1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 #include "xfs_pwork.h" 39 #include "xfs_ag.h" 40 #include "xfs_defer.h" 41 #include "xfs_attr_item.h" 42 #include "xfs_xattr.h" 43 #include "xfs_iunlink_item.h" 44 #include "xfs_dahash_test.h" 45 #include "xfs_rtbitmap.h" 46 #include "scrub/stats.h" 47 48 #include <linux/magic.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 static const struct super_operations xfs_super_operations; 53 54 static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */ 55 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 56 #ifdef DEBUG 57 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 58 #endif 59 60 enum xfs_dax_mode { 61 XFS_DAX_INODE = 0, 62 XFS_DAX_ALWAYS = 1, 63 XFS_DAX_NEVER = 2, 64 }; 65 66 static void 67 xfs_mount_set_dax_mode( 68 struct xfs_mount *mp, 69 enum xfs_dax_mode mode) 70 { 71 switch (mode) { 72 case XFS_DAX_INODE: 73 mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER); 74 break; 75 case XFS_DAX_ALWAYS: 76 mp->m_features |= XFS_FEAT_DAX_ALWAYS; 77 mp->m_features &= ~XFS_FEAT_DAX_NEVER; 78 break; 79 case XFS_DAX_NEVER: 80 mp->m_features |= XFS_FEAT_DAX_NEVER; 81 mp->m_features &= ~XFS_FEAT_DAX_ALWAYS; 82 break; 83 } 84 } 85 86 static const struct constant_table dax_param_enums[] = { 87 {"inode", XFS_DAX_INODE }, 88 {"always", XFS_DAX_ALWAYS }, 89 {"never", XFS_DAX_NEVER }, 90 {} 91 }; 92 93 /* 94 * Table driven mount option parser. 95 */ 96 enum { 97 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 98 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 99 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 100 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 101 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 102 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 103 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 104 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 105 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, 106 }; 107 108 static const struct fs_parameter_spec xfs_fs_parameters[] = { 109 fsparam_u32("logbufs", Opt_logbufs), 110 fsparam_string("logbsize", Opt_logbsize), 111 fsparam_string("logdev", Opt_logdev), 112 fsparam_string("rtdev", Opt_rtdev), 113 fsparam_flag("wsync", Opt_wsync), 114 fsparam_flag("noalign", Opt_noalign), 115 fsparam_flag("swalloc", Opt_swalloc), 116 fsparam_u32("sunit", Opt_sunit), 117 fsparam_u32("swidth", Opt_swidth), 118 fsparam_flag("nouuid", Opt_nouuid), 119 fsparam_flag("grpid", Opt_grpid), 120 fsparam_flag("nogrpid", Opt_nogrpid), 121 fsparam_flag("bsdgroups", Opt_bsdgroups), 122 fsparam_flag("sysvgroups", Opt_sysvgroups), 123 fsparam_string("allocsize", Opt_allocsize), 124 fsparam_flag("norecovery", Opt_norecovery), 125 fsparam_flag("inode64", Opt_inode64), 126 fsparam_flag("inode32", Opt_inode32), 127 fsparam_flag("ikeep", Opt_ikeep), 128 fsparam_flag("noikeep", Opt_noikeep), 129 fsparam_flag("largeio", Opt_largeio), 130 fsparam_flag("nolargeio", Opt_nolargeio), 131 fsparam_flag("attr2", Opt_attr2), 132 fsparam_flag("noattr2", Opt_noattr2), 133 fsparam_flag("filestreams", Opt_filestreams), 134 fsparam_flag("quota", Opt_quota), 135 fsparam_flag("noquota", Opt_noquota), 136 fsparam_flag("usrquota", Opt_usrquota), 137 fsparam_flag("grpquota", Opt_grpquota), 138 fsparam_flag("prjquota", Opt_prjquota), 139 fsparam_flag("uquota", Opt_uquota), 140 fsparam_flag("gquota", Opt_gquota), 141 fsparam_flag("pquota", Opt_pquota), 142 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 143 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 144 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 145 fsparam_flag("qnoenforce", Opt_qnoenforce), 146 fsparam_flag("discard", Opt_discard), 147 fsparam_flag("nodiscard", Opt_nodiscard), 148 fsparam_flag("dax", Opt_dax), 149 fsparam_enum("dax", Opt_dax_enum, dax_param_enums), 150 {} 151 }; 152 153 struct proc_xfs_info { 154 uint64_t flag; 155 char *str; 156 }; 157 158 static int 159 xfs_fs_show_options( 160 struct seq_file *m, 161 struct dentry *root) 162 { 163 static struct proc_xfs_info xfs_info_set[] = { 164 /* the few simple ones we can get from the mount struct */ 165 { XFS_FEAT_IKEEP, ",ikeep" }, 166 { XFS_FEAT_WSYNC, ",wsync" }, 167 { XFS_FEAT_NOALIGN, ",noalign" }, 168 { XFS_FEAT_SWALLOC, ",swalloc" }, 169 { XFS_FEAT_NOUUID, ",nouuid" }, 170 { XFS_FEAT_NORECOVERY, ",norecovery" }, 171 { XFS_FEAT_ATTR2, ",attr2" }, 172 { XFS_FEAT_FILESTREAMS, ",filestreams" }, 173 { XFS_FEAT_GRPID, ",grpid" }, 174 { XFS_FEAT_DISCARD, ",discard" }, 175 { XFS_FEAT_LARGE_IOSIZE, ",largeio" }, 176 { XFS_FEAT_DAX_ALWAYS, ",dax=always" }, 177 { XFS_FEAT_DAX_NEVER, ",dax=never" }, 178 { 0, NULL } 179 }; 180 struct xfs_mount *mp = XFS_M(root->d_sb); 181 struct proc_xfs_info *xfs_infop; 182 183 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 184 if (mp->m_features & xfs_infop->flag) 185 seq_puts(m, xfs_infop->str); 186 } 187 188 seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64); 189 190 if (xfs_has_allocsize(mp)) 191 seq_printf(m, ",allocsize=%dk", 192 (1 << mp->m_allocsize_log) >> 10); 193 194 if (mp->m_logbufs > 0) 195 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 196 if (mp->m_logbsize > 0) 197 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 198 199 if (mp->m_logname) 200 seq_show_option(m, "logdev", mp->m_logname); 201 if (mp->m_rtname) 202 seq_show_option(m, "rtdev", mp->m_rtname); 203 204 if (mp->m_dalign > 0) 205 seq_printf(m, ",sunit=%d", 206 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 207 if (mp->m_swidth > 0) 208 seq_printf(m, ",swidth=%d", 209 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 210 211 if (mp->m_qflags & XFS_UQUOTA_ENFD) 212 seq_puts(m, ",usrquota"); 213 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 214 seq_puts(m, ",uqnoenforce"); 215 216 if (mp->m_qflags & XFS_PQUOTA_ENFD) 217 seq_puts(m, ",prjquota"); 218 else if (mp->m_qflags & XFS_PQUOTA_ACCT) 219 seq_puts(m, ",pqnoenforce"); 220 221 if (mp->m_qflags & XFS_GQUOTA_ENFD) 222 seq_puts(m, ",grpquota"); 223 else if (mp->m_qflags & XFS_GQUOTA_ACCT) 224 seq_puts(m, ",gqnoenforce"); 225 226 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 227 seq_puts(m, ",noquota"); 228 229 return 0; 230 } 231 232 static bool 233 xfs_set_inode_alloc_perag( 234 struct xfs_perag *pag, 235 xfs_ino_t ino, 236 xfs_agnumber_t max_metadata) 237 { 238 if (!xfs_is_inode32(pag->pag_mount)) { 239 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 240 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 241 return false; 242 } 243 244 if (ino > XFS_MAXINUMBER_32) { 245 clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 246 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 247 return false; 248 } 249 250 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 251 if (pag->pag_agno < max_metadata) 252 set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 253 else 254 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 255 return true; 256 } 257 258 /* 259 * Set parameters for inode allocation heuristics, taking into account 260 * filesystem size and inode32/inode64 mount options; i.e. specifically 261 * whether or not XFS_FEAT_SMALL_INUMS is set. 262 * 263 * Inode allocation patterns are altered only if inode32 is requested 264 * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large. 265 * If altered, XFS_OPSTATE_INODE32 is set as well. 266 * 267 * An agcount independent of that in the mount structure is provided 268 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 269 * to the potentially higher ag count. 270 * 271 * Returns the maximum AG index which may contain inodes. 272 */ 273 xfs_agnumber_t 274 xfs_set_inode_alloc( 275 struct xfs_mount *mp, 276 xfs_agnumber_t agcount) 277 { 278 xfs_agnumber_t index; 279 xfs_agnumber_t maxagi = 0; 280 xfs_sb_t *sbp = &mp->m_sb; 281 xfs_agnumber_t max_metadata; 282 xfs_agino_t agino; 283 xfs_ino_t ino; 284 285 /* 286 * Calculate how much should be reserved for inodes to meet 287 * the max inode percentage. Used only for inode32. 288 */ 289 if (M_IGEO(mp)->maxicount) { 290 uint64_t icount; 291 292 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 293 do_div(icount, 100); 294 icount += sbp->sb_agblocks - 1; 295 do_div(icount, sbp->sb_agblocks); 296 max_metadata = icount; 297 } else { 298 max_metadata = agcount; 299 } 300 301 /* Get the last possible inode in the filesystem */ 302 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 303 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 304 305 /* 306 * If user asked for no more than 32-bit inodes, and the fs is 307 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter 308 * the allocator to accommodate the request. 