the new transaction */ 116 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; 117 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); 118 119 ASSERT(tp->t_blk_res >= tp->t_blk_res_used); 120 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; 121 tp->t_blk_res = tp->t_blk_res_used; 122 123 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; 124 tp->t_rtx_res = tp->t_rtx_res_used; 125 126 xfs_trans_switch_context(tp, ntp); 127 128 /* move deferred ops over to the new tp */ 129 xfs_defer_move(ntp, tp); 130 131 xfs_trans_dup_dqinfo(tp, ntp); 132 return ntp; 133 } 134 135 /* 136 * This is called to reserve free disk blocks and log space for the 137 * given transaction. This must be done before allocating any resources 138 * within the transaction. 139 * 140 * This will return ENOSPC if there are not enough blocks available. 141 * It will sleep waiting for available log space. 142 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which 143 * is used by long running transactions. If any one of the reservations 144 * fails then they will all be backed out. 145 * 146 * This does not do quota reservations. That typically is done by the 147 * caller afterwards. 148 */ 149 static int 150 xfs_trans_reserve( 151 struct xfs_trans *tp, 152 struct xfs_trans_res *resp, 153 uint blocks, 154 uint rtextents) 155 { 156 struct xfs_mount *mp = tp->t_mountp; 157 int error = 0; 158 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; 159 160 /* 161 * Attempt to reserve the needed disk blocks by decrementing 162 * the number needed from the number available. This will 163 * fail if the count would go below zero. 164 */ 165 if (blocks > 0) { 166 error = xfs_dec_fdblocks(mp, blocks, rsvd); 167 if (error != 0) 168 return -ENOSPC; 169 tp->t_blk_res += blocks; 170 } 171 172 /* 173 * Reserve the log space needed for this transaction. 174 */ 175 if (resp->tr_logres > 0) { 176 bool permanent = false; 177 178 ASSERT(tp->t_log_res == 0 || 179 tp->t_log_res == resp->tr_logres); 180 ASSERT(tp->t_log_count == 0 || 181 tp->t_log_count == resp->tr_logcount); 182 183 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { 184 tp->t_flags |= XFS_TRANS_PERM_LOG_RES; 185 permanent = true; 186 } else { 187 ASSERT(tp->t_ticket == NULL); 188 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 189 } 190 191 if (tp->t_ticket != NULL) { 192 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); 193 error = xfs_log_regrant(mp, tp->t_ticket); 194 } else { 195 error = xfs_log_reserve(mp, resp->tr_logres, 196 resp->tr_logcount, 197 &tp->t_ticket, permanent); 198 } 199 200 if (error) 201 goto undo_blocks; 202 203 tp->t_log_res = resp->tr_logres; 204 tp->t_log_count = resp->tr_logcount; 205 } 206 207 /* 208 * Attempt to reserve the needed realtime extents by decrementing 209 * the number needed from the number available. This will 210 * fail if the count would go below zero. 211 */ 212 if (rtextents > 0) { 213 error = xfs_dec_frextents(mp, rtextents); 214 if (error) { 215 error = -ENOSPC; 216 goto undo_log; 217 } 218 tp->t_rtx_res += rtextents; 219 } 220 221 return 0; 222 223 /* 224 * Error cases jump to one of these labels to undo any 225 * reservations which have already been performed. 226 */ 227 undo_log: 228 if (resp->tr_logres > 0) { 229 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); 230 tp->t_ticket = NULL; 231 tp->t_log_res = 0; 232 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; 233 } 234 235 undo_blocks: 236 if (blocks > 0) { 237 xfs_add_fdblocks(mp, blocks); 238 tp->t_blk_res = 0; 239 } 240 return error; 241 } 242 243 int 244 xfs_trans_alloc( 245 struct xfs_mount *mp, 246 struct xfs_trans_res *resp, 247 uint blocks, 248 uint rtextents, 249 uint flags, 250 struct xfs_trans **tpp) 251 { 252 struct xfs_trans *tp; 253 bool want_retry = true; 254 int error; 255 256 /* 257 * Allocate the handle before we do our freeze accounting and setting up 258 * GFP_NOFS allocation context so that we avoid lockdep false positives 259 * by doing GFP_KERNEL allocations inside sb_start_intwrite(). 260 */ 261 retry: 262 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL); 263 if (!(flags & XFS_TRANS_NO_WRITECOUNT)) 264 sb_start_intwrite(mp->m_super); 265 xfs_trans_set_context(tp); 266 267 /* 268 * Zero-reservation ("empty") transactions can't modify anything, so 269 * they're allowed to run while we're frozen. 270 */ 271 WARN_ON(resp->tr_logres > 0 && 272 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); 273 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || 274 xfs_has_lazysbcount(mp)); 275 276 tp->t_magic = XFS_TRANS_HEADER_MAGIC; 277 tp->t_flags = flags; 278 tp->t_mountp = mp; 279 INIT_LIST_HEAD(&tp->t_items); 280 INIT_LIST_HEAD(&tp->t_busy); 281 INIT_LIST_HEAD(&tp->t_dfops); 282 tp->t_highest_agno = NULLAGNUMBER; 283 284 error = xfs_trans_reserve(tp, resp, blocks, rtextents); 285 if (error == -ENOSPC && want_retry) { 286 xfs_trans_cancel(tp); 287 288 /* 289 * We weren't able to reserve enough space for the transaction. 290 * Flush the other speculative space allocations to free space. 291 * Do not perform a synchronous scan because callers can hold 292 * other locks. 