1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 /* 51 * Table driven mount option parser. 52 */ 53 enum { 54 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 55 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 56 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 57 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 58 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 59 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 60 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 61 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 62 Opt_discard, Opt_nodiscard, Opt_dax, 63 }; 64 65 static const struct fs_parameter_spec xfs_param_specs[] = { 66 fsparam_u32("logbufs", Opt_logbufs), 67 fsparam_string("logbsize", Opt_logbsize), 68 fsparam_string("logdev", Opt_logdev), 69 fsparam_string("rtdev", Opt_rtdev), 70 fsparam_flag("wsync", Opt_wsync), 71 fsparam_flag("noalign", Opt_noalign), 72 fsparam_flag("swalloc", Opt_swalloc), 73 fsparam_u32("sunit", Opt_sunit), 74 fsparam_u32("swidth", Opt_swidth), 75 fsparam_flag("nouuid", Opt_nouuid), 76 fsparam_flag("grpid", Opt_grpid), 77 fsparam_flag("nogrpid", Opt_nogrpid), 78 fsparam_flag("bsdgroups", Opt_bsdgroups), 79 fsparam_flag("sysvgroups", Opt_sysvgroups), 80 fsparam_string("allocsize", Opt_allocsize), 81 fsparam_flag("norecovery", Opt_norecovery), 82 fsparam_flag("inode64", Opt_inode64), 83 fsparam_flag("inode32", Opt_inode32), 84 fsparam_flag("ikeep", Opt_ikeep), 85 fsparam_flag("noikeep", Opt_noikeep), 86 fsparam_flag("largeio", Opt_largeio), 87 fsparam_flag("nolargeio", Opt_nolargeio), 88 fsparam_flag("attr2", Opt_attr2), 89 fsparam_flag("noattr2", Opt_noattr2), 90 fsparam_flag("filestreams", Opt_filestreams), 91 fsparam_flag("quota", Opt_quota), 92 fsparam_flag("noquota", Opt_noquota), 93 fsparam_flag("usrquota", Opt_usrquota), 94 fsparam_flag("grpquota", Opt_grpquota), 95 fsparam_flag("prjquota", Opt_prjquota), 96 fsparam_flag("uquota", Opt_uquota), 97 fsparam_flag("gquota", Opt_gquota), 98 fsparam_flag("pquota", Opt_pquota), 99 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 100 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 101 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 102 fsparam_flag("qnoenforce", Opt_qnoenforce), 103 fsparam_flag("discard", Opt_discard), 104 fsparam_flag("nodiscard", Opt_nodiscard), 105 fsparam_flag("dax", Opt_dax), 106 {} 107 }; 108 109 static const struct fs_parameter_description xfs_fs_parameters = { 110 .name = "xfs", 111 .specs = xfs_param_specs, 112 }; 113 114 struct proc_xfs_info { 115 uint64_t flag; 116 char *str; 117 }; 118 119 static int 120 xfs_fs_show_options( 121 struct seq_file *m, 122 struct dentry *root) 123 { 124 static struct proc_xfs_info xfs_info_set[] = { 125 /* the few simple ones we can get from the mount struct */ 126 { XFS_MOUNT_IKEEP, ",ikeep" }, 127 { XFS_MOUNT_WSYNC, ",wsync" }, 128 { XFS_MOUNT_NOALIGN, ",noalign" }, 129 { XFS_MOUNT_SWALLOC, ",swalloc" }, 130 { XFS_MOUNT_NOUUID, ",nouuid" }, 131 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 132 { XFS_MOUNT_ATTR2, ",attr2" }, 133 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 134 { XFS_MOUNT_GRPID, ",grpid" }, 135 { XFS_MOUNT_DISCARD, ",discard" }, 136 { XFS_MOUNT_LARGEIO, ",largeio" }, 137 { XFS_MOUNT_DAX, ",dax" }, 138 { 0, NULL } 139 }; 140 struct xfs_mount *mp = XFS_M(root->d_sb); 141 struct proc_xfs_info *xfs_infop; 142 143 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 144 if (mp->m_flags & xfs_infop->flag) 145 seq_puts(m, xfs_infop->str); 146 } 147 148 seq_printf(m, ",inode%d", 149 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 150 151 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 152 seq_printf(m, ",allocsize=%dk", 153 (1 << mp->m_allocsize_log) >> 10); 154 155 if (mp->m_logbufs > 0) 156 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 157 if (mp->m_logbsize > 0) 158 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 159 160 if (mp->m_logname) 161 seq_show_option(m, "logdev", mp->m_logname); 162 if (mp->m_rtname) 163 seq_show_option(m, "rtdev", mp->m_rtname); 164 165 if (mp->m_dalign > 0) 166 seq_printf(m, ",sunit=%d", 167 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 168 if (mp->m_swidth > 0) 169 seq_printf(m, ",swidth=%d", 170 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 171 172 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 173 seq_puts(m, ",usrquota"); 174 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 175 seq_puts(m, ",uqnoenforce"); 176 177 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 178 if (mp->m_qflags & XFS_PQUOTA_ENFD) 179 seq_puts(m, ",prjquota"); 180 else 181 seq_puts(m, ",pqnoenforce"); 182 } 183 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 184 if (mp->m_qflags & XFS_GQUOTA_ENFD) 185 seq_puts(m, ",grpquota"); 186 else 187 seq_puts(m, ",gqnoenforce"); 188 } 189 190 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 191 seq_puts(m, ",noquota"); 192 193 return 0; 194 } 195 196 /* 197 * Set parameters for inode allocation heuristics, taking into account 198 * filesystem size and inode32/inode64 mount options; i.e. specifically 199 * whether or not XFS_MOUNT_SMALL_INUMS is set. 200 * 201 * Inode allocation patterns are altered only if inode32 is requested 202 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 203 * If altered, XFS_MOUNT_32BITINODES is set as well. 204 * 205 * An agcount independent of that in the mount structure is provided 206 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 207 * to the potentially higher ag count. 208 * 209 * Returns the maximum AG index which may contain inodes. 210 */ 211 xfs_agnumber_t 212 xfs_set_inode_alloc( 213 struct xfs_mount *mp, 214 xfs_agnumber_t agcount) 215 { 216 xfs_agnumber_t index; 217 xfs_agnumber_t maxagi = 0; 218 xfs_sb_t *sbp = &mp->m_sb; 219 xfs_agnumber_t max_metadata; 220 xfs_agino_t agino; 221 xfs_ino_t ino; 222 223 /* 224 * Calculate how much should be reserved for inodes to meet 225 * the max inode percentage. Used only for inode32. 226 */ 227 if (M_IGEO(mp)->maxicount) { 228 uint64_t icount; 229 230 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 231 do_div(icount, 100); 232 icount += sbp->sb_agblocks - 1; 233 do_div(icount, sbp->sb_agblocks); 234 max_metadata = icount; 235 } else { 236 max_metadata = agcount; 237 } 238 239 /* Get the last possible inode in the filesystem */ 240 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 241 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 242 243 /* 244 * If user asked for no more than 32-bit inodes, and the fs is 245 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 246 * the allocator to accommodate the request. 247 */ 248 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 249 mp->m_flags |= XFS_MOUNT_32BITINODES; 250 else 251 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 252 253 for (index = 0; index < agcount; index++) { 254 struct xfs_perag *pag; 255 256 ino = XFS_AGINO_TO_INO(mp, index, agino); 257 258 pag = xfs_perag_get(mp, index); 259 260 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 261 if (ino > XFS_MAXINUMBER_32) { 262 pag->pagi_inodeok = 0; 263 pag->pagf_metadata = 0; 264 } else { 265 pag->pagi_inodeok = 1; 266 maxagi++; 267 if (index < max_metadata) 268 pag->pagf_metadata = 1; 269 else 270 pag->pagf_metadata = 0; 271 } 272 } else { 273 pag->pagi_inodeok = 1; 274 pag->pagf_metadata = 0; 275 } 276 277 xfs_perag_put(pag); 278 } 279 280 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 281 } 282 283 STATIC int 284 xfs_blkdev_get( 285 xfs_mount_t *mp, 286 const char *name, 287 struct block_device **bdevp) 288 { 289 int error = 0; 290 291 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 292 mp); 293 if (IS_ERR(*bdevp)) { 294 error = PTR_ERR(*bdevp); 295 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 296 } 297 298 return error; 299 } 300 301 STATIC void 302 xfs_blkdev_put( 303 struct block_device *bdev) 304 { 305 if (bdev) 306 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 307 } 308 309 void 310 xfs_blkdev_issue_flush( 311 xfs_buftarg_t *buftarg) 312 { 313 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 314 } 315 316 STATIC void 317 xfs_close_devices( 318 struct xfs_mount *mp) 319 { 320 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 321 322 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 323 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 324 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 325 326 xfs_free_buftarg(mp->m_logdev_targp); 327 xfs_blkdev_put(logdev); 328 fs_put_dax(dax_logdev); 329 } 330 if (mp->m_rtdev_targp) { 331 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 332 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 333 334 xfs_free_buftarg(mp->m_rtdev_targp); 335 xfs_blkdev_put(rtdev); 336 fs_put_dax(dax_rtdev); 337 } 338 xfs_free_buftarg(mp->m_ddev_targp); 339 fs_put_dax(dax_ddev); 340 } 341 342 /* 343 * The file system configurations are: 344 * (1) device (partition) with data and internal log 345 * (2) logical volume with data and log subvolumes. 346 * (3) logical volume with data, log, and realtime subvolumes. 