309 */ 310 if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32) 311 set_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); 312 else 313 clear_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); 314 315 for (index = 0; index < agcount; index++) { 316 struct xfs_perag *pag; 317 318 ino = XFS_AGINO_TO_INO(mp, index, agino); 319 320 pag = xfs_perag_get(mp, index); 321 if (xfs_set_inode_alloc_perag(pag, ino, max_metadata)) 322 maxagi++; 323 xfs_perag_put(pag); 324 } 325 326 return xfs_is_inode32(mp) ? maxagi : agcount; 327 } 328 329 static int 330 xfs_setup_dax_always( 331 struct xfs_mount *mp) 332 { 333 if (!mp->m_ddev_targp->bt_daxdev && 334 (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) { 335 xfs_alert(mp, 336 "DAX unsupported by block device. Turning off DAX."); 337 goto disable_dax; 338 } 339 340 if (mp->m_super->s_blocksize != PAGE_SIZE) { 341 xfs_alert(mp, 342 "DAX not supported for blocksize. Turning off DAX."); 343 goto disable_dax; 344 } 345 346 if (xfs_has_reflink(mp) && 347 bdev_is_partition(mp->m_ddev_targp->bt_bdev)) { 348 xfs_alert(mp, 349 "DAX and reflink cannot work with multi-partitions!"); 350 return -EINVAL; 351 } 352 353 return 0; 354 355 disable_dax: 356 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); 357 return 0; 358 } 359 360 STATIC int 361 xfs_blkdev_get( 362 xfs_mount_t *mp, 363 const char *name, 364 struct bdev_handle **handlep) 365 { 366 int error = 0; 367 368 *handlep = bdev_open_by_path(name, 369 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 370 mp->m_super, &fs_holder_ops); 371 if (IS_ERR(*handlep)) { 372 error = PTR_ERR(*handlep); 373 *handlep = NULL; 374 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 375 } 376 377 return error; 378 } 379 380 STATIC void 381 xfs_shutdown_devices( 382 struct xfs_mount *mp) 383 { 384 /* 385 * Udev is triggered whenever anyone closes a block device or unmounts 386 * a file systemm on a block device. 387 * The default udev rules invoke blkid to read the fs super and create 388 * symlinks to the bdev under /dev/disk. For this, it uses buffered 389 * reads through the page cache. 390 * 391 * xfs_db also uses buffered reads to examine metadata. There is no 392 * coordination between xfs_db and udev, which means that they can run 393 * concurrently. Note there is no coordination between the kernel and 394 * blkid either. 395 * 396 * On a system with 64k pages, the page cache can cache the superblock 397 * and the root inode (and hence the root directory) with the same 64k 398 * page. If udev spawns blkid after the mkfs and the system is busy 399 * enough that it is still running when xfs_db starts up, they'll both 400 * read from the same page in the pagecache. 401 * 402 * The unmount writes updated inode metadata to disk directly. The XFS 403 * buffer cache does not use the bdev pagecache, so it needs to 404 * invalidate that pagecache on unmount. If the above scenario occurs, 405 * the pagecache no longer reflects what's on disk, xfs_db reads the 406 * stale metadata, and fails to find /a. Most of the time this succeeds 407 * because closing a bdev invalidates the page cache, but when processes 408 * race, everyone loses. 409 */ 410 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 411 blkdev_issue_flush(mp->m_logdev_targp->bt_bdev); 412 invalidate_bdev(mp->m_logdev_targp->bt_bdev); 413 } 414 if (mp->m_rtdev_targp) { 415 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 416 invalidate_bdev(mp->m_rtdev_targp->bt_bdev); 417 } 418 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 419 invalidate_bdev(mp->m_ddev_targp->bt_bdev); 420 } 421 422 /* 423 * The file system configurations are: 424 * (1) device (partition) with data and internal log 425 * (2) logical volume with data and log subvolumes. 426 * (3) logical volume with data, log, and realtime subvolumes. 427 * 428 * We only have to handle opening the log and realtime volumes here if 429 * they are present. The data subvolume has already been opened by 430 * get_sb_bdev() and is stored in sb->s_bdev. 431 */ 432 STATIC int 433 xfs_open_devices( 434 struct xfs_mount *mp) 435 { 436 struct super_block *sb = mp->m_super; 437 struct block_device *ddev = sb->s_bdev; 438 struct bdev_handle *logdev_handle = NULL, *rtdev_handle = NULL; 439 int error; 440 441 /* 442 * Open real time and log devices - order is important. 443 */ 444 if (mp->m_logname) { 445 error = xfs_blkdev_get(mp, mp->m_logname, &logdev_handle); 446 if (error) 447 return error; 448 } 449 450 if (mp->m_rtname) { 451 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_handle); 452 if (error) 453 goto out_close_logdev; 454 455 if (rtdev_handle->bdev == ddev || 456 (logdev_handle && 457 rtdev_handle->bdev == logdev_handle->bdev)) { 458 xfs_warn(mp, 459 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 460 error = -EINVAL; 461 goto out_close_rtdev; 462 } 463 } 464 465 /* 466 * Setup xfs_mount buffer target pointers 467 */ 468 error = -ENOMEM; 469 mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_handle); 470 if (!mp->m_ddev_targp) 471 goto out_close_rtdev; 472 473 if (rtdev_handle) { 474 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_handle); 475 if (!mp->m_rtdev_targp) 476 goto out_free_ddev_targ; 477 } 478 479 if (logdev_handle && logdev_handle->bdev != ddev) { 480 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_handle); 481 if (!mp->m_logdev_targp) 482 goto out_free_rtdev_targ; 483 } else { 484 mp->m_logdev_targp = mp->m_ddev_targp; 485 /* Handle won't be used, drop it */ 486 if (logdev_handle) 487 bdev_release(logdev_handle); 488 } 489 490 return 0; 491 492 out_free_rtdev_targ: 493 if (mp->m_rtdev_targp) 494 xfs_free_buftarg(mp->m_rtdev_targp); 495 out_free_ddev_targ: 496 xfs_free_buftarg(mp->m_ddev_targp); 497 out_close_rtdev: 498 if (rtdev_handle) 499 bdev_release(rtdev_handle); 500 out_close_logdev: 501 if (logdev_handle) 502 bdev_release(logdev_handle); 503 return error; 504 } 505 506 /* 507 * Setup xfs_mount buffer target pointers based on superblock 508 */ 509 STATIC int 510 xfs_setup_devices( 511 struct xfs_mount *mp) 512 { 513 int error; 514 515 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 516 if (error) 517 return error; 518 519 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 520 unsigned int log_sector_size = BBSIZE; 521 522 if (xfs_has_sector(mp)) 523 log_sector_size = mp->m_sb.sb_logsectsize; 524 error = xfs_setsize_buftarg(mp->m_logdev_targp, 525 log_sector_size); 526 if (error) 527 return error; 528 } 529 if (mp->m_rtdev_targp) { 530 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 531 mp->m_sb.sb_sectsize); 532 if (error) 533 return error; 534 } 535 536 return 0; 537 } 538 539 STATIC int 540 xfs_init_mount_workqueues( 541 struct xfs_mount *mp) 542 { 543 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 544 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 545 1, mp->m_super->s_id); 546 if (!mp->m_buf_workqueue) 547 goto out; 548 549 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 550 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 551 0, mp->m_super->s_id); 552 if (!mp->m_unwritten_workqueue) 553 goto out_destroy_buf; 554 555 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 556 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 557 0, mp->m_super->s_id); 558 if (!mp->m_reclaim_workqueue) 559 goto out_destroy_unwritten; 560 561 mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s", 562 XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM), 563 0, mp->m_super->s_id); 564 if (!mp->m_blockgc_wq) 565 goto out_destroy_reclaim; 566 567 mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s", 568 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 569 1, mp->m_super->s_id); 570 if (!mp->m_inodegc_wq) 571 goto out_destroy_blockgc; 572 573 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", 574 XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id); 575 if (!mp->m_sync_workqueue) 576 goto out_destroy_inodegc; 577 578 return 0; 579 580 out_destroy_inodegc: 581 destroy_workqueue(mp->m_inodegc_wq); 582 out_destroy_blockgc: 583 destroy_workqueue(mp->m_blockgc_wq); 584 out_destroy_reclaim: 585 destroy_workqueue(mp->m_reclaim_workqueue); 586 out_destroy_unwritten: 587 destroy_workqueue(mp->m_unwritten_workqueue); 588 out_destroy_buf: 589 destroy_workqueue(mp->m_buf_workqueue); 590 out: 591 return -ENOMEM; 592 } 593 594 STATIC void 595 xfs_destroy_mount_workqueues( 596 struct xfs_mount *mp) 597 { 598 destroy_workqueue(mp->m_sync_workqueue); 599 destroy_workqueue(mp->m_blockgc_wq); 600 destroy_workqueue(mp->m_inodegc_wq); 601 destroy_workqueue(mp->m_reclaim_workqueue); 602 destroy_workqueue(mp->m_unwritten_workqueue); 603 destroy_workqueue(mp->m_buf_workqueue); 604 } 605 606 static void 607 xfs_flush_inodes_worker( 608 struct work_struct *work) 609 { 610 struct xfs_mount *mp = container_of(work, struct xfs_mount, 611 m_flush_inodes_work); 612 struct super_block *sb = mp->m_super; 613 614 if (down_read_trylock(&sb->s_umount)) { 615 sync_inodes_sb(sb); 616 up_read(&sb->s_umount); 617 } 618 } 619 620 /* 621 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 622 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 623 * for IO to complete so that we effectively throttle multiple callers to the 624 * rate at which IO is completing. 