293 */ 294 error = xfs_blockgc_flush_all(mp); 295 if (error) 296 return error; 297 want_retry = false; 298 goto retry; 299 } 300 if (error) { 301 xfs_trans_cancel(tp); 302 return error; 303 } 304 305 trace_xfs_trans_alloc(tp, _RET_IP_); 306 307 *tpp = tp; 308 return 0; 309 } 310 311 /* 312 * Create an empty transaction with no reservation. This is a defensive 313 * mechanism for routines that query metadata without actually modifying them -- 314 * if the metadata being queried is somehow cross-linked (think a btree block 315 * pointer that points higher in the tree), we risk deadlock. However, blocks 316 * grabbed as part of a transaction can be re-grabbed. The verifiers will 317 * notice the corrupt block and the operation will fail back to userspace 318 * without deadlocking. 319 * 320 * Note the zero-length reservation; this transaction MUST be cancelled without 321 * any dirty data. 322 * 323 * Callers should obtain freeze protection to avoid a conflict with fs freezing 324 * where we can be grabbing buffers at the same time that freeze is trying to 325 * drain the buffer LRU list. 326 */ 327 int 328 xfs_trans_alloc_empty( 329 struct xfs_mount *mp, 330 struct xfs_trans **tpp) 331 { 332 struct xfs_trans_res resv = {0}; 333 334 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); 335 } 336 337 /* 338 * Record the indicated change to the given field for application 339 * to the file system's superblock when the transaction commits. 340 * For now, just store the change in the transaction structure. 341 * 342 * Mark the transaction structure to indicate that the superblock 343 * needs to be updated before committing. 344 * 345 * Because we may not be keeping track of allocated/free inodes and 346 * used filesystem blocks in the superblock, we do not mark the 347 * superblock dirty in this transaction if we modify these fields. 348 * We still need to update the transaction deltas so that they get 349 * applied to the incore superblock, but we don't want them to 350 * cause the superblock to get locked and logged if these are the 351 * only fields in the superblock that the transaction modifies. 352 */ 353 void 354 xfs_trans_mod_sb( 355 xfs_trans_t *tp, 356 uint field, 357 int64_t delta) 358 { 359 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); 360 xfs_mount_t *mp = tp->t_mountp; 361 362 switch (field) { 363 case XFS_TRANS_SB_ICOUNT: 364 tp->t_icount_delta += delta; 365 if (xfs_has_lazysbcount(mp)) 366 flags &= ~XFS_TRANS_SB_DIRTY; 367 break; 368 case XFS_TRANS_SB_IFREE: 369 tp->t_ifree_delta += delta; 370 if (xfs_has_lazysbcount(mp)) 371 flags &= ~XFS_TRANS_SB_DIRTY; 372 break; 373 case XFS_TRANS_SB_FDBLOCKS: 374 /* 375 * Track the number of blocks allocated in the transaction. 376 * Make sure it does not exceed the number reserved. If so, 377 * shutdown as this can lead to accounting inconsistency. 378 */ 379 if (delta < 0) { 380 tp->t_blk_res_used += (uint)-delta; 381 if (tp->t_blk_res_used > tp->t_blk_res) 382 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 383 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { 384 int64_t blkres_delta; 385 386 /* 387 * Return freed blocks directly to the reservation 388 * instead of the global pool, being careful not to 389 * overflow the trans counter. This is used to preserve 390 * reservation across chains of transaction rolls that 391 * repeatedly free and allocate blocks. 392 */ 393 blkres_delta = min_t(int64_t, delta, 394 UINT_MAX - tp->t_blk_res); 395 tp->t_blk_res += blkres_delta; 396 delta -= blkres_delta; 397 } 398 tp->t_fdblocks_delta += delta; 399 if (xfs_has_lazysbcount(mp)) 400 flags &= ~XFS_TRANS_SB_DIRTY; 401 break; 402 case XFS_TRANS_SB_RES_FDBLOCKS: 403 /* 404 * The allocation has already been applied to the 405 * in-core superblock's counter. This should only 406 * be applied to the on-disk superblock. 407 */ 408 tp->t_res_fdblocks_delta += delta; 409 if (xfs_has_lazysbcount(mp)) 410 flags &= ~XFS_TRANS_SB_DIRTY; 411 break; 412 case XFS_TRANS_SB_FREXTENTS: 413 /* 414 * Track the number of blocks allocated in the 415 * transaction. Make sure it does not exceed the 416 * number reserved. 417 */ 418 if (delta < 0) { 419 tp->t_rtx_res_used += (uint)-delta; 420 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); 421 } 422 tp->t_frextents_delta += delta; 423 break; 424 case XFS_TRANS_SB_RES_FREXTENTS: 425 /* 426 * The allocation has already been applied to the 427 * in-core superblock's counter. This should only 428 * be applied to the on-disk superblock. 429 */ 430 ASSERT(delta < 0); 431 tp->t_res_frextents_delta += delta; 432 break; 433 case XFS_TRANS_SB_DBLOCKS: 434 tp->t_dblocks_delta += delta; 435 break; 436 case XFS_TRANS_SB_AGCOUNT: 437 ASSERT(delta > 0); 438 tp->t_agcount_delta += delta; 439 break; 440 case XFS_TRANS_SB_IMAXPCT: 441 tp->t_imaxpct_delta += delta; 442 break; 443 case XFS_TRANS_SB_REXTSIZE: 444 tp->t_rextsize_delta += delta; 445 break; 446 case XFS_TRANS_SB_RBMBLOCKS: 447 tp->t_rbmblocks_delta += delta; 448 break; 449 case XFS_TRANS_SB_RBLOCKS: 450 tp->t_rblocks_delta += delta; 451 break; 452 case XFS_TRANS_SB_REXTENTS: 453 tp->t_rextents_delta += delta; 454 break; 455 case XFS_TRANS_SB_REXTSLOG: 456 tp->t_rextslog_delta += delta; 457 break; 458 default: 459 ASSERT(0); 460 return; 461 } 462 463 tp->t_flags |= flags; 464 } 465 466 /* 467 * xfs_trans_apply_sb_deltas() is called from the commit code 468 * to bring the superblock buffer into the current transaction 469 * and modify it as requested by earlier calls to xfs_trans_mod_sb(). 470 * 471 * For now we just look at each field allowed to change and change 472 * it if necessary. 