347 * 348 * We only have to handle opening the log and realtime volumes here if 349 * they are present. The data subvolume has already been opened by 350 * get_sb_bdev() and is stored in sb->s_bdev. 351 */ 352 STATIC int 353 xfs_open_devices( 354 struct xfs_mount *mp) 355 { 356 struct block_device *ddev = mp->m_super->s_bdev; 357 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 358 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 359 struct block_device *logdev = NULL, *rtdev = NULL; 360 int error; 361 362 /* 363 * Open real time and log devices - order is important. 364 */ 365 if (mp->m_logname) { 366 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 367 if (error) 368 goto out; 369 dax_logdev = fs_dax_get_by_bdev(logdev); 370 } 371 372 if (mp->m_rtname) { 373 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 374 if (error) 375 goto out_close_logdev; 376 377 if (rtdev == ddev || rtdev == logdev) { 378 xfs_warn(mp, 379 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 380 error = -EINVAL; 381 goto out_close_rtdev; 382 } 383 dax_rtdev = fs_dax_get_by_bdev(rtdev); 384 } 385 386 /* 387 * Setup xfs_mount buffer target pointers 388 */ 389 error = -ENOMEM; 390 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 391 if (!mp->m_ddev_targp) 392 goto out_close_rtdev; 393 394 if (rtdev) { 395 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 396 if (!mp->m_rtdev_targp) 397 goto out_free_ddev_targ; 398 } 399 400 if (logdev && logdev != ddev) { 401 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 402 if (!mp->m_logdev_targp) 403 goto out_free_rtdev_targ; 404 } else { 405 mp->m_logdev_targp = mp->m_ddev_targp; 406 } 407 408 return 0; 409 410 out_free_rtdev_targ: 411 if (mp->m_rtdev_targp) 412 xfs_free_buftarg(mp->m_rtdev_targp); 413 out_free_ddev_targ: 414 xfs_free_buftarg(mp->m_ddev_targp); 415 out_close_rtdev: 416 xfs_blkdev_put(rtdev); 417 fs_put_dax(dax_rtdev); 418 out_close_logdev: 419 if (logdev && logdev != ddev) { 420 xfs_blkdev_put(logdev); 421 fs_put_dax(dax_logdev); 422 } 423 out: 424 fs_put_dax(dax_ddev); 425 return error; 426 } 427 428 /* 429 * Setup xfs_mount buffer target pointers based on superblock 430 */ 431 STATIC int 432 xfs_setup_devices( 433 struct xfs_mount *mp) 434 { 435 int error; 436 437 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 438 if (error) 439 return error; 440 441 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 442 unsigned int log_sector_size = BBSIZE; 443 444 if (xfs_sb_version_hassector(&mp->m_sb)) 445 log_sector_size = mp->m_sb.sb_logsectsize; 446 error = xfs_setsize_buftarg(mp->m_logdev_targp, 447 log_sector_size); 448 if (error) 449 return error; 450 } 451 if (mp->m_rtdev_targp) { 452 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 453 mp->m_sb.sb_sectsize); 454 if (error) 455 return error; 456 } 457 458 return 0; 459 } 460 461 STATIC int 462 xfs_init_mount_workqueues( 463 struct xfs_mount *mp) 464 { 465 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 466 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 467 if (!mp->m_buf_workqueue) 468 goto out; 469 470 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 471 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 472 if (!mp->m_unwritten_workqueue) 473 goto out_destroy_buf; 474 475 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 476 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 477 0, mp->m_super->s_id); 478 if (!mp->m_cil_workqueue) 479 goto out_destroy_unwritten; 480 481 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 482 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 483 if (!mp->m_reclaim_workqueue) 484 goto out_destroy_cil; 485 486 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 487 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 488 if (!mp->m_eofblocks_workqueue) 489 goto out_destroy_reclaim; 490 491 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 492 mp->m_super->s_id); 493 if (!mp->m_sync_workqueue) 494 goto out_destroy_eofb; 495 496 return 0; 497 498 out_destroy_eofb: 499 destroy_workqueue(mp->m_eofblocks_workqueue); 500 out_destroy_reclaim: 501 destroy_workqueue(mp->m_reclaim_workqueue); 502 out_destroy_cil: 503 destroy_workqueue(mp->m_cil_workqueue); 504 out_destroy_unwritten: 505 destroy_workqueue(mp->m_unwritten_workqueue); 506 out_destroy_buf: 507 destroy_workqueue(mp->m_buf_workqueue); 508 out: 509 return -ENOMEM; 510 } 511 512 STATIC void 513 xfs_destroy_mount_workqueues( 514 struct xfs_mount *mp) 515 { 516 destroy_workqueue(mp->m_sync_workqueue); 517 destroy_workqueue(mp->m_eofblocks_workqueue); 518 destroy_workqueue(mp->m_reclaim_workqueue); 519 destroy_workqueue(mp->m_cil_workqueue); 520 destroy_workqueue(mp->m_unwritten_workqueue); 521 destroy_workqueue(mp->m_buf_workqueue); 522 } 523 524 /* 525 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 526 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 527 * for IO to complete so that we effectively throttle multiple callers to the 528 * rate at which IO is completing. 