625 */ 626 void 627 xfs_flush_inodes( 628 struct xfs_mount *mp) 629 { 630 /* 631 * If flush_work() returns true then that means we waited for a flush 632 * which was already in progress. Don't bother running another scan. 633 */ 634 if (flush_work(&mp->m_flush_inodes_work)) 635 return; 636 637 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 638 flush_work(&mp->m_flush_inodes_work); 639 } 640 641 /* Catch misguided souls that try to use this interface on XFS */ 642 STATIC struct inode * 643 xfs_fs_alloc_inode( 644 struct super_block *sb) 645 { 646 BUG(); 647 return NULL; 648 } 649 650 /* 651 * Now that the generic code is guaranteed not to be accessing 652 * the linux inode, we can inactivate and reclaim the inode. 653 */ 654 STATIC void 655 xfs_fs_destroy_inode( 656 struct inode *inode) 657 { 658 struct xfs_inode *ip = XFS_I(inode); 659 660 trace_xfs_destroy_inode(ip); 661 662 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 663 XFS_STATS_INC(ip->i_mount, vn_rele); 664 XFS_STATS_INC(ip->i_mount, vn_remove); 665 xfs_inode_mark_reclaimable(ip); 666 } 667 668 static void 669 xfs_fs_dirty_inode( 670 struct inode *inode, 671 int flags) 672 { 673 struct xfs_inode *ip = XFS_I(inode); 674 struct xfs_mount *mp = ip->i_mount; 675 struct xfs_trans *tp; 676 677 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 678 return; 679 680 /* 681 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC) 682 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed 683 * in flags possibly together with I_DIRTY_SYNC. 684 */ 685 if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME)) 686 return; 687 688 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 689 return; 690 xfs_ilock(ip, XFS_ILOCK_EXCL); 691 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 692 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 693 xfs_trans_commit(tp); 694 } 695 696 /* 697 * Slab object creation initialisation for the XFS inode. 698 * This covers only the idempotent fields in the XFS inode; 699 * all other fields need to be initialised on allocation 700 * from the slab. This avoids the need to repeatedly initialise 701 * fields in the xfs inode that left in the initialise state 702 * when freeing the inode. 703 */ 704 STATIC void 705 xfs_fs_inode_init_once( 706 void *inode) 707 { 708 struct xfs_inode *ip = inode; 709 710 memset(ip, 0, sizeof(struct xfs_inode)); 711 712 /* vfs inode */ 713 inode_init_once(VFS_I(ip)); 714 715 /* xfs inode */ 716 atomic_set(&ip->i_pincount, 0); 717 spin_lock_init(&ip->i_flags_lock); 718 719 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 720 "xfsino", ip->i_ino); 721 } 722 723 /* 724 * We do an unlocked check for XFS_IDONTCACHE here because we are already 725 * serialised against cache hits here via the inode->i_lock and igrab() in 726 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 727 * racing with us, and it avoids needing to grab a spinlock here for every inode 728 * we drop the final reference on. 729 */ 730 STATIC int 731 xfs_fs_drop_inode( 732 struct inode *inode) 733 { 734 struct xfs_inode *ip = XFS_I(inode); 735 736 /* 737 * If this unlinked inode is in the middle of recovery, don't 738 * drop the inode just yet; log recovery will take care of 739 * that. See the comment for this inode flag. 740 */ 741 if (ip->i_flags & XFS_IRECOVERY) { 742 ASSERT(xlog_recovery_needed(ip->i_mount->m_log)); 743 return 0; 744 } 745 746 return generic_drop_inode(inode); 747 } 748 749 static void 750 xfs_mount_free( 751 struct xfs_mount *mp) 752 { 753 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 754 xfs_free_buftarg(mp->m_logdev_targp); 755 if (mp->m_rtdev_targp) 756 xfs_free_buftarg(mp->m_rtdev_targp); 757 if (mp->m_ddev_targp) 758 xfs_free_buftarg(mp->m_ddev_targp); 759 760 debugfs_remove(mp->m_debugfs); 761 kfree(mp->m_rtname); 762 kfree(mp->m_logname); 763 kmem_free(mp); 764 } 765 766 STATIC int 767 xfs_fs_sync_fs( 768 struct super_block *sb, 769 int wait) 770 { 771 struct xfs_mount *mp = XFS_M(sb); 772 int error; 773 774 trace_xfs_fs_sync_fs(mp, __return_address); 775 776 /* 777 * Doing anything during the async pass would be counterproductive. 778 */ 779 if (!wait) 780 return 0; 781 782 error = xfs_log_force(mp, XFS_LOG_SYNC); 783 if (error) 784 return error; 785 786 if (laptop_mode) { 787 /* 788 * The disk must be active because we're syncing. 789 * We schedule log work now (now that the disk is 790 * active) instead of later (when it might not be). 791 */ 792 flush_delayed_work(&mp->m_log->l_work); 793 } 794 795 /* 796 * If we are called with page faults frozen out, it means we are about 797 * to freeze the transaction subsystem. Take the opportunity to shut 798 * down inodegc because once SB_FREEZE_FS is set it's too late to 799 * prevent inactivation races with freeze. The fs doesn't get called 800 * again by the freezing process until after SB_FREEZE_FS has been set, 801 * so it's now or never. Same logic applies to speculative allocation 802 * garbage collection. 803 * 804 * We don't care if this is a normal syncfs call that does this or 805 * freeze that does this - we can run this multiple times without issue 806 * and we won't race with a restart because a restart can only occur 807 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE. 808 */ 809 if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) { 810 xfs_inodegc_stop(mp); 811 xfs_blockgc_stop(mp); 812 } 813 814 return 0; 815 } 816 817 STATIC int 818 xfs_fs_statfs( 819 struct dentry *dentry, 820 struct kstatfs *statp) 821 { 822 struct xfs_mount *mp = XFS_M(dentry->d_sb); 823 xfs_sb_t *sbp = &mp->m_sb; 824 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 825 uint64_t fakeinos, id; 826 uint64_t icount; 827 uint64_t ifree; 828 uint64_t fdblocks; 829 xfs_extlen_t lsize; 830 int64_t ffree; 831 832 /* 833 * Expedite background inodegc but don't wait. We do not want to block 834 * here waiting hours for a billion extent file to be truncated. 835 */ 836 xfs_inodegc_push(mp); 837 838 statp->f_type = XFS_SUPER_MAGIC; 839 statp->f_namelen = MAXNAMELEN - 1; 840 841 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 842 statp->f_fsid = u64_to_fsid(id); 843 844 icount = percpu_counter_sum(&mp->m_icount); 845 ifree = percpu_counter_sum(&mp->m_ifree); 846 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 847 848 spin_lock(&mp->m_sb_lock); 849 statp->f_bsize = sbp->sb_blocksize; 850 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 851 statp->f_blocks = sbp->sb_dblocks - lsize; 852 spin_unlock(&mp->m_sb_lock); 853 854 /* make sure statp->f_bfree does not underflow */ 855 statp->f_bfree = max_t(int64_t, 0, 856 fdblocks - xfs_fdblocks_unavailable(mp)); 857 statp->f_bavail = statp->f_bfree; 858 859 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 860 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 861 if (M_IGEO(mp)->maxicount) 862 statp->f_files = min_t(typeof(statp->f_files), 863 statp->f_files, 864 M_IGEO(mp)->maxicount); 865 866 /* If sb_icount overshot maxicount, report actual allocation */ 867 statp->f_files = max_t(typeof(statp->f_files), 868 statp->f_files, 869 sbp->sb_icount); 870 871 /* make sure statp->f_ffree does not underflow */ 872 ffree = statp->f_files - (icount - ifree); 873 statp->f_ffree = max_t(int64_t, ffree, 0); 874 875 876 if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) && 877 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 878 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 879 xfs_qm_statvfs(ip, statp); 880 881 if (XFS_IS_REALTIME_MOUNT(mp) && 882 (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 883 s64 freertx; 884 885 statp->f_blocks = sbp->sb_rblocks; 886 freertx = percpu_counter_sum_positive(&mp->m_frextents); 887 statp->f_bavail = statp->f_bfree = xfs_rtx_to_rtb(mp, freertx); 888 } 889 890 return 0; 891 } 892 893 STATIC void 894 xfs_save_resvblks(struct xfs_mount *mp) 895 { 896 mp->m_resblks_save = mp->m_resblks; 897 xfs_reserve_blocks(mp, 0); 898 } 899 900 STATIC void 901 xfs_restore_resvblks(struct xfs_mount *mp) 902 { 903 uint64_t resblks; 904 905 if (mp->m_resblks_save) { 906 resblks = mp->m_resblks_save; 907 mp->m_resblks_save = 0; 908 } else 909 resblks = xfs_default_resblks(mp); 910 911 xfs_reserve_blocks(mp, resblks); 912 } 913 914 /* 915 * Second stage of a freeze. The data is already frozen so we only 916 * need to take care of the metadata. Once that's done sync the superblock 917 * to the log to dirty it in case of a crash while frozen. This ensures that we 918 * will recover the unlinked inode lists on the next mount. 