473 */ 474 STATIC void 475 xfs_trans_apply_sb_deltas( 476 xfs_trans_t *tp) 477 { 478 struct xfs_dsb *sbp; 479 struct xfs_buf *bp; 480 int whole = 0; 481 482 bp = xfs_trans_getsb(tp); 483 sbp = bp->b_addr; 484 485 /* 486 * Only update the superblock counters if we are logging them 487 */ 488 if (!xfs_has_lazysbcount((tp->t_mountp))) { 489 if (tp->t_icount_delta) 490 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); 491 if (tp->t_ifree_delta) 492 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); 493 if (tp->t_fdblocks_delta) 494 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); 495 if (tp->t_res_fdblocks_delta) 496 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); 497 } 498 499 /* 500 * Updating frextents requires careful handling because it does not 501 * behave like the lazysb counters because we cannot rely on log 502 * recovery in older kenels to recompute the value from the rtbitmap. 503 * This means that the ondisk frextents must be consistent with the 504 * rtbitmap. 505 * 506 * Therefore, log the frextents change to the ondisk superblock and 507 * update the incore superblock so that future calls to xfs_log_sb 508 * write the correct value ondisk. 509 * 510 * Don't touch m_frextents because it includes incore reservations, 511 * and those are handled by the unreserve function. 512 */ 513 if (tp->t_frextents_delta || tp->t_res_frextents_delta) { 514 struct xfs_mount *mp = tp->t_mountp; 515 int64_t rtxdelta; 516 517 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta; 518 519 spin_lock(&mp->m_sb_lock); 520 be64_add_cpu(&sbp->sb_frextents, rtxdelta); 521 mp->m_sb.sb_frextents += rtxdelta; 522 spin_unlock(&mp->m_sb_lock); 523 } 524 525 if (tp->t_dblocks_delta) { 526 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); 527 whole = 1; 528 } 529 if (tp->t_agcount_delta) { 530 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); 531 whole = 1; 532 } 533 if (tp->t_imaxpct_delta) { 534 sbp->sb_imax_pct += tp->t_imaxpct_delta; 535 whole = 1; 536 } 537 if (tp->t_rextsize_delta) { 538 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); 539 whole = 1; 540 } 541 if (tp->t_rbmblocks_delta) { 542 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); 543 whole = 1; 544 } 545 if (tp->t_rblocks_delta) { 546 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); 547 whole = 1; 548 } 549 if (tp->t_rextents_delta) { 550 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); 551 whole = 1; 552 } 553 if (tp->t_rextslog_delta) { 554 sbp->sb_rextslog += tp->t_rextslog_delta; 555 whole = 1; 556 } 557 558 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 559 if (whole) 560 /* 561 * Log the whole thing, the fields are noncontiguous. 562 */ 563 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); 564 else 565 /* 566 * Since all the modifiable fields are contiguous, we 567 * can get away with this. 568 */ 569 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount), 570 offsetof(struct xfs_dsb, sb_frextents) + 571 sizeof(sbp->sb_frextents) - 1); 572 } 573 574 /* 575 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and 576 * apply superblock counter changes to the in-core superblock. The 577 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT 578 * applied to the in-core superblock. The idea is that that has already been 579 * done. 580 * 581 * If we are not logging superblock counters, then the inode allocated/free and 582 * used block counts are not updated in the on disk superblock. In this case, 583 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we 584 * still need to update the incore superblock with the changes. 585 * 586 * Deltas for the inode count are +/-64, hence we use a large batch size of 128 587 * so we don't need to take the counter lock on every update. 588 */ 589 #define XFS_ICOUNT_BATCH 128 590 591 void 592 xfs_trans_unreserve_and_mod_sb( 593 struct xfs_trans *tp) 594 { 595 struct xfs_mount *mp = tp->t_mountp; 596 int64_t blkdelta = tp->t_blk_res; 597 int64_t rtxdelta = tp->t_rtx_res; 598 int64_t idelta = 0; 599 int64_t ifreedelta = 0; 600 601 /* 602 * Calculate the deltas. 603 * 604 * t_fdblocks_delta and t_frextents_delta can be positive or negative: 605 * 606 * - positive values indicate blocks freed in the transaction. 607 * - negative values indicate blocks allocated in the transaction 608 * 609 * Negative values can only happen if the transaction has a block 610 * reservation that covers the allocated block. The end result is 611 * that the calculated delta values must always be positive and we 612 * can only put back previous allocated or reserved blocks here. 613 */ 614 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0); 615 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 616 blkdelta += tp->t_fdblocks_delta; 617 ASSERT(blkdelta >= 0); 618 } 619 620 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0); 621 if (tp->t_flags & XFS_TRANS_SB_DIRTY) { 622 rtxdelta += tp->t_frextents_delta; 623 ASSERT(rtxdelta >= 0); 624 } 625 626 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { 627 idelta = tp->t_icount_delta; 628 ifreedelta = tp->t_ifree_delta; 629 } 630 631 /* apply the per-cpu counters */ 632 if (blkdelta) 633 xfs_add_fdblocks(mp, blkdelta); 634 635 if (idelta) 636 percpu_counter_add_batch(&mp->m_icount, idelta, 637 XFS_ICOUNT_BATCH); 638 639 if (ifreedelta) 640 percpu_counter_add(&mp->m_ifree, ifreedelta); 641 642 if (rtxdelta) 643 xfs_add_frextents(mp, rtxdelta); 644 645 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY)) 646 return; 647 648 /* apply remaining deltas */ 649 spin_lock(&mp->m_sb_lock); 650 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta; 651 mp->m_sb.sb_icount += idelta; 652 mp->m_sb.sb_ifree += ifreedelta; 653 /* 654 * Do not touch sb_frextents here because we are dealing with incore 655 * reservation. sb_frextents is not part of the lazy sb counters so it 656 * must be consistent with the ondisk rtbitmap and must never include 657 * incore reservations. 