529 */ 530 void 531 xfs_flush_inodes( 532 struct xfs_mount *mp) 533 { 534 struct super_block *sb = mp->m_super; 535 536 if (down_read_trylock(&sb->s_umount)) { 537 sync_inodes_sb(sb); 538 up_read(&sb->s_umount); 539 } 540 } 541 542 /* Catch misguided souls that try to use this interface on XFS */ 543 STATIC struct inode * 544 xfs_fs_alloc_inode( 545 struct super_block *sb) 546 { 547 BUG(); 548 return NULL; 549 } 550 551 #ifdef DEBUG 552 static void 553 xfs_check_delalloc( 554 struct xfs_inode *ip, 555 int whichfork) 556 { 557 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 558 struct xfs_bmbt_irec got; 559 struct xfs_iext_cursor icur; 560 561 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 562 return; 563 do { 564 if (isnullstartblock(got.br_startblock)) { 565 xfs_warn(ip->i_mount, 566 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 567 ip->i_ino, 568 whichfork == XFS_DATA_FORK ? "data" : "cow", 569 got.br_startoff, got.br_blockcount); 570 } 571 } while (xfs_iext_next_extent(ifp, &icur, &got)); 572 } 573 #else 574 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 575 #endif 576 577 /* 578 * Now that the generic code is guaranteed not to be accessing 579 * the linux inode, we can inactivate and reclaim the inode. 580 */ 581 STATIC void 582 xfs_fs_destroy_inode( 583 struct inode *inode) 584 { 585 struct xfs_inode *ip = XFS_I(inode); 586 587 trace_xfs_destroy_inode(ip); 588 589 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 590 XFS_STATS_INC(ip->i_mount, vn_rele); 591 XFS_STATS_INC(ip->i_mount, vn_remove); 592 593 xfs_inactive(ip); 594 595 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 596 xfs_check_delalloc(ip, XFS_DATA_FORK); 597 xfs_check_delalloc(ip, XFS_COW_FORK); 598 ASSERT(0); 599 } 600 601 XFS_STATS_INC(ip->i_mount, vn_reclaim); 602 603 /* 604 * We should never get here with one of the reclaim flags already set. 605 */ 606 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 607 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 608 609 /* 610 * We always use background reclaim here because even if the 611 * inode is clean, it still may be under IO and hence we have 612 * to take the flush lock. The background reclaim path handles 613 * this more efficiently than we can here, so simply let background 614 * reclaim tear down all inodes. 615 */ 616 xfs_inode_set_reclaim_tag(ip); 617 } 618 619 static void 620 xfs_fs_dirty_inode( 621 struct inode *inode, 622 int flag) 623 { 624 struct xfs_inode *ip = XFS_I(inode); 625 struct xfs_mount *mp = ip->i_mount; 626 struct xfs_trans *tp; 627 628 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 629 return; 630 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 631 return; 632 633 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 634 return; 635 xfs_ilock(ip, XFS_ILOCK_EXCL); 636 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 637 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 638 xfs_trans_commit(tp); 639 } 640 641 /* 642 * Slab object creation initialisation for the XFS inode. 643 * This covers only the idempotent fields in the XFS inode; 644 * all other fields need to be initialised on allocation 645 * from the slab. This avoids the need to repeatedly initialise 646 * fields in the xfs inode that left in the initialise state 647 * when freeing the inode. 648 */ 649 STATIC void 650 xfs_fs_inode_init_once( 651 void *inode) 652 { 653 struct xfs_inode *ip = inode; 654 655 memset(ip, 0, sizeof(struct xfs_inode)); 656 657 /* vfs inode */ 658 inode_init_once(VFS_I(ip)); 659 660 /* xfs inode */ 661 atomic_set(&ip->i_pincount, 0); 662 spin_lock_init(&ip->i_flags_lock); 663 664 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 665 "xfsino", ip->i_ino); 666 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 667 "xfsino", ip->i_ino); 668 } 669 670 /* 671 * We do an unlocked check for XFS_IDONTCACHE here because we are already 672 * serialised against cache hits here via the inode->i_lock and igrab() in 673 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 674 * racing with us, and it avoids needing to grab a spinlock here for every inode 675 * we drop the final