919 */ 920 STATIC int 921 xfs_fs_freeze( 922 struct super_block *sb) 923 { 924 struct xfs_mount *mp = XFS_M(sb); 925 unsigned int flags; 926 int ret; 927 928 /* 929 * The filesystem is now frozen far enough that memory reclaim 930 * cannot safely operate on the filesystem. Hence we need to 931 * set a GFP_NOFS context here to avoid recursion deadlocks. 932 */ 933 flags = memalloc_nofs_save(); 934 xfs_save_resvblks(mp); 935 ret = xfs_log_quiesce(mp); 936 memalloc_nofs_restore(flags); 937 938 /* 939 * For read-write filesystems, we need to restart the inodegc on error 940 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not 941 * going to be run to restart it now. We are at SB_FREEZE_FS level 942 * here, so we can restart safely without racing with a stop in 943 * xfs_fs_sync_fs(). 944 */ 945 if (ret && !xfs_is_readonly(mp)) { 946 xfs_blockgc_start(mp); 947 xfs_inodegc_start(mp); 948 } 949 950 return ret; 951 } 952 953 STATIC int 954 xfs_fs_unfreeze( 955 struct super_block *sb) 956 { 957 struct xfs_mount *mp = XFS_M(sb); 958 959 xfs_restore_resvblks(mp); 960 xfs_log_work_queue(mp); 961 962 /* 963 * Don't reactivate the inodegc worker on a readonly filesystem because 964 * inodes are sent directly to reclaim. Don't reactivate the blockgc 965 * worker because there are no speculative preallocations on a readonly 966 * filesystem. 967 */ 968 if (!xfs_is_readonly(mp)) { 969 xfs_blockgc_start(mp); 970 xfs_inodegc_start(mp); 971 } 972 973 return 0; 974 } 975 976 /* 977 * This function fills in xfs_mount_t fields based on mount args. 978 * Note: the superblock _has_ now been read in. 979 */ 980 STATIC int 981 xfs_finish_flags( 982 struct xfs_mount *mp) 983 { 984 /* Fail a mount where the logbuf is smaller than the log stripe */ 985 if (xfs_has_logv2(mp)) { 986 if (mp->m_logbsize <= 0 && 987 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 988 mp->m_logbsize = mp->m_sb.sb_logsunit; 989 } else if (mp->m_logbsize > 0 && 990 mp->m_logbsize < mp->m_sb.sb_logsunit) { 991 xfs_warn(mp, 992 "logbuf size must be greater than or equal to log stripe size"); 993 return -EINVAL; 994 } 995 } else { 996 /* Fail a mount if the logbuf is larger than 32K */ 997 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 998 xfs_warn(mp, 999 "logbuf size for version 1 logs must be 16K or 32K"); 1000 return -EINVAL; 1001 } 1002 } 1003 1004 /* 1005 * V5 filesystems always use attr2 format for attributes. 1006 */ 1007 if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) { 1008 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 1009 "attr2 is always enabled for V5 filesystems."); 1010 return -EINVAL; 1011 } 1012 1013 /* 1014 * prohibit r/w mounts of read-only filesystems 1015 */ 1016 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) { 1017 xfs_warn(mp, 1018 "cannot mount a read-only filesystem as read-write"); 1019 return -EROFS; 1020 } 1021 1022 if ((mp->m_qflags & XFS_GQUOTA_ACCT) && 1023 (mp->m_qflags & XFS_PQUOTA_ACCT) && 1024 !xfs_has_pquotino(mp)) { 1025 xfs_warn(mp, 1026 "Super block does not support project and group quota together"); 1027 return -EINVAL; 1028 } 1029 1030 return 0; 1031 } 1032 1033 static int 1034 xfs_init_percpu_counters( 1035 struct xfs_mount *mp) 1036 { 1037 int error; 1038 1039 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1040 if (error) 1041 return -ENOMEM; 1042 1043 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1044 if (error) 1045 goto free_icount; 1046 1047 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1048 if (error) 1049 goto free_ifree; 1050 1051 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1052 if (error) 1053 goto free_fdblocks; 1054 1055 error = percpu_counter_init(&mp->m_frextents, 0, GFP_KERNEL); 1056 if (error) 1057 goto free_delalloc; 1058 1059 return 0; 1060 1061 free_delalloc: 1062 percpu_counter_destroy(&mp->m_delalloc_blks); 1063 free_fdblocks: 1064 percpu_counter_destroy(&mp->m_fdblocks); 1065 free_ifree: 1066 percpu_counter_destroy(&mp->m_ifree); 1067 free_icount: 1068 percpu_counter_destroy(&mp->m_icount); 1069 return -ENOMEM; 1070 } 1071 1072 void 1073 xfs_reinit_percpu_counters( 1074 struct xfs_mount *mp) 1075 { 1076 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1077 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1078 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1079 percpu_counter_set(&mp->m_frextents, mp->m_sb.sb_frextents); 1080 } 1081 1082 static void 1083 xfs_destroy_percpu_counters( 1084 struct xfs_mount *mp) 1085 { 1086 percpu_counter_destroy(&mp->m_icount); 1087 percpu_counter_destroy(&mp->m_ifree); 1088 percpu_counter_destroy(&mp->m_fdblocks); 1089 ASSERT(xfs_is_shutdown(mp) || 1090 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1091 percpu_counter_destroy(&mp->m_delalloc_blks); 1092 percpu_counter_destroy(&mp->m_frextents); 1093 } 1094 1095 static int 1096 xfs_inodegc_init_percpu( 1097 struct xfs_mount *mp) 1098 { 1099 struct xfs_inodegc *gc; 1100 int cpu; 1101 1102 mp->m_inodegc = alloc_percpu(struct xfs_inodegc); 1103 if (!mp->m_inodegc) 1104 return -ENOMEM; 1105 1106 for_each_possible_cpu(cpu) { 1107 gc = per_cpu_ptr(mp->m_inodegc, cpu); 1108 gc->cpu = cpu; 1109 gc->mp = mp; 1110 init_llist_head(&gc->list); 1111 gc->items = 0; 1112 gc->error = 0; 1113 INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker); 1114 } 1115 return 0; 1116 } 1117 1118 static void 1119 xfs_inodegc_free_percpu( 1120 struct xfs_mount *mp) 1121 { 1122 if (!mp->m_inodegc) 1123 return; 1124 free_percpu(mp->m_inodegc); 1125 } 1126 1127 static void 1128 xfs_fs_put_super( 1129 struct super_block *sb) 1130 { 1131 struct xfs_mount *mp = XFS_M(sb); 1132 1133 xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid); 1134 xfs_filestream_unmount(mp); 1135 xfs_unmountfs(mp); 1136 1137 xfs_freesb(mp); 1138 xchk_mount_stats_free(mp); 1139 free_percpu(mp->m_stats.xs_stats); 1140 xfs_inodegc_free_percpu(mp); 1141 xfs_destroy_percpu_counters(mp); 1142 xfs_destroy_mount_workqueues(mp); 1143 xfs_shutdown_devices(mp); 1144 } 1145 1146 static long 1147 xfs_fs_nr_cached_objects( 1148 struct super_block *sb, 1149 struct shrink_control *sc) 1150 { 1151 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1152 if (WARN_ON_ONCE(!sb->s_fs_info)) 1153 return 0; 1154 return xfs_reclaim_inodes_count(XFS_M(sb)); 1155 } 1156 1157 static long 1158 xfs_fs_free_cached_objects( 1159 struct super_block *sb, 1160 struct shrink_control *sc) 1161 { 1162 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1163 } 1164 1165 static void 1166 xfs_fs_shutdown( 1167 struct super_block *sb) 1168 { 1169 xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED); 1170 } 1171 1172 static const struct super_operations xfs_super_operations = { 1173 .alloc_inode = xfs_fs_alloc_inode, 1174 .destroy_inode = xfs_fs_destroy_inode, 1175 .dirty_inode = xfs_fs_dirty_inode, 1176 .drop_inode = xfs_fs_drop_inode, 1177 .put_super = xfs_fs_put_super, 1178 .sync_fs = xfs_fs_sync_fs, 1179 .freeze_fs = xfs_fs_freeze, 1180 .unfreeze_fs = xfs_fs_unfreeze, 1181 .statfs = xfs_fs_statfs, 1182 .show_options = xfs_fs_show_options, 1183 .nr_cached_objects = xfs_fs_nr_cached_objects, 1184 .free_cached_objects = xfs_fs_free_cached_objects, 1185 .shutdown = xfs_fs_shutdown, 1186 }; 1187 1188 static int 1189 suffix_kstrtoint( 1190 const char *s, 1191 unsigned int base, 1192 int *res) 1193 { 1194 int last, shift_left_factor = 0, _res; 1195 char *value; 1196 int ret = 0; 1197 1198 value = kstrdup(s, GFP_KERNEL); 1199 if (!value) 1200 return -ENOMEM; 1201 1202 last = strlen(value) - 1; 1203 if (value[last] == 'K' || value[last] == 'k') { 1204 shift_left_factor = 10; 1205 value[last] = '\0'; 1206 } 1207 if (value[last] == 'M' || value[last] == 'm') { 1208 shift_left_factor = 20; 1209 value[last] = '\0'; 1210 } 1211 if (value[last] == 'G' || value[last] == 'g') { 1212 shift_left_factor = 30; 1213 value[last] = '\0'; 1214 } 1215 1216 if (kstrtoint(value, base, &_res)) 1217 ret = -EINVAL; 1218 kfree(value); 1219 *res = _res << shift_left_factor; 1220 return ret; 1221 } 1222 1223 static inline void 1224 xfs_fs_warn_deprecated( 1225 struct fs_context *fc, 1226 struct fs_parameter *param, 1227 uint64_t flag, 1228 bool value) 1229 { 1230 /* Don't print the warning if reconfiguring and current mount point 1231 * already had the flag set 1232 */ 1233 if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) && 1234 !!