658 */ 659 mp->m_sb.sb_dblocks += tp->t_dblocks_delta; 660 mp->m_sb.sb_agcount += tp->t_agcount_delta; 661 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; 662 mp->m_sb.sb_rextsize += tp->t_rextsize_delta; 663 if (tp->t_rextsize_delta) { 664 mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize); 665 mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize); 666 } 667 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; 668 mp->m_sb.sb_rblocks += tp->t_rblocks_delta; 669 mp->m_sb.sb_rextents += tp->t_rextents_delta; 670 mp->m_sb.sb_rextslog += tp->t_rextslog_delta; 671 spin_unlock(&mp->m_sb_lock); 672 673 /* 674 * Debug checks outside of the spinlock so they don't lock up the 675 * machine if they fail. 676 */ 677 ASSERT(mp->m_sb.sb_imax_pct >= 0); 678 ASSERT(mp->m_sb.sb_rextslog >= 0); 679 } 680 681 /* Add the given log item to the transaction's list of log items. */ 682 void 683 xfs_trans_add_item( 684 struct xfs_trans *tp, 685 struct xfs_log_item *lip) 686 { 687 ASSERT(lip->li_log == tp->t_mountp->m_log); 688 ASSERT(lip->li_ailp == tp->t_mountp->m_ail); 689 ASSERT(list_empty(&lip->li_trans)); 690 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); 691 692 list_add_tail(&lip->li_trans, &tp->t_items); 693 trace_xfs_trans_add_item(tp, _RET_IP_); 694 } 695 696 /* 697 * Unlink the log item from the transaction. the log item is no longer 698 * considered dirty in this transaction, as the linked transaction has 699 * finished, either by abort or commit completion. 700 */ 701 void 702 xfs_trans_del_item( 703 struct xfs_log_item *lip) 704 { 705 clear_bit(XFS_LI_DIRTY, &lip->li_flags); 706 list_del_init(&lip->li_trans); 707 } 708 709 /* Detach and unlock all of the items in a transaction */ 710 static void 711 xfs_trans_free_items( 712 struct xfs_trans *tp, 713 bool abort) 714 { 715 struct xfs_log_item *lip, *next; 716 717 trace_xfs_trans_free_items(tp, _RET_IP_); 718 719 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 720 xfs_trans_del_item(lip); 721 if (abort) 722 set_bit(XFS_LI_ABORTED, &lip->li_flags); 723 if (lip->li_ops->iop_release) 724 lip->li_ops->iop_release(lip); 725 } 726 } 727 728 static inline void 729 xfs_log_item_batch_insert( 730 struct xfs_ail *ailp, 731 struct xfs_ail_cursor *cur, 732 struct xfs_log_item **log_items, 733 int nr_items, 734 xfs_lsn_t commit_lsn) 735 { 736 int i; 737 738 spin_lock(&ailp->ail_lock); 739 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 740 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 741 742 for (i = 0; i < nr_items; i++) { 743 struct xfs_log_item *lip = log_items[i]; 744 745 if (lip->li_ops->iop_unpin) 746 lip->li_ops->iop_unpin(lip, 0); 747 } 748 } 749 750 /* 751 * Bulk operation version of xfs_trans_committed that takes a log vector of 752 * items to insert into the AIL. This uses bulk AIL insertion techniques to 753 * minimise lock traffic. 754 * 755 * If we are called with the aborted flag set, it is because a log write during 756 * a CIL checkpoint commit has failed. In this case, all the items in the 757 * checkpoint have already gone through iop_committed and iop_committing, which 758 * means that checkpoint commit abort handling is treated exactly the same 759 * as an iclog write error even though we haven't started any IO yet. Hence in 760 * this case all we need to do is iop_committed processing, followed by an 761 * iop_unpin(aborted) call. 762 * 763 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 764 * at the end of the AIL, the insert cursor avoids the need to walk 765 * the AIL to find the insertion point on every xfs_log_item_batch_insert() 766 * call. This saves a lot of needless list walking and is a net win, even 767 * though it slightly increases that amount of AIL lock traffic to set it up 768 * and tear it down. 769 */ 770 void 771 xfs_trans_committed_bulk( 772 struct xfs_ail *ailp, 773 struct list_head *lv_chain, 774 xfs_lsn_t commit_lsn, 775 bool aborted) 776 { 777 #define LOG_ITEM_BATCH_SIZE 32 778 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 779 struct xfs_log_vec *lv; 780 struct xfs_ail_cursor cur; 781 int i = 0; 782 783 spin_lock(&ailp->ail_lock); 784 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); 785 spin_unlock(&ailp->ail_lock); 786 787 /* unpin all the log items */ 788 list_for_each_entry(lv, lv_chain, lv_list) { 789 struct xfs_log_item *lip = lv->lv_item; 790 xfs_lsn_t item_lsn; 791 792 if (aborted) 793 set_bit(XFS_LI_ABORTED, &lip->li_flags); 794 795 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 796 lip->li_ops->iop_release(lip); 797 continue; 798 } 799 800 if (lip->li_ops->iop_committed) 801 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); 802 else 803 item_lsn = commit_lsn; 804 805 /* item_lsn of -1 means the item needs no further processing */ 806 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 807 continue; 808 809 /* 810 * if we are aborting the operation, no point in inserting the 811 * object into the AIL as we are in a shutdown situation. 