reference on. 676 */ 677 STATIC int 678 xfs_fs_drop_inode( 679 struct inode *inode) 680 { 681 struct xfs_inode *ip = XFS_I(inode); 682 683 /* 684 * If this unlinked inode is in the middle of recovery, don't 685 * drop the inode just yet; log recovery will take care of 686 * that. See the comment for this inode flag. 687 */ 688 if (ip->i_flags & XFS_IRECOVERY) { 689 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 690 return 0; 691 } 692 693 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 694 } 695 696 static void 697 xfs_mount_free( 698 struct xfs_mount *mp) 699 { 700 kfree(mp->m_rtname); 701 kfree(mp->m_logname); 702 kmem_free(mp); 703 } 704 705 STATIC int 706 xfs_fs_sync_fs( 707 struct super_block *sb, 708 int wait) 709 { 710 struct xfs_mount *mp = XFS_M(sb); 711 712 /* 713 * Doing anything during the async pass would be counterproductive. 714 */ 715 if (!wait) 716 return 0; 717 718 xfs_log_force(mp, XFS_LOG_SYNC); 719 if (laptop_mode) { 720 /* 721 * The disk must be active because we're syncing. 722 * We schedule log work now (now that the disk is 723 * active) instead of later (when it might not be). 724 */ 725 flush_delayed_work(&mp->m_log->l_work); 726 } 727 728 return 0; 729 } 730 731 STATIC int 732 xfs_fs_statfs( 733 struct dentry *dentry, 734 struct kstatfs *statp) 735 { 736 struct xfs_mount *mp = XFS_M(dentry->d_sb); 737 xfs_sb_t *sbp = &mp->m_sb; 738 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 739 uint64_t fakeinos, id; 740 uint64_t icount; 741 uint64_t ifree; 742 uint64_t fdblocks; 743 xfs_extlen_t lsize; 744 int64_t ffree; 745 746 statp->f_type = XFS_SUPER_MAGIC; 747 statp->f_namelen = MAXNAMELEN - 1; 748 749 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 750 statp->f_fsid.val[0] = (u32)id; 751 statp->f_fsid.val[1] = (u32)(id >> 32); 752 753 icount = percpu_counter_sum(&mp->m_icount); 754 ifree = percpu_counter_sum(&mp->m_ifree); 755 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 756 757 spin_lock(&mp->m_sb_lock); 758 statp->f_bsize = sbp->sb_blocksize; 759 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 760 statp->f_blocks = sbp->sb_dblocks - lsize; 761 spin_unlock(&mp->m_sb_lock); 762 763 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 764 statp->f_bavail = statp->f_bfree; 765 766 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 767 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 768 if (M_IGEO(mp)->maxicount) 769 statp->f_files = min_t(typeof(statp->f_files), 770 statp->f_files, 771 M_IGEO(mp)->maxicount); 772 773 /* If sb_icount overshot maxicount, report actual allocation */ 774 statp->f_files = max_t(typeof(statp->f_files), 775 statp->f_files, 776 sbp->sb_icount); 777 778 /* make sure statp->f_ffree does not underflow */ 779 ffree = statp->f_files - (icount - ifree); 780 statp->f_ffree = max_t(int64_t, ffree, 0); 781 782 783 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 784 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 785 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 786 xfs_qm_statvfs(ip, statp); 787 788 if (XFS_IS_REALTIME_MOUNT(mp) && 789 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 790 statp->f_blocks = sbp->sb_rblocks; 791 statp->f_bavail = statp->f_bfree = 792 sbp->sb_frextents * sbp->sb_rextsize; 793 } 794 795 return 0; 796 } 797 798 STATIC void 799 xfs_save_resvblks(struct xfs_mount *mp) 800 { 801 uint64_t resblks = 0; 802 803 mp->m_resblks_save = mp->m_resblks; 804 xfs_reserve_blocks(mp, &resblks, NULL); 805 } 806 807 STATIC void 808 xfs_restore_resvblks(struct xfs_mount *mp) 809 { 810 uint64_t resblks; 811 812 if (mp->m_resblks_save) { 813 resblks = mp->m_resblks_save; 814 mp->m_resblks_save = 0; 815 } else 816 resblks = xfs_default_resblks(mp); 817 818 xfs_reserve_blocks(mp, &resblks, NULL); 819 } 820 821 /* 822 * Trigger writeback of all the dirty metadata in the file system. 823 * 824 * This ensures that the metadata is written to their location on disk rather 825 * than just existing in transactions in the log. This means after a quiesce 826 * there is no log replay required to write the inodes to disk - this is the 827 * primary difference between a sync and a quiesce. 828 * 829 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 830 * it is started again when appropriate. 