(XFS_M(fc->root->d_sb)->m_features & flag) == value) 1235 return; 1236 xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key); 1237 } 1238 1239 /* 1240 * Set mount state from a mount option. 1241 * 1242 * NOTE: mp->m_super is NULL here! 1243 */ 1244 static int 1245 xfs_fs_parse_param( 1246 struct fs_context *fc, 1247 struct fs_parameter *param) 1248 { 1249 struct xfs_mount *parsing_mp = fc->s_fs_info; 1250 struct fs_parse_result result; 1251 int size = 0; 1252 int opt; 1253 1254 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1255 if (opt < 0) 1256 return opt; 1257 1258 switch (opt) { 1259 case Opt_logbufs: 1260 parsing_mp->m_logbufs = result.uint_32; 1261 return 0; 1262 case Opt_logbsize: 1263 if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize)) 1264 return -EINVAL; 1265 return 0; 1266 case Opt_logdev: 1267 kfree(parsing_mp->m_logname); 1268 parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1269 if (!parsing_mp->m_logname) 1270 return -ENOMEM; 1271 return 0; 1272 case Opt_rtdev: 1273 kfree(parsing_mp->m_rtname); 1274 parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1275 if (!parsing_mp->m_rtname) 1276 return -ENOMEM; 1277 return 0; 1278 case Opt_allocsize: 1279 if (suffix_kstrtoint(param->string, 10, &size)) 1280 return -EINVAL; 1281 parsing_mp->m_allocsize_log = ffs(size) - 1; 1282 parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE; 1283 return 0; 1284 case Opt_grpid: 1285 case Opt_bsdgroups: 1286 parsing_mp->m_features |= XFS_FEAT_GRPID; 1287 return 0; 1288 case Opt_nogrpid: 1289 case Opt_sysvgroups: 1290 parsing_mp->m_features &= ~XFS_FEAT_GRPID; 1291 return 0; 1292 case Opt_wsync: 1293 parsing_mp->m_features |= XFS_FEAT_WSYNC; 1294 return 0; 1295 case Opt_norecovery: 1296 parsing_mp->m_features |= XFS_FEAT_NORECOVERY; 1297 return 0; 1298 case Opt_noalign: 1299 parsing_mp->m_features |= XFS_FEAT_NOALIGN; 1300 return 0; 1301 case Opt_swalloc: 1302 parsing_mp->m_features |= XFS_FEAT_SWALLOC; 1303 return 0; 1304 case Opt_sunit: 1305 parsing_mp->m_dalign = result.uint_32; 1306 return 0; 1307 case Opt_swidth: 1308 parsing_mp->m_swidth = result.uint_32; 1309 return 0; 1310 case Opt_inode32: 1311 parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS; 1312 return 0; 1313 case Opt_inode64: 1314 parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 1315 return 0; 1316 case Opt_nouuid: 1317 parsing_mp->m_features |= XFS_FEAT_NOUUID; 1318 return 0; 1319 case Opt_largeio: 1320 parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE; 1321 return 0; 1322 case Opt_nolargeio: 1323 parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE; 1324 return 0; 1325 case Opt_filestreams: 1326 parsing_mp->m_features |= XFS_FEAT_FILESTREAMS; 1327 return 0; 1328 case Opt_noquota: 1329 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1330 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1331 return 0; 1332 case Opt_quota: 1333 case Opt_uquota: 1334 case Opt_usrquota: 1335 parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD); 1336 return 0; 1337 case Opt_qnoenforce: 1338 case Opt_uqnoenforce: 1339 parsing_mp->m_qflags |= XFS_UQUOTA_ACCT; 1340 parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1341 return 0; 1342 case Opt_pquota: 1343 case Opt_prjquota: 1344 parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD); 1345 return 0; 1346 case Opt_pqnoenforce: 1347 parsing_mp->m_qflags |= XFS_PQUOTA_ACCT; 1348 parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1349 return 0; 1350 case Opt_gquota: 1351 case Opt_grpquota: 1352 parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD); 1353 return 0; 1354 case Opt_gqnoenforce: 1355 parsing_mp->m_qflags |= XFS_GQUOTA_ACCT; 1356 parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1357 return 0; 1358 case Opt_discard: 1359 parsing_mp->m_features |= XFS_FEAT_DISCARD; 1360 return 0; 1361 case Opt_nodiscard: 1362 parsing_mp->m_features &= ~XFS_FEAT_DISCARD; 1363 return 0; 1364 #ifdef CONFIG_FS_DAX 1365 case Opt_dax: 1366 xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS); 1367 return 0; 1368 case Opt_dax_enum: 1369 xfs_mount_set_dax_mode(parsing_mp, result.uint_32); 1370 return 0; 1371 #endif 1372 /* Following mount options will be removed in September 2025 */ 1373 case Opt_ikeep: 1374 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true); 1375 parsing_mp->m_features |= XFS_FEAT_IKEEP; 1376 return 0; 1377 case Opt_noikeep: 1378 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false); 1379 parsing_mp->m_features &= ~XFS_FEAT_IKEEP; 1380 return 0; 1381 case Opt_attr2: 1382 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true); 1383 parsing_mp->m_features |= XFS_FEAT_ATTR2; 1384 return 0; 1385 case Opt_noattr2: 1386 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true); 1387 parsing_mp->m_features |= XFS_FEAT_NOATTR2; 1388 return 0; 1389 default: 1390 xfs_warn(parsing_mp, "unknown mount option [%s].", param->key); 1391 return -EINVAL; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int 1398 xfs_fs_validate_params( 1399 struct xfs_mount *mp) 1400 { 1401 /* No recovery flag requires a read-only mount */ 1402 if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) { 1403 xfs_warn(mp, "no-recovery mounts must be read-only."); 1404 return -EINVAL; 1405 } 1406 1407 /* 1408 * We have not read the superblock at this point, so only the attr2 1409 * mount option can set the attr2 feature by this stage. 1410 */ 1411 if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) { 1412 xfs_warn(mp, "attr2 and noattr2 cannot both be specified."); 1413 return -EINVAL; 1414 } 1415 1416 1417 if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) { 1418 xfs_warn(mp, 1419 "sunit and swidth options incompatible with the noalign option"); 1420 return -EINVAL; 1421 } 1422 1423 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1424 xfs_warn(mp, "quota support not available in this kernel."); 1425 return -EINVAL; 1426 } 1427 1428 if ((mp->m_dalign && !mp->m_swidth) || 1429 (!mp->m_dalign && mp->m_swidth)) { 1430 xfs_warn(mp, "sunit and swidth must be specified together"); 1431 return -EINVAL; 1432 } 1433 1434 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1435 xfs_warn(mp, 1436 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1437 mp->m_swidth, mp->m_dalign); 1438 return -EINVAL; 1439 } 1440 1441 if (mp->m_logbufs != -1 && 1442 mp->m_logbufs != 0 && 1443 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1444 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1445 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1446 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1447 return -EINVAL; 1448 } 1449 1450 if (mp->m_logbsize != -1 && 1451 mp->m_logbsize != 0 && 1452 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1453 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1454 !is_power_of_2(mp->m_logbsize))) { 1455 xfs_warn(mp, 1456 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1457 mp->m_logbsize); 1458 return -EINVAL; 1459 } 1460 1461 if (xfs_has_allocsize(mp) && 1462 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1463 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1464 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1465 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1466 return -EINVAL; 1467 } 1468 1469 return 0; 1470 } 1471 1472 struct dentry * 1473 xfs_debugfs_mkdir( 1474 const char *name, 1475 struct dentry *parent) 1476 { 1477 struct dentry *child; 1478 1479 /* Apparently we're expected to ignore error returns?? */ 1480 child = debugfs_create_dir(name, parent); 1481 if (IS_ERR(child)) 1482 return NULL; 1483 1484 return child; 1485 } 1486 1487 static int 1488 xfs_fs_fill_super( 1489 struct super_block *sb, 1490 struct fs_context *fc) 1491 { 1492 struct xfs_mount *mp = sb->s_fs_info; 1493 struct inode *root; 1494 int flags = 0, error; 1495 1496 mp->m_super = sb; 1497 1498 /* 1499 * Copy VFS mount flags from the context now that all parameter parsing 1500 * is guaranteed to have been completed by either the old mount API or 1501 * the newer fsopen/fsconfig API. 1502 */ 1503 if (fc->sb_flags & SB_RDONLY) 1504 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1505 if (fc->sb_flags & SB_DIRSYNC) 1506 mp->m_features |= XFS_FEAT_DIRSYNC; 1507 if (fc->sb_flags & SB_SYNCHRONOUS) 1508 mp->m_features |= XFS_FEAT_WSYNC; 1509 1510 error = xfs_fs_validate_params(mp); 1511 if (error) 1512 return error; 1513 1514 sb_min_blocksize(sb, BBSIZE); 1515 sb->s_xattr = xfs_xattr_handlers; 1516 sb->s_export_op = &xfs_export_operations; 1517 #ifdef CONFIG_XFS_QUOTA 1518 sb->s_qcop = &xfs_quotactl_operations; 1519 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1520 #endif 1521 sb->s_op = &xfs_super_operations; 1522 1523 /* 1524 * Delay mount work