812 */ 813 if (aborted) { 814 ASSERT(xlog_is_shutdown(ailp->ail_log)); 815 if (lip->li_ops->iop_unpin) 816 lip->li_ops->iop_unpin(lip, 1); 817 continue; 818 } 819 820 if (item_lsn != commit_lsn) { 821 822 /* 823 * Not a bulk update option due to unusual item_lsn. 824 * Push into AIL immediately, rechecking the lsn once 825 * we have the ail lock. Then unpin the item. This does 826 * not affect the AIL cursor the bulk insert path is 827 * using. 828 */ 829 spin_lock(&ailp->ail_lock); 830 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 831 xfs_trans_ail_update(ailp, lip, item_lsn); 832 else 833 spin_unlock(&ailp->ail_lock); 834 if (lip->li_ops->iop_unpin) 835 lip->li_ops->iop_unpin(lip, 0); 836 continue; 837 } 838 839 /* Item is a candidate for bulk AIL insert. */ 840 log_items[i++] = lv->lv_item; 841 if (i >= LOG_ITEM_BATCH_SIZE) { 842 xfs_log_item_batch_insert(ailp, &cur, log_items, 843 LOG_ITEM_BATCH_SIZE, commit_lsn); 844 i = 0; 845 } 846 } 847 848 /* make sure we insert the remainder! */ 849 if (i) 850 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); 851 852 spin_lock(&ailp->ail_lock); 853 xfs_trans_ail_cursor_done(&cur); 854 spin_unlock(&ailp->ail_lock); 855 } 856 857 /* 858 * Sort transaction items prior to running precommit operations. This will 859 * attempt to order the items such that they will always be locked in the same 860 * order. Items that have no sort function are moved to the end of the list 861 * and so are locked last. 862 * 863 * This may need refinement as different types of objects add sort functions. 864 * 865 * Function is more complex than it needs to be because we are comparing 64 bit 866 * values and the function only returns 32 bit values. 867 */ 868 static int 869 xfs_trans_precommit_sort( 870 void *unused_arg, 871 const struct list_head *a, 872 const struct list_head *b) 873 { 874 struct xfs_log_item *lia = container_of(a, 875 struct xfs_log_item, li_trans); 876 struct xfs_log_item *lib = container_of(b, 877 struct xfs_log_item, li_trans); 878 int64_t diff; 879 880 /* 881 * If both items are non-sortable, leave them alone. If only one is 882 * sortable, move the non-sortable item towards the end of the list. 883 */ 884 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort) 885 return 0; 886 if (!lia->li_ops->iop_sort) 887 return 1; 888 if (!lib->li_ops->iop_sort) 889 return -1; 890 891 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib); 892 if (diff < 0) 893 return -1; 894 if (diff > 0) 895 return 1; 896 return 0; 897 } 898 899 /* 900 * Run transaction precommit functions. 901 * 902 * If there is an error in any of the callouts, then stop immediately and 903 * trigger a shutdown to abort the transaction. There is no recovery possible 904 * from errors at this point as the transaction is dirty.... 905 */ 906 static int 907 xfs_trans_run_precommits( 908 struct xfs_trans *tp) 909 { 910 struct xfs_mount *mp = tp->t_mountp; 911 struct xfs_log_item *lip, *n; 912 int error = 0; 913 914 /* 915 * Sort the item list to avoid ABBA deadlocks with other transactions 916 * running precommit operations that lock multiple shared items such as 917 * inode cluster buffers. 918 */ 919 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort); 920 921 /* 922 * Precommit operations can remove the log item from the transaction 923 * if the log item exists purely to delay modifications until they 924 * can be ordered against other operations. Hence we have to use 925 * list_for_each_entry_safe() here. 926 */ 927 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) { 928 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 929 continue; 930 if (lip->li_ops->iop_precommit) { 931 error = lip->li_ops->iop_precommit(tp, lip); 932 if (error) 933 break; 934 } 935 } 936 if (error) 937 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 938 return error; 939 } 940 941 /* 942 * Commit the given transaction to the log. 943 * 944 * XFS disk error handling mechanism is not based on a typical 945 * transaction abort mechanism. Logically after the filesystem 946 * gets marked 'SHUTDOWN', we can't let any new transactions 947 * be durable - ie. committed to disk - because some metadata might 948 * be inconsistent. In such cases, this returns an error, and the 949 * caller may assume that all locked objects joined to the transaction 950 * have already been unlocked as if the commit had succeeded. 951 * Do not reference the transaction structure after this call. 952 */ 953 static int 954 __xfs_trans_commit( 955 struct xfs_trans *tp, 956 bool regrant) 957 { 958 struct xfs_mount *mp = tp->t_mountp; 959 struct xlog *log = mp->m_log; 960 xfs_csn_t commit_seq = 0; 961 int error = 0; 962 int sync = tp->t_flags & XFS_TRANS_SYNC; 963 964 trace_xfs_trans_commit(tp, _RET_IP_); 965 966 error = xfs_trans_run_precommits(tp); 967 if (error) { 968 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) 969 xfs_defer_cancel(tp); 970 goto out_unreserve; 971 } 972 973 /* 974 * Finish deferred items on final commit. Only permanent transactions 975 * should ever have deferred ops. 976 */ 977 WARN_ON_ONCE(!list_empty(&tp->t_dfops) && 978 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); 979 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { 980 error = xfs_defer_finish_noroll(&tp); 981 if (error) 982 goto out_unreserve; 983 984 /* Run precommits from final tx in defer chain. */ 985 error = xfs_trans_run_precommits(tp); 986 if (error) 987 goto out_unreserve; 988 } 989 990 /* 991 * If there is nothing to be logged by the transaction, 992 * then unlock all of the items associated with the 993 * transaction and free the transaction structure. 