831 */ 832 void 833 xfs_quiesce_attr( 834 struct xfs_mount *mp) 835 { 836 int error = 0; 837 838 /* wait for all modifications to complete */ 839 while (atomic_read(&mp->m_active_trans) > 0) 840 delay(100); 841 842 /* force the log to unpin objects from the now complete transactions */ 843 xfs_log_force(mp, XFS_LOG_SYNC); 844 845 /* reclaim inodes to do any IO before the freeze completes */ 846 xfs_reclaim_inodes(mp, 0); 847 xfs_reclaim_inodes(mp, SYNC_WAIT); 848 849 /* Push the superblock and write an unmount record */ 850 error = xfs_log_sbcount(mp); 851 if (error) 852 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 853 "Frozen image may not be consistent."); 854 /* 855 * Just warn here till VFS can correctly support 856 * read-only remount without racing. 857 */ 858 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 859 860 xfs_log_quiesce(mp); 861 } 862 863 /* 864 * Second stage of a freeze. The data is already frozen so we only 865 * need to take care of the metadata. Once that's done sync the superblock 866 * to the log to dirty it in case of a crash while frozen. This ensures that we 867 * will recover the unlinked inode lists on the next mount. 868 */ 869 STATIC int 870 xfs_fs_freeze( 871 struct super_block *sb) 872 { 873 struct xfs_mount *mp = XFS_M(sb); 874 875 xfs_stop_block_reaping(mp); 876 xfs_save_resvblks(mp); 877 xfs_quiesce_attr(mp); 878 return xfs_sync_sb(mp, true); 879 } 880 881 STATIC int 882 xfs_fs_unfreeze( 883 struct super_block *sb) 884 { 885 struct xfs_mount *mp = XFS_M(sb); 886 887 xfs_restore_resvblks(mp); 888 xfs_log_work_queue(mp); 889 xfs_start_block_reaping(mp); 890 return 0; 891 } 892 893 /* 894 * This function fills in xfs_mount_t fields based on mount args. 895 * Note: the superblock _has_ now been read in. 896 */ 897 STATIC int 898 xfs_finish_flags( 899 struct xfs_mount *mp) 900 { 901 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 902 903 /* Fail a mount where the logbuf is smaller than the log stripe */ 904 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 905 if (mp->m_logbsize <= 0 && 906 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 907 mp->m_logbsize = mp->m_sb.sb_logsunit; 908 } else if (mp->m_logbsize > 0 && 909 mp->m_logbsize < mp->m_sb.sb_logsunit) { 910 xfs_warn(mp, 911 "logbuf size must be greater than or equal to log stripe size"); 912 return -EINVAL; 913 } 914 } else { 915 /* Fail a mount if the logbuf is larger than 32K */ 916 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 917 xfs_warn(mp, 918 "logbuf size for version 1 logs must be 16K or 32K"); 919 return -EINVAL; 920 } 921 } 922 923 /* 924 * V5 filesystems always use attr2 format for attributes. 925 */ 926 if (xfs_sb_version_hascrc(&mp->m_sb) && 927 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 928 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 929 "attr2 is always enabled for V5 filesystems."); 930 return -EINVAL; 931 } 932 933 /* 934 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 935 * told by noattr2 to turn it off 936 */ 937 if (xfs_sb_version_hasattr2(&mp->m_sb) && 938 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 939 mp->m_flags |= XFS_MOUNT_ATTR2; 940 941 /* 942 * prohibit r/w mounts of read-only filesystems 943 */ 944 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 945 xfs_warn(mp, 946 "cannot mount a read-only filesystem as read-write"); 947 return -EROFS; 948 } 949 950 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 951 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 952 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 953 xfs_warn(mp, 954 "Super block does not support project and group quota together"); 955 return -EINVAL; 956 } 957 958 return 0; 959 } 960 961 static int 962 xfs_init_percpu_counters( 963 struct xfs_mount *mp) 964 { 965 int error; 966 967 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 968 if (error) 969 return -ENOMEM; 970 971 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 972 if (error) 973 goto free_icount; 974 975 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 976 if (error) 977 goto free_ifree; 978 979 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 980 if (error) 981 goto free_fdblocks; 982 983 return 0; 984 985 free_fdblocks: 986 percpu_counter_destroy(&mp->m_fdblocks); 987 free_ifree: 988 percpu_counter_destroy(&mp->m_ifree); 989 free_icount: 990 percpu_counter_destroy(&mp->m_icount); 991 return -ENOMEM; 992 } 993 994 void 995 xfs_reinit_percpu_counters( 996 struct xfs_mount *mp) 997 { 998 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 999 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1000 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1001 } 1002 1003 static void 1004 xfs_destroy_percpu_counters( 1005 struct xfs_mount *mp) 1006 { 1007 percpu_counter_destroy(&mp->m_icount); 1008 percpu_counter_destroy(&mp->m_ifree); 