if the debug hook is set. This is debug 1525 * instrumention to coordinate simulation of xfs mount failures with 1526 * VFS superblock operations 1527 */ 1528 if (xfs_globals.mount_delay) { 1529 xfs_notice(mp, "Delaying mount for %d seconds.", 1530 xfs_globals.mount_delay); 1531 msleep(xfs_globals.mount_delay * 1000); 1532 } 1533 1534 if (fc->sb_flags & SB_SILENT) 1535 flags |= XFS_MFSI_QUIET; 1536 1537 error = xfs_open_devices(mp); 1538 if (error) 1539 return error; 1540 1541 if (xfs_debugfs) { 1542 mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id, 1543 xfs_debugfs); 1544 } else { 1545 mp->m_debugfs = NULL; 1546 } 1547 1548 error = xfs_init_mount_workqueues(mp); 1549 if (error) 1550 goto out_shutdown_devices; 1551 1552 error = xfs_init_percpu_counters(mp); 1553 if (error) 1554 goto out_destroy_workqueues; 1555 1556 error = xfs_inodegc_init_percpu(mp); 1557 if (error) 1558 goto out_destroy_counters; 1559 1560 /* Allocate stats memory before we do operations that might use it */ 1561 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1562 if (!mp->m_stats.xs_stats) { 1563 error = -ENOMEM; 1564 goto out_destroy_inodegc; 1565 } 1566 1567 error = xchk_mount_stats_alloc(mp); 1568 if (error) 1569 goto out_free_stats; 1570 1571 error = xfs_readsb(mp, flags); 1572 if (error) 1573 goto out_free_scrub_stats; 1574 1575 error = xfs_finish_flags(mp); 1576 if (error) 1577 goto out_free_sb; 1578 1579 error = xfs_setup_devices(mp); 1580 if (error) 1581 goto out_free_sb; 1582 1583 /* V4 support is undergoing deprecation. */ 1584 if (!xfs_has_crc(mp)) { 1585 #ifdef CONFIG_XFS_SUPPORT_V4 1586 xfs_warn_once(mp, 1587 "Deprecated V4 format (crc=0) will not be supported after September 2030."); 1588 #else 1589 xfs_warn(mp, 1590 "Deprecated V4 format (crc=0) not supported by kernel."); 1591 error = -EINVAL; 1592 goto out_free_sb; 1593 #endif 1594 } 1595 1596 /* ASCII case insensitivity is undergoing deprecation. */ 1597 if (xfs_has_asciici(mp)) { 1598 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI 1599 xfs_warn_once(mp, 1600 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030."); 1601 #else 1602 xfs_warn(mp, 1603 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel."); 1604 error = -EINVAL; 1605 goto out_free_sb; 1606 #endif 1607 } 1608 1609 /* Filesystem claims it needs repair, so refuse the mount. */ 1610 if (xfs_has_needsrepair(mp)) { 1611 xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair."); 1612 error = -EFSCORRUPTED; 1613 goto out_free_sb; 1614 } 1615 1616 /* 1617 * Don't touch the filesystem if a user tool thinks it owns the primary 1618 * superblock. mkfs doesn't clear the flag from secondary supers, so 1619 * we don't check them at all. 1620 */ 1621 if (mp->m_sb.sb_inprogress) { 1622 xfs_warn(mp, "Offline file system operation in progress!"); 1623 error = -EFSCORRUPTED; 1624 goto out_free_sb; 1625 } 1626 1627 /* 1628 * Until this is fixed only page-sized or smaller data blocks work. 1629 */ 1630 if (mp->m_sb.sb_blocksize > PAGE_SIZE) { 1631 xfs_warn(mp, 1632 "File system with blocksize %d bytes. " 1633 "Only pagesize (%ld) or less will currently work.", 1634 mp->m_sb.sb_blocksize, PAGE_SIZE); 1635 error = -ENOSYS; 1636 goto out_free_sb; 1637 } 1638 1639 /* Ensure this filesystem fits in the page cache limits */ 1640 if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) || 1641 xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) { 1642 xfs_warn(mp, 1643 "file system too large to be mounted on this system."); 1644 error = -EFBIG; 1645 goto out_free_sb; 1646 } 1647 1648 /* 1649 * XFS block mappings use 54 bits to store the logical block offset. 1650 * This should suffice to handle the maximum file size that the VFS 1651 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1652 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1653 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1654 * to check this assertion. 1655 * 1656 * Avoid integer overflow by comparing the maximum bmbt offset to the 1657 * maximum pagecache offset in units of fs blocks. 1658 */ 1659 if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) { 1660 xfs_warn(mp, 1661 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1662 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1663 XFS_MAX_FILEOFF); 1664 error = -EINVAL; 1665 goto out_free_sb; 1666 } 1667 1668 error = xfs_filestream_mount(mp); 1669 if (error) 1670 goto out_free_sb; 1671 1672 /* 1673 * we must configure the block size in the superblock before we run the 1674 * full mount process as the mount process can lookup and cache inodes. 1675 */ 1676 sb->s_magic = XFS_SUPER_MAGIC; 1677 sb->s_blocksize = mp->m_sb.sb_blocksize; 1678 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1679 sb->s_maxbytes = MAX_LFS_FILESIZE; 1680 sb->s_max_links = XFS_MAXLINK; 1681 sb->s_time_gran = 1; 1682 if (xfs_has_bigtime(mp)) { 1683 sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN); 1684 sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX); 1685 } else { 1686 sb->s_time_min = XFS_LEGACY_TIME_MIN; 1687 sb->s_time_max = XFS_LEGACY_TIME_MAX; 1688 } 1689 trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max); 1690 sb->s_iflags |= SB_I_CGROUPWB; 1691 1692 set_posix_acl_flag(sb); 1693 1694 /* version 5 superblocks support inode version counters. */ 1695 if (xfs_has_crc(mp)) 1696 sb->s_flags |= SB_I_VERSION; 1697 1698 if (xfs_has_dax_always(mp)) { 1699 error = xfs_setup_dax_always(mp); 1700 if (error) 1701 goto out_filestream_unmount; 1702 } 1703 1704 if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) { 1705 xfs_warn(mp, 1706 "mounting with \"discard\" option, but the device does not support discard"); 1707 mp->m_features &= ~XFS_FEAT_DISCARD; 1708 } 1709 1710 if (xfs_has_reflink(mp)) { 1711 if (mp->m_sb.sb_rblocks) { 1712 xfs_alert(mp, 1713 "reflink not compatible with realtime device!"); 1714 error = -EINVAL; 1715 goto out_filestream_unmount; 1716 } 1717 1718 if (xfs_globals.always_cow) { 1719 xfs_info(mp, "using DEBUG-only always_cow mode."); 1720 mp->m_always_cow = true; 1721 } 1722 } 1723 1724 if (xfs_has_rmapbt(mp) && mp->m_sb.sb_rblocks) { 1725 xfs_alert(mp, 1726 "reverse mapping btree not compatible with realtime device!"); 1727 error = -EINVAL; 1728 goto out_filestream_unmount; 1729 } 1730 1731 error = xfs_mountfs(mp); 1732 if (error) 1733 goto out_filestream_unmount; 1734 1735 root = igrab(VFS_I(mp->m_rootip)); 1736 if (!root) { 1737 error = -ENOENT; 1738 goto out_unmount; 1739 } 1740 sb->s_root = d_make_root(root); 1741 if (!sb->s_root) { 1742 error = -ENOMEM; 1743 goto out_unmount; 1744 } 1745 1746 return 0; 1747 1748 out_filestream_unmount: 1749 xfs_filestream_unmount(mp); 1750 out_free_sb: 1751 xfs_freesb(mp); 1752 out_free_scrub_stats: 1753 xchk_mount_stats_free(mp); 1754 out_free_stats: 1755 free_percpu(mp->m_stats.xs_stats); 1756 out_destroy_inodegc: 1757 xfs_inodegc_free_percpu(mp); 1758 out_destroy_counters: 1759 xfs_destroy_percpu_counters(mp); 1760 out_destroy_workqueues: 1761 xfs_destroy_mount_workqueues(mp); 1762 out_shutdown_devices: 1763 xfs_shutdown_devices(mp); 1764 return error; 1765 1766 out_unmount: 1767 xfs_filestream_unmount(mp); 1768 xfs_unmountfs(mp); 1769 goto out_free_sb; 1770 } 1771 1772 static int 1773 xfs_fs_get_tree( 1774 struct fs_context *fc) 1775 { 1776 return get_tree_bdev(fc, xfs_fs_fill_super); 1777 } 1778 1779 static int 1780 xfs_remount_rw( 1781 struct xfs_mount *mp) 1782 { 1783 struct xfs_sb *sbp = &mp->m_sb; 1784 int error; 1785 1786 if (xfs_has_norecovery(mp)) { 1787 xfs_warn(mp, 1788 "ro->rw transition prohibited on norecovery mount"); 1789 return -EINVAL; 1790 } 1791 1792 if (xfs_sb_is_v5(sbp) && 1793 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1794 xfs_warn(mp, 1795 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1796 (sbp->sb_features_ro_compat & 1797 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1798 return -EINVAL; 1799 } 1800 1801 clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1802 1803 /* 1804 * If this is the first remount to writeable state we might have some 1805 * superblock changes to update. 1806 */ 1807 if (mp->m_update_sb) { 1808 error = xfs_sync_sb(mp, false); 1809 if (error) { 1810 xfs_warn(mp, "failed to write sb changes"); 1811 return error; 1812 } 1813 mp->m_update_sb = false; 1814 } 1815 1816 /* 1817 * Fill out the reserve pool if it is empty. Use the stashed value if 1818 * it is non-zero, otherwise go with the default. 1819 */ 1820 xfs_restore_resvblks(mp); 1821 xfs_log_work_queue(mp); 1822 xfs_blockgc_start(mp); 1823 1824 /* Create the per-AG metadata reservation pool .