994 * Also make sure to return any reserved blocks to 995 * the free pool. 996 */ 997 if (!(tp->t_flags & XFS_TRANS_DIRTY)) 998 goto out_unreserve; 999 1000 /* 1001 * We must check against log shutdown here because we cannot abort log 1002 * items and leave them dirty, inconsistent and unpinned in memory while 1003 * the log is active. This leaves them open to being written back to 1004 * disk, and that will lead to on-disk corruption. 1005 */ 1006 if (xlog_is_shutdown(log)) { 1007 error = -EIO; 1008 goto out_unreserve; 1009 } 1010 1011 ASSERT(tp->t_ticket != NULL); 1012 1013 /* 1014 * If we need to update the superblock, then do it now. 1015 */ 1016 if (tp->t_flags & XFS_TRANS_SB_DIRTY) 1017 xfs_trans_apply_sb_deltas(tp); 1018 xfs_trans_apply_dquot_deltas(tp); 1019 1020 xlog_cil_commit(log, tp, &commit_seq, regrant); 1021 1022 xfs_trans_free(tp); 1023 1024 /* 1025 * If the transaction needs to be synchronous, then force the 1026 * log out now and wait for it. 1027 */ 1028 if (sync) { 1029 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL); 1030 XFS_STATS_INC(mp, xs_trans_sync); 1031 } else { 1032 XFS_STATS_INC(mp, xs_trans_async); 1033 } 1034 1035 return error; 1036 1037 out_unreserve: 1038 xfs_trans_unreserve_and_mod_sb(tp); 1039 1040 /* 1041 * It is indeed possible for the transaction to be not dirty but 1042 * the dqinfo portion to be. All that means is that we have some 1043 * (non-persistent) quota reservations that need to be unreserved. 1044 */ 1045 xfs_trans_unreserve_and_mod_dquots(tp); 1046 if (tp->t_ticket) { 1047 if (regrant && !xlog_is_shutdown(log)) 1048 xfs_log_ticket_regrant(log, tp->t_ticket); 1049 else 1050 xfs_log_ticket_ungrant(log, tp->t_ticket); 1051 tp->t_ticket = NULL; 1052 } 1053 xfs_trans_free_items(tp, !!error); 1054 xfs_trans_free(tp); 1055 1056 XFS_STATS_INC(mp, xs_trans_empty); 1057 return error; 1058 } 1059 1060 int 1061 xfs_trans_commit( 1062 struct xfs_trans *tp) 1063 { 1064 return __xfs_trans_commit(tp, false); 1065 } 1066 1067 /* 1068 * Unlock all of the transaction's items and free the transaction. If the 1069 * transaction is dirty, we must shut down the filesystem because there is no 1070 * way to restore them to their previous state. 1071 * 1072 * If the transaction has made a log reservation, make sure to release it as 1073 * well. 1074 * 1075 * This is a high level function (equivalent to xfs_trans_commit()) and so can 1076 * be called after the transaction has effectively been aborted due to the mount 1077 * being shut down. However, if the mount has not been shut down and the 1078 * transaction is dirty we will shut the mount down and, in doing so, that 1079 * guarantees that the log is shut down, too. Hence we don't need to be as 1080 * careful with shutdown state and dirty items here as we need to be in 1081 * xfs_trans_commit(). 1082 */ 1083 void 1084 xfs_trans_cancel( 1085 struct xfs_trans *tp) 1086 { 1087 struct xfs_mount *mp = tp->t_mountp; 1088 struct xlog *log = mp->m_log; 1089 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY); 1090 1091 trace_xfs_trans_cancel(tp, _RET_IP_); 1092 1093 /* 1094 * It's never valid to cancel a transaction with deferred ops attached, 1095 * because the transaction is effectively dirty. Complain about this 1096 * loudly before freeing the in-memory defer items and shutting down the 1097 * filesystem. 1098 */ 1099 if (!list_empty(&tp->t_dfops)) { 1100 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1101 dirty = true; 1102 xfs_defer_cancel(tp); 1103 } 1104 1105 /* 1106 * See if the caller is relying on us to shut down the filesystem. We 1107 * only want an error report if there isn't already a shutdown in 1108 * progress, so we only need to check against the mount shutdown state 1109 * here. 1110 */ 1111 if (dirty && !xfs_is_shutdown(mp)) { 1112 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); 1113 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1114 } 1115 #ifdef DEBUG 1116 /* Log items need to be consistent until the log is shut down. */ 1117 if (!dirty && !xlog_is_shutdown(log)) { 1118 struct xfs_log_item *lip; 1119 1120 list_for_each_entry(lip, &tp->t_items, li_trans) 1121 ASSERT(!xlog_item_is_intent_done(lip)); 1122 } 1123 #endif 1124 xfs_trans_unreserve_and_mod_sb(tp); 1125 xfs_trans_unreserve_and_mod_dquots(tp); 1126 1127 if (tp->t_ticket) { 1128 xfs_log_ticket_ungrant(log, tp->t_ticket); 1129 tp->t_ticket = NULL; 1130 } 1131 1132 xfs_trans_free_items(tp, dirty); 1133 xfs_trans_free(tp); 1134 } 1135 1136 /* 1137 * Roll from one trans in the sequence of PERMANENT transactions to 1138 * the next: permanent transactions are only flushed out when 1139 * committed with xfs_trans_commit(), but we still want as soon 1140 * as possible to let chunks of it go to the log. So we commit the 1141 * chunk we've been working on and get a new transaction to continue. 