1009 percpu_counter_destroy(&mp->m_fdblocks); 1010 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1011 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1012 percpu_counter_destroy(&mp->m_delalloc_blks); 1013 } 1014 1015 static void 1016 xfs_fs_put_super( 1017 struct super_block *sb) 1018 { 1019 struct xfs_mount *mp = XFS_M(sb); 1020 1021 /* if ->fill_super failed, we have no mount to tear down */ 1022 if (!sb->s_fs_info) 1023 return; 1024 1025 xfs_notice(mp, "Unmounting Filesystem"); 1026 xfs_filestream_unmount(mp); 1027 xfs_unmountfs(mp); 1028 1029 xfs_freesb(mp); 1030 free_percpu(mp->m_stats.xs_stats); 1031 xfs_destroy_percpu_counters(mp); 1032 xfs_destroy_mount_workqueues(mp); 1033 xfs_close_devices(mp); 1034 1035 sb->s_fs_info = NULL; 1036 xfs_mount_free(mp); 1037 } 1038 1039 static long 1040 xfs_fs_nr_cached_objects( 1041 struct super_block *sb, 1042 struct shrink_control *sc) 1043 { 1044 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1045 if (WARN_ON_ONCE(!sb->s_fs_info)) 1046 return 0; 1047 return xfs_reclaim_inodes_count(XFS_M(sb)); 1048 } 1049 1050 static long 1051 xfs_fs_free_cached_objects( 1052 struct super_block *sb, 1053 struct shrink_control *sc) 1054 { 1055 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1056 } 1057 1058 static const struct super_operations xfs_super_operations = { 1059 .alloc_inode = xfs_fs_alloc_inode, 1060 .destroy_inode = xfs_fs_destroy_inode, 1061 .dirty_inode = xfs_fs_dirty_inode, 1062 .drop_inode = xfs_fs_drop_inode, 1063 .put_super = xfs_fs_put_super, 1064 .sync_fs = xfs_fs_sync_fs, 1065 .freeze_fs = xfs_fs_freeze, 1066 .unfreeze_fs = xfs_fs_unfreeze, 1067 .statfs = xfs_fs_statfs, 1068 .show_options = xfs_fs_show_options, 1069 .nr_cached_objects = xfs_fs_nr_cached_objects, 1070 .free_cached_objects = xfs_fs_free_cached_objects, 1071 }; 1072 1073 static int 1074 suffix_kstrtoint( 1075 const char *s, 1076 unsigned int base, 1077 int *res) 1078 { 1079 int last, shift_left_factor = 0, _res; 1080 char *value; 1081 int ret = 0; 1082 1083 value = kstrdup(s, GFP_KERNEL); 1084 if (!value) 1085 return -ENOMEM; 1086 1087 last = strlen(value) - 1; 1088 if (value[last] == 'K' || value[last] == 'k') { 1089 shift_left_factor = 10; 1090 value[last] = '\0'; 1091 } 1092 if (value[last] == 'M' || value[last] == 'm') { 1093 shift_left_factor = 20; 1094 value[last] = '\0'; 1095 } 1096 if (value[last] == 'G' || value[last] == 'g') { 1097 shift_left_factor = 30; 1098 value[last] = '\0'; 1099 } 1100 1101 if (kstrtoint(value, base, &_res)) 1102 ret = -EINVAL; 1103 kfree(value); 1104 *res = _res << shift_left_factor; 1105 return ret; 1106 } 1107 1108 /* 1109 * Set mount state from a mount option. 1110 * 1111 * NOTE: mp->m_super is NULL here! 1112 */ 1113 static int 1114 xfs_fc_parse_param( 1115 struct fs_context *fc, 1116 struct fs_parameter *param) 1117 { 1118 struct xfs_mount *mp = fc->s_fs_info; 1119 struct fs_parse_result result; 1120 int size = 0; 1121 int opt; 1122 1123 opt = fs_parse(fc, &xfs_fs_parameters, param, &result); 1124 if (opt < 0) 1125 return opt; 1126 1127 switch (opt) { 1128 case Opt_logbufs: 1129 mp->m_logbufs = result.uint_32; 1130 return 0; 1131 case Opt_logbsize: 1132 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1133 return -EINVAL; 1134 return 0; 1135 case Opt_logdev: 1136 kfree(mp->m_logname); 1137 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1138 if (!mp->m_logname) 1139 return -ENOMEM; 1140 return 0; 1141 case Opt_rtdev: 1142 kfree(mp->m_rtname); 1143 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1144 if (!mp->m_rtname) 1145 return -ENOMEM; 1146 return 0; 1147 case Opt_allocsize: 1148 if (suffix_kstrtoint(param->string, 10, &size)) 1149 return -EINVAL; 1150 mp->m_allocsize_log = ffs(size) - 1; 1151 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1152 return 0; 1153 case Opt_grpid: 1154 case Opt_bsdgroups: 1155 mp->m_flags |= XFS_MOUNT_GRPID; 1156 return 0; 1157 case Opt_nogrpid: 1158 case Opt_sysvgroups: 1159 mp->m_flags &= ~XFS_MOUNT_GRPID; 1160 return 0; 1161 case Opt_wsync: 1162 mp->m_flags |= XFS_MOUNT_WSYNC; 1163 return 0; 1164 case Opt_norecovery: 1165 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1166 return 0; 1167 case Opt_noalign: 1168 mp->m_flags |= XFS_MOUNT_NOALIGN; 1169 return 0; 1170 case Opt_swalloc: 1171 mp->m_flags |= XFS_MOUNT_SWALLOC; 1172 return 0; 1173 case Opt_sunit: 1174 mp->m_dalign = result.uint_32; 1175 return 0; 1176 case Opt_swidth: 1177 mp->m_swidth = result.uint_32; 1178 return 0; 1179 case Opt_inode32: 1180 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1181 