*/ 1825 error = xfs_fs_reserve_ag_blocks(mp); 1826 if (error && error != -ENOSPC) 1827 return error; 1828 1829 /* Re-enable the background inode inactivation worker. */ 1830 xfs_inodegc_start(mp); 1831 1832 return 0; 1833 } 1834 1835 static int 1836 xfs_remount_ro( 1837 struct xfs_mount *mp) 1838 { 1839 struct xfs_icwalk icw = { 1840 .icw_flags = XFS_ICWALK_FLAG_SYNC, 1841 }; 1842 int error; 1843 1844 /* Flush all the dirty data to disk. */ 1845 error = sync_filesystem(mp->m_super); 1846 if (error) 1847 return error; 1848 1849 /* 1850 * Cancel background eofb scanning so it cannot race with the final 1851 * log force+buftarg wait and deadlock the remount. 1852 */ 1853 xfs_blockgc_stop(mp); 1854 1855 /* 1856 * Clear out all remaining COW staging extents and speculative post-EOF 1857 * preallocations so that we don't leave inodes requiring inactivation 1858 * cleanups during reclaim on a read-only mount. We must process every 1859 * cached inode, so this requires a synchronous cache scan. 1860 */ 1861 error = xfs_blockgc_free_space(mp, &icw); 1862 if (error) { 1863 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1864 return error; 1865 } 1866 1867 /* 1868 * Stop the inodegc background worker. xfs_fs_reconfigure already 1869 * flushed all pending inodegc work when it sync'd the filesystem. 1870 * The VFS holds s_umount, so we know that inodes cannot enter 1871 * xfs_fs_destroy_inode during a remount operation. In readonly mode 1872 * we send inodes straight to reclaim, so no inodes will be queued. 1873 */ 1874 xfs_inodegc_stop(mp); 1875 1876 /* Free the per-AG metadata reservation pool. */ 1877 error = xfs_fs_unreserve_ag_blocks(mp); 1878 if (error) { 1879 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1880 return error; 1881 } 1882 1883 /* 1884 * Before we sync the metadata, we need to free up the reserve block 1885 * pool so that the used block count in the superblock on disk is 1886 * correct at the end of the remount. Stash the current* reserve pool 1887 * size so that if we get remounted rw, we can return it to the same 1888 * size. 1889 */ 1890 xfs_save_resvblks(mp); 1891 1892 xfs_log_clean(mp); 1893 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1894 1895 return 0; 1896 } 1897 1898 /* 1899 * Logically we would return an error here to prevent users from believing 1900 * they might have changed mount options using remount which can't be changed. 1901 * 1902 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1903 * arguments in some cases so we can't blindly reject options, but have to 1904 * check for each specified option if it actually differs from the currently 1905 * set option and only reject it if that's the case. 1906 * 1907 * Until that is implemented we return success for every remount request, and 1908 * silently ignore all options that we can't actually change. 1909 */ 1910 static int 1911 xfs_fs_reconfigure( 1912 struct fs_context *fc) 1913 { 1914 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1915 struct xfs_mount *new_mp = fc->s_fs_info; 1916 int flags = fc->sb_flags; 1917 int error; 1918 1919 /* version 5 superblocks always support version counters. */ 1920 if (xfs_has_crc(mp)) 1921 fc->sb_flags |= SB_I_VERSION; 1922 1923 error = xfs_fs_validate_params(new_mp); 1924 if (error) 1925 return error; 1926 1927 /* inode32 -> inode64 */ 1928 if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) { 1929 mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 1930 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 1931 } 1932 1933 /* inode64 -> inode32 */ 1934 if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) { 1935 mp->m_features |= XFS_FEAT_SMALL_INUMS; 1936 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 1937 } 1938 1939 /* ro -> rw */ 1940 if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) { 1941 error = xfs_remount_rw(mp); 1942 if (error) 1943 return error; 1944 } 1945 1946 /* rw -> ro */ 1947 if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) { 1948 error = xfs_remount_ro(mp); 1949 if (error) 1950 return error; 1951 } 1952 1953 return 0; 1954 } 1955 1956 static void 1957 xfs_fs_free( 1958 struct fs_context *fc) 1959 { 1960 struct xfs_mount *mp = fc->s_fs_info; 1961 1962 /* 1963 * mp is stored in the fs_context when it is initialized. 1964 * mp is transferred to the superblock on a successful mount, 1965 * but if an error occurs before the transfer we have to free 1966 * it here. 1967 */ 1968 if (mp) 1969 xfs_mount_free(mp); 1970 } 1971 1972 static const struct fs_context_operations xfs_context_ops = { 1973 .parse_param = xfs_fs_parse_param, 1974 .get_tree = xfs_fs_get_tree, 1975 .reconfigure = xfs_fs_reconfigure, 1976 .free = xfs_fs_free, 1977 }; 1978 1979 /* 1980 * WARNING: do not initialise any parameters in this function that depend on 1981 * mount option parsing having already been performed as this can be called from 1982 * fsopen() before any parameters have been set. 1983 */ 1984 static int xfs_init_fs_context( 1985 struct fs_context *fc) 1986 { 1987 struct xfs_mount *mp; 1988 1989 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1990 if (!mp) 1991 return -ENOMEM; 1992 1993 spin_lock_init(&mp->m_sb_lock); 1994 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1995 spin_lock_init(&mp->m_perag_lock); 1996 mutex_init(&mp->m_growlock); 1997 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 1998 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1999 mp->m_kobj.kobject.kset = xfs_kset; 2000 /* 2001 * We don't create the finobt per-ag space reservation until after log 2002 * recovery, so we must set this to true so that an ifree transaction 2003 * started during log recovery will not depend on space reservations 2004 * for finobt expansion. 2005 */ 2006 mp->m_finobt_nores = true; 2007 2008 /* 2009 * These can be overridden by the mount option parsing. 2010 */ 2011 mp->m_logbufs = -1; 2012 mp->m_logbsize = -1; 2013 mp->m_allocsize_log = 16; /* 64k */ 2014 2015 fc->s_fs_info = mp; 2016 fc->ops = &xfs_context_ops; 2017 2018 return 0; 2019 } 2020 2021 static void 2022 xfs_kill_sb( 2023 struct super_block *sb) 2024 { 2025 kill_block_super(sb); 2026 xfs_mount_free(XFS_M(sb)); 2027 } 2028 2029 static struct file_system_type xfs_fs_type = { 2030 .owner = THIS_MODULE, 2031 .name = "xfs", 2032 .init_fs_context = xfs_init_fs_context, 2033 .parameters = xfs_fs_parameters, 2034 .kill_sb = xfs_kill_sb, 2035 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 2036 }; 2037 MODULE_ALIAS_FS("xfs"); 2038 2039 STATIC int __init 2040 xfs_init_caches(void) 2041 { 2042 int error; 2043 2044 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2045 SLAB_HWCACHE_ALIGN | 2046 SLAB_RECLAIM_ACCOUNT | 2047 SLAB_MEM_SPREAD, 2048 NULL); 2049 if (!xfs_buf_cache) 2050 goto out; 2051 2052 xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket", 2053 sizeof(struct xlog_ticket), 2054 0, 0, NULL); 2055 if (!xfs_log_ticket_cache) 2056 goto out_destroy_buf_cache; 2057 2058 error = xfs_btree_init_cur_caches(); 2059 if (error) 2060 goto out_destroy_log_ticket_cache; 2061 2062 error = xfs_defer_init_item_caches(); 2063 if (error) 2064 goto out_destroy_btree_cur_cache; 2065 2066 xfs_da_state_cache = kmem_cache_create("xfs_da_state", 2067 sizeof(struct xfs_da_state), 2068 0, 0, NULL); 2069 if (!xfs_da_state_cache) 2070 goto out_destroy_defer_item_cache; 2071 2072 xfs_ifork_cache = kmem_cache_create("xfs_ifork", 2073 sizeof(struct xfs_ifork), 2074 0, 0, NULL); 2075 if (!xfs_ifork_cache) 2076 goto out_destroy_da_state_cache; 2077 2078 xfs_trans_cache = kmem_cache_create("xfs_trans", 2079 sizeof(struct xfs_trans), 2080 0, 0, NULL); 2081 if (!xfs_trans_cache) 2082 goto out_destroy_ifork_cache; 2083 2084 2085 /* 2086 * The size of the cache-allocated buf log item is the maximum 2087 * size possible under XFS. This wastes a little bit of memory, 2088 * but it is much faster. 