1142 */ 1143 int 1144 xfs_trans_roll( 1145 struct xfs_trans **tpp) 1146 { 1147 struct xfs_trans *trans = *tpp; 1148 struct xfs_trans_res tres; 1149 int error; 1150 1151 trace_xfs_trans_roll(trans, _RET_IP_); 1152 1153 /* 1154 * Copy the critical parameters from one trans to the next. 1155 */ 1156 tres.tr_logres = trans->t_log_res; 1157 tres.tr_logcount = trans->t_log_count; 1158 1159 *tpp = xfs_trans_dup(trans); 1160 1161 /* 1162 * Commit the current transaction. 1163 * If this commit failed, then it'd just unlock those items that 1164 * are not marked ihold. That also means that a filesystem shutdown 1165 * is in progress. The caller takes the responsibility to cancel 1166 * the duplicate transaction that gets returned. 1167 */ 1168 error = __xfs_trans_commit(trans, true); 1169 if (error) 1170 return error; 1171 1172 /* 1173 * Reserve space in the log for the next transaction. 1174 * This also pushes items in the "AIL", the list of logged items, 1175 * out to disk if they are taking up space at the tail of the log 1176 * that we want to use. This requires that either nothing be locked 1177 * across this call, or that anything that is locked be logged in 1178 * the prior and the next transactions. 1179 */ 1180 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1181 return xfs_trans_reserve(*tpp, &tres, 0, 0); 1182 } 1183 1184 /* 1185 * Allocate an transaction, lock and join the inode to it, and reserve quota. 1186 * 1187 * The caller must ensure that the on-disk dquots attached to this inode have 1188 * already been allocated and initialized. The caller is responsible for 1189 * releasing ILOCK_EXCL if a new transaction is returned. 1190 */ 1191 int 1192 xfs_trans_alloc_inode( 1193 struct xfs_inode *ip, 1194 struct xfs_trans_res *resv, 1195 unsigned int dblocks, 1196 unsigned int rblocks, 1197 bool force, 1198 struct xfs_trans **tpp) 1199 { 1200 struct xfs_trans *tp; 1201 struct xfs_mount *mp = ip->i_mount; 1202 bool retried = false; 1203 int error; 1204 1205 retry: 1206 error = xfs_trans_alloc(mp, resv, dblocks, 1207 xfs_extlen_to_rtxlen(mp, rblocks), 1208 force ? XFS_TRANS_RESERVE : 0, &tp); 1209 if (error) 1210 return error; 1211 1212 xfs_ilock(ip, XFS_ILOCK_EXCL); 1213 xfs_trans_ijoin(tp, ip, 0); 1214 1215 error = xfs_qm_dqattach_locked(ip, false); 1216 if (error) { 1217 /* Caller should have allocated the dquots! */ 1218 ASSERT(error != -ENOENT); 1219 goto out_cancel; 1220 } 1221 1222 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); 1223 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1224 xfs_trans_cancel(tp); 1225 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1226 xfs_blockgc_free_quota(ip, 0); 1227 retried = true; 1228 goto retry; 1229 } 1230 if (error) 1231 goto out_cancel; 1232 1233 *tpp = tp; 1234 return 0; 1235 1236 out_cancel: 1237 xfs_trans_cancel(tp); 1238 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1239 return error; 1240 } 1241 1242 /* 1243 * Try to reserve more blocks for a transaction. 1244 * 1245 * This is for callers that need to attach resources to a transaction, scan 1246 * those resources to determine the space reservation requirements, and then 1247 * modify the attached resources. In other words, online repair. This can 1248 * fail due to ENOSPC, so the caller must be able to cancel the transaction 1249 * without shutting down the fs. 1250 */ 1251 int 1252 xfs_trans_reserve_more( 1253 struct xfs_trans *tp, 1254 unsigned int blocks, 1255 unsigned int rtextents) 1256 { 1257 struct xfs_trans_res resv = { }; 1258 1259 return xfs_trans_reserve(tp, &resv, blocks, rtextents); 1260 } 1261 1262 /* 1263 * Try to reserve more blocks and file quota for a transaction. Same 1264 * conditions of usage as xfs_trans_reserve_more. 1265 */ 1266 int 1267 xfs_trans_reserve_more_inode( 1268 struct xfs_trans *tp, 1269 struct xfs_inode *ip, 1270 unsigned int dblocks, 1271 unsigned int rblocks, 1272 bool force_quota) 1273 { 1274 struct xfs_trans_res resv = { }; 1275 struct xfs_mount *mp = ip->i_mount; 1276 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks); 1277 int error; 1278 1279 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 1280 1281 error = xfs_trans_reserve(tp, &resv, dblocks, rtx); 1282 if (error) 1283 return error; 1284 1285 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino)) 1286 return 0; 1287 1288 if (tp->t_flags & XFS_TRANS_RESERVE) 1289 force_quota = true; 1290 1291 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, 1292 force_quota); 1293 if (!error) 1294 return 0; 1295 1296 /* Quota failed, give back the new reservation. */ 1297 xfs_add_fdblocks(mp, dblocks); 1298 tp->t_blk_res -= dblocks; 1299 xfs_add_frextents(mp, rtx); 1300 tp->t_rtx_res -= rtx; 1301 return error; 1302 } 1303 1304 /* 1305 * Allocate an transaction in preparation for inode creation by reserving quota 1306 * against the given dquots. Callers are not required to hold any inode locks. 1307 */ 1308 int 1309 xfs_trans_alloc_icreate( 1310 struct xfs_mount *mp, 1311 struct xfs_trans_res *resv, 1312 struct xfs_dquot *udqp, 1313 struct xfs_dquot *gdqp, 1314 struct xfs_dquot *pdqp, 1315 unsigned int dblocks, 1316 struct xfs_trans **tpp) 1317 { 1318 struct xfs_trans *tp; 1319 bool retried = false; 1320 int error; 1321 1322 retry: 1323 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); 1324 if (error) 1325 return error; 1326 1327 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); 1328 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1329 xfs_trans_cancel(tp); 1330 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1331 retried = true; 1332 goto retry; 1333 } 1334 if (error) { 1335 xfs_trans_cancel(tp); 1336 return error; 1337 } 1338 1339 *tpp = tp; 1340 return 0; 1341 } 1342 1343 /* 1344 * Allocate an transaction, lock and join the inode to it, and reserve quota 1345 * in preparation for inode attribute changes that include uid, gid, or prid 1346 * changes. 