2089 */ 2090 xfs_buf_item_cache = kmem_cache_create("xfs_buf_item", 2091 sizeof(struct xfs_buf_log_item), 2092 0, 0, NULL); 2093 if (!xfs_buf_item_cache) 2094 goto out_destroy_trans_cache; 2095 2096 xfs_efd_cache = kmem_cache_create("xfs_efd_item", 2097 xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS), 2098 0, 0, NULL); 2099 if (!xfs_efd_cache) 2100 goto out_destroy_buf_item_cache; 2101 2102 xfs_efi_cache = kmem_cache_create("xfs_efi_item", 2103 xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS), 2104 0, 0, NULL); 2105 if (!xfs_efi_cache) 2106 goto out_destroy_efd_cache; 2107 2108 xfs_inode_cache = kmem_cache_create("xfs_inode", 2109 sizeof(struct xfs_inode), 0, 2110 (SLAB_HWCACHE_ALIGN | 2111 SLAB_RECLAIM_ACCOUNT | 2112 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 2113 xfs_fs_inode_init_once); 2114 if (!xfs_inode_cache) 2115 goto out_destroy_efi_cache; 2116 2117 xfs_ili_cache = kmem_cache_create("xfs_ili", 2118 sizeof(struct xfs_inode_log_item), 0, 2119 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2120 NULL); 2121 if (!xfs_ili_cache) 2122 goto out_destroy_inode_cache; 2123 2124 xfs_icreate_cache = kmem_cache_create("xfs_icr", 2125 sizeof(struct xfs_icreate_item), 2126 0, 0, NULL); 2127 if (!xfs_icreate_cache) 2128 goto out_destroy_ili_cache; 2129 2130 xfs_rud_cache = kmem_cache_create("xfs_rud_item", 2131 sizeof(struct xfs_rud_log_item), 2132 0, 0, NULL); 2133 if (!xfs_rud_cache) 2134 goto out_destroy_icreate_cache; 2135 2136 xfs_rui_cache = kmem_cache_create("xfs_rui_item", 2137 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 2138 0, 0, NULL); 2139 if (!xfs_rui_cache) 2140 goto out_destroy_rud_cache; 2141 2142 xfs_cud_cache = kmem_cache_create("xfs_cud_item", 2143 sizeof(struct xfs_cud_log_item), 2144 0, 0, NULL); 2145 if (!xfs_cud_cache) 2146 goto out_destroy_rui_cache; 2147 2148 xfs_cui_cache = kmem_cache_create("xfs_cui_item", 2149 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 2150 0, 0, NULL); 2151 if (!xfs_cui_cache) 2152 goto out_destroy_cud_cache; 2153 2154 xfs_bud_cache = kmem_cache_create("xfs_bud_item", 2155 sizeof(struct xfs_bud_log_item), 2156 0, 0, NULL); 2157 if (!xfs_bud_cache) 2158 goto out_destroy_cui_cache; 2159 2160 xfs_bui_cache = kmem_cache_create("xfs_bui_item", 2161 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 2162 0, 0, NULL); 2163 if (!xfs_bui_cache) 2164 goto out_destroy_bud_cache; 2165 2166 xfs_attrd_cache = kmem_cache_create("xfs_attrd_item", 2167 sizeof(struct xfs_attrd_log_item), 2168 0, 0, NULL); 2169 if (!xfs_attrd_cache) 2170 goto out_destroy_bui_cache; 2171 2172 xfs_attri_cache = kmem_cache_create("xfs_attri_item", 2173 sizeof(struct xfs_attri_log_item), 2174 0, 0, NULL); 2175 if (!xfs_attri_cache) 2176 goto out_destroy_attrd_cache; 2177 2178 xfs_iunlink_cache = kmem_cache_create("xfs_iul_item", 2179 sizeof(struct xfs_iunlink_item), 2180 0, 0, NULL); 2181 if (!xfs_iunlink_cache) 2182 goto out_destroy_attri_cache; 2183 2184 return 0; 2185 2186 out_destroy_attri_cache: 2187 kmem_cache_destroy(xfs_attri_cache); 2188 out_destroy_attrd_cache: 2189 kmem_cache_destroy(xfs_attrd_cache); 2190 out_destroy_bui_cache: 2191 kmem_cache_destroy(xfs_bui_cache); 2192 out_destroy_bud_cache: 2193 kmem_cache_destroy(xfs_bud_cache); 2194 out_destroy_cui_cache: 2195 kmem_cache_destroy(xfs_cui_cache); 2196 out_destroy_cud_cache: 2197 kmem_cache_destroy(xfs_cud_cache); 2198 out_destroy_rui_cache: 2199 kmem_cache_destroy(xfs_rui_cache); 2200 out_destroy_rud_cache: 2201 kmem_cache_destroy(xfs_rud_cache); 2202 out_destroy_icreate_cache: 2203 kmem_cache_destroy(xfs_icreate_cache); 2204 out_destroy_ili_cache: 2205 kmem_cache_destroy(xfs_ili_cache); 2206 out_destroy_inode_cache: 2207 kmem_cache_destroy(xfs_inode_cache); 2208 out_destroy_efi_cache: 2209 kmem_cache_destroy(xfs_efi_cache); 2210 out_destroy_efd_cache: 2211 kmem_cache_destroy(xfs_efd_cache); 2212 out_destroy_buf_item_cache: 2213 kmem_cache_destroy(xfs_buf_item_cache); 2214 out_destroy_trans_cache: 2215 kmem_cache_destroy(xfs_trans_cache); 2216 out_destroy_ifork_cache: 2217 kmem_cache_destroy(xfs_ifork_cache); 2218 out_destroy_da_state_cache: 2219 kmem_cache_destroy(xfs_da_state_cache); 2220 out_destroy_defer_item_cache: 2221 xfs_defer_destroy_item_caches(); 2222 out_destroy_btree_cur_cache: 2223 xfs_btree_destroy_cur_caches(); 2224 out_destroy_log_ticket_cache: 2225 kmem_cache_destroy(xfs_log_ticket_cache); 2226 out_destroy_buf_cache: 2227 kmem_cache_destroy(xfs_buf_cache); 2228 out: 2229 return -ENOMEM; 2230 } 2231 2232 STATIC void 2233 xfs_destroy_caches(void) 2234 { 2235 /* 2236 * Make sure all delayed rcu free are flushed before we 2237 * destroy caches. 2238 */ 2239 rcu_barrier(); 2240 kmem_cache_destroy(xfs_iunlink_cache); 2241 kmem_cache_destroy(xfs_attri_cache); 2242 kmem_cache_destroy(xfs_attrd_cache); 2243 kmem_cache_destroy(xfs_bui_cache); 2244 kmem_cache_destroy(xfs_bud_cache); 2245 kmem_cache_destroy(xfs_cui_cache); 2246 kmem_cache_destroy(xfs_cud_cache); 2247 kmem_cache_destroy(xfs_rui_cache); 2248 kmem_cache_destroy(xfs_rud_cache); 2249 kmem_cache_destroy(xfs_icreate_cache); 2250 kmem_cache_destroy(xfs_ili_cache); 2251 kmem_cache_destroy(xfs_inode_cache); 2252 kmem_cache_destroy(xfs_efi_cache); 2253 kmem_cache_destroy(xfs_efd_cache); 2254 kmem_cache_destroy(xfs_buf_item_cache); 2255 kmem_cache_destroy(xfs_trans_cache); 2256 kmem_cache_destroy(xfs_ifork_cache); 2257 kmem_cache_destroy(xfs_da_state_cache); 2258 xfs_defer_destroy_item_caches(); 2259 xfs_btree_destroy_cur_caches(); 2260 kmem_cache_destroy(xfs_log_ticket_cache); 2261 kmem_cache_destroy(xfs_buf_cache); 2262 } 2263 2264 STATIC int __init 2265 xfs_init_workqueues(void) 2266 { 2267 /* 2268 * The allocation workqueue can be used in memory reclaim situations 2269 * (writepage path), and parallelism is only limited by the number of 2270 * AGs in all the filesystems mounted. Hence use the default large 2271 * max_active value for this workqueue. 2272 */ 2273 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2274 XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0); 2275 if (!xfs_alloc_wq) 2276 return -ENOMEM; 2277 2278 xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND), 2279 0); 2280 if (!xfs_discard_wq) 2281 goto out_free_alloc_wq; 2282 2283 return 0; 2284 out_free_alloc_wq: 2285 destroy_workqueue(xfs_alloc_wq); 2286 return -ENOMEM; 2287 } 2288 2289 STATIC void 2290 xfs_destroy_workqueues(void) 2291 { 2292 destroy_workqueue(xfs_discard_wq); 2293 destroy_workqueue(xfs_alloc_wq); 2294 } 2295 2296 STATIC int __init 2297 init_xfs_fs(void) 2298 { 2299 int error; 2300 2301 xfs_check_ondisk_structs(); 2302 2303 error = xfs_dahash_test(); 2304 if (error) 2305 return error; 2306 2307 printk(KERN_INFO XFS_VERSION_STRING " with " 2308 XFS_BUILD_OPTIONS " enabled\n"); 2309 2310 xfs_dir_startup(); 2311 2312 error = xfs_init_caches(); 2313 if (error) 2314 goto out; 2315 2316 error = xfs_init_workqueues(); 2317 if (error) 2318 goto out_destroy_caches; 2319 2320 error = xfs_mru_cache_init(); 2321 if (error) 2322 goto out_destroy_wq; 2323 2324 error = xfs_init_procfs(); 2325 if (error) 2326 goto out_mru_cache_uninit; 2327 2328 error = xfs_sysctl_register(); 2329 if (error) 2330 goto out_cleanup_procfs; 2331 2332 xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL); 2333 2334 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2335 if (!xfs_kset) { 2336 error = -ENOMEM; 2337 goto out_debugfs_unregister; 2338 } 2339 2340 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2341 2342 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2343 if (!xfsstats.xs_stats) { 2344 error = -ENOMEM; 2345 goto out_kset_unregister; 2346 } 2347 2348 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2349 "stats"); 2350 if (error) 2351 goto out_free_stats; 2352 2353 error = xchk_global_stats_setup(xfs_debugfs); 2354 if (error) 2355 goto out_remove_stats_kobj; 2356 2357 #ifdef DEBUG 2358 xfs_dbg_kobj.kobject.kset = xfs_kset; 2359 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2360 if (error) 2361 goto out_remove_scrub_stats; 2362 #endif 2363 2364 error = xfs_qm_init(); 2365 if (error) 2366 goto out_remove_dbg_kobj; 2367 2368 error = register_filesystem(&xfs_fs_type); 2369 if (error) 2370 goto out_qm_exit; 2371 return 0; 2372 2373 out_qm_exit: 2374 xfs_qm_exit(); 2375 out_remove_dbg_kobj: 2376 #ifdef DEBUG 2377 xfs_sysfs_del(&xfs_dbg_kobj); 2378 out_remove_scrub_stats: 2379 #endif 2380 xchk_global_stats_teardown(); 2381 out_remove_stats_kobj: 2382 xfs_sysfs_del(&xfsstats.xs_kobj); 2383 out_free_stats: 2384 free_percpu(xfsstats.xs_stats); 2385 out_kset_unregister: 2386 kset_unregister(xfs_kset); 2387 out_debugfs_unregister: 2388 debugfs_remove(xfs_debugfs); 2389 xfs_sysctl_unregister(); 2390 out_cleanup_procfs: 2391 xfs_cleanup_procfs(); 2392 out_mru_cache_uninit: 2393 xfs_mru_cache_uninit(); 2394 out_destroy_wq: 2395 xfs_destroy_workqueues(); 2396 out_destroy_caches: 2397 xfs_destroy_caches(); 2398 out: 2399 return error; 2400 } 2401 2402 STATIC void __exit 2403 exit_xfs_fs(void) 2404 { 2405 xfs_qm_exit(); 2406 unregister_filesystem(&xfs_fs_type); 2407 #ifdef DEBUG 2408 xfs_sysfs_del(&xfs_dbg_kobj); 2409 #endif 2410 xchk_global_stats_teardown(); 2411 xfs_sysfs_del(&xfsstats.xs_kobj); 2412 free_percpu(xfsstats.xs_stats); 2413 kset_unregister(xfs_kset); 2414 debugfs_remove(xfs_debugfs); 2415 xfs_sysctl_unregister(); 2416 xfs_cleanup_procfs(); 2417 xfs_mru_cache_uninit(); 2418 xfs_destroy_workqueues(); 2419 xfs_destroy_caches(); 2420 xfs_uuid_table_free(); 2421 } 2422 2423 module_init(init_xfs_fs); 2424 module_exit(exit_xfs_fs); 2425 2426 MODULE_AUTHOR("Silicon Graphics, Inc."); 2427 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2428 MODULE_LICENSE("GPL"); 2429