1347 * 1348 * The caller must ensure that the on-disk dquots attached to this inode have 1349 * already been allocated and initialized. The ILOCK will be dropped when the 1350 * transaction is committed or cancelled. 1351 */ 1352 int 1353 xfs_trans_alloc_ichange( 1354 struct xfs_inode *ip, 1355 struct xfs_dquot *new_udqp, 1356 struct xfs_dquot *new_gdqp, 1357 struct xfs_dquot *new_pdqp, 1358 bool force, 1359 struct xfs_trans **tpp) 1360 { 1361 struct xfs_trans *tp; 1362 struct xfs_mount *mp = ip->i_mount; 1363 struct xfs_dquot *udqp; 1364 struct xfs_dquot *gdqp; 1365 struct xfs_dquot *pdqp; 1366 bool retried = false; 1367 int error; 1368 1369 retry: 1370 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1371 if (error) 1372 return error; 1373 1374 xfs_ilock(ip, XFS_ILOCK_EXCL); 1375 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1376 1377 error = xfs_qm_dqattach_locked(ip, false); 1378 if (error) { 1379 /* Caller should have allocated the dquots! */ 1380 ASSERT(error != -ENOENT); 1381 goto out_cancel; 1382 } 1383 1384 /* 1385 * For each quota type, skip quota reservations if the inode's dquots 1386 * now match the ones that came from the caller, or the caller didn't 1387 * pass one in. The inode's dquots can change if we drop the ILOCK to 1388 * perform a blockgc scan, so we must preserve the caller's arguments. 1389 */ 1390 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL; 1391 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL; 1392 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL; 1393 if (udqp || gdqp || pdqp) { 1394 unsigned int qflags = XFS_QMOPT_RES_REGBLKS; 1395 1396 if (force) 1397 qflags |= XFS_QMOPT_FORCE_RES; 1398 1399 /* 1400 * Reserve enough quota to handle blocks on disk and reserved 1401 * for a delayed allocation. We'll actually transfer the 1402 * delalloc reservation between dquots at chown time, even 1403 * though that part is only semi-transactional. 1404 */ 1405 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp, 1406 pdqp, ip->i_nblocks + ip->i_delayed_blks, 1407 1, qflags); 1408 if ((error == -EDQUOT || error == -ENOSPC) && !retried) { 1409 xfs_trans_cancel(tp); 1410 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0); 1411 retried = true; 1412 goto retry; 1413 } 1414 if (error) 1415 goto out_cancel; 1416 } 1417 1418 *tpp = tp; 1419 return 0; 1420 1421 out_cancel: 1422 xfs_trans_cancel(tp); 1423 return error; 1424 } 1425 1426 /* 1427 * Allocate an transaction, lock and join the directory and child inodes to it, 1428 * and reserve quota for a directory update. If there isn't sufficient space, 1429 * @dblocks will be set to zero for a reservationless directory update and 1430 * @nospace_error will be set to a negative errno describing the space 1431 * constraint we hit. 1432 * 1433 * The caller must ensure that the on-disk dquots attached to this inode have 1434 * already been allocated and initialized. The ILOCKs will be dropped when the 1435 * transaction is committed or cancelled. 1436 * 1437 * Caller is responsible for unlocking the inodes manually upon return 1438 */ 1439 int 1440 xfs_trans_alloc_dir( 1441 struct xfs_inode *dp, 1442 struct xfs_trans_res *resv, 1443 struct xfs_inode *ip, 1444 unsigned int *dblocks, 1445 struct xfs_trans **tpp, 1446 int *nospace_error) 1447 { 1448 struct xfs_trans *tp; 1449 struct xfs_mount *mp = ip->i_mount; 1450 unsigned int resblks; 1451 bool retried = false; 1452 int error; 1453 1454 retry: 1455 *nospace_error = 0; 1456 resblks = *dblocks; 1457 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1458 if (error == -ENOSPC) { 1459 *nospace_error = error; 1460 resblks = 0; 1461 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp); 1462 } 1463 if (error) 1464 return error; 1465 1466 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 1467 1468 xfs_trans_ijoin(tp, dp, 0); 1469 xfs_trans_ijoin(tp, ip, 0); 1470 1471 error = xfs_qm_dqattach_locked(dp, false); 1472 if (error) { 1473 /* Caller should have allocated the dquots! */ 1474 ASSERT(error != -ENOENT); 1475 goto out_cancel; 1476 } 1477 1478 error = xfs_qm_dqattach_locked(ip, false); 1479 if (error) { 1480 /* Caller should have allocated the dquots! */ 1481 ASSERT(error != -ENOENT); 1482 goto out_cancel; 1483 } 1484 1485 if (resblks == 0) 1486 goto done; 1487 1488 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false); 1489 if (error == -EDQUOT || error == -ENOSPC) { 1490 if (!retried) { 1491 xfs_trans_cancel(tp); 1492 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1493 if (dp != ip) 1494 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1495 xfs_blockgc_free_quota(dp, 0); 1496 retried = true; 1497 goto retry; 1498 } 1499 1500 *nospace_error = error; 1501 resblks = 0; 1502 error = 0; 1503 } 1504 if (error) 1505 goto out_cancel; 1506 1507 done: 1508 *tpp = tp; 1509 *dblocks = resblks; 1510 return 0; 1511 1512 out_cancel: 1513 xfs_trans_cancel(tp); 1514 return error; 1515 } 1516