return 0; 1182 case Opt_inode64: 1183 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1184 return 0; 1185 case Opt_nouuid: 1186 mp->m_flags |= XFS_MOUNT_NOUUID; 1187 return 0; 1188 case Opt_ikeep: 1189 mp->m_flags |= XFS_MOUNT_IKEEP; 1190 return 0; 1191 case Opt_noikeep: 1192 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1193 return 0; 1194 case Opt_largeio: 1195 mp->m_flags |= XFS_MOUNT_LARGEIO; 1196 return 0; 1197 case Opt_nolargeio: 1198 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1199 return 0; 1200 case Opt_attr2: 1201 mp->m_flags |= XFS_MOUNT_ATTR2; 1202 return 0; 1203 case Opt_noattr2: 1204 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1205 mp->m_flags |= XFS_MOUNT_NOATTR2; 1206 return 0; 1207 case Opt_filestreams: 1208 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1209 return 0; 1210 case Opt_noquota: 1211 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1212 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1213 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1214 return 0; 1215 case Opt_quota: 1216 case Opt_uquota: 1217 case Opt_usrquota: 1218 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1219 XFS_UQUOTA_ENFD); 1220 return 0; 1221 case Opt_qnoenforce: 1222 case Opt_uqnoenforce: 1223 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1224 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1225 return 0; 1226 case Opt_pquota: 1227 case Opt_prjquota: 1228 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1229 XFS_PQUOTA_ENFD); 1230 return 0; 1231 case Opt_pqnoenforce: 1232 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1233 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1234 return 0; 1235 case Opt_gquota: 1236 case Opt_grpquota: 1237 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1238 XFS_GQUOTA_ENFD); 1239 return 0; 1240 case Opt_gqnoenforce: 1241 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1242 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1243 return 0; 1244 case Opt_discard: 1245 mp->m_flags |= XFS_MOUNT_DISCARD; 1246 return 0; 1247 case Opt_nodiscard: 1248 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1249 return 0; 1250 #ifdef CONFIG_FS_DAX 1251 case Opt_dax: 1252 mp->m_flags |= XFS_MOUNT_DAX; 1253 return 0; 1254 #endif 1255 default: 1256 xfs_warn(mp, "unknown mount option [%s].", param->key); 1257 return -EINVAL; 1258 } 1259 1260 return 0; 1261 } 1262 1263 static int 1264 xfs_fc_validate_params( 1265 struct xfs_mount *mp) 1266 { 1267 /* 1268 * no recovery flag requires a read-only mount 1269 */ 1270 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1271 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1272 xfs_warn(mp, "no-recovery mounts must be read-only."); 1273 return -EINVAL; 1274 } 1275 1276 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1277 (mp->m_dalign || mp->m_swidth)) { 1278 xfs_warn(mp, 1279 "sunit and swidth options incompatible with the noalign option"); 1280 return -EINVAL; 1281 } 1282 1283 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1284 xfs_warn(mp, "quota support not available in this kernel."); 1285 return -EINVAL; 1286 } 1287 1288 if ((mp->m_dalign && !mp->m_swidth) || 1289 (!mp->m_dalign && mp->m_swidth)) { 1290 xfs_warn(mp, "sunit and swidth must be specified together"); 1291 return -EINVAL; 1292 } 1293 1294 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1295 xfs_warn(mp, 1296 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1297 mp->m_swidth, mp->m_dalign); 1298 return -EINVAL; 1299 } 1300 1301 if (mp->m_logbufs != -1 && 1302 mp->m_logbufs != 0 && 1303 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1304 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1305 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1306 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1307 return -EINVAL; 1308 } 1309 1310 if (mp->m_logbsize != -1 && 1311 mp->m_logbsize != 0 && 1312 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1313 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1314 !is_power_of_2(mp->m_logbsize))) { 1315 xfs_warn(mp, 1316 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1317 mp->m_logbsize); 1318 return -EINVAL; 1319 } 1320 1321 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1322 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1323 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1324 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1325 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1326 return -EINVAL; 1327 } 1328 1329 return 0; 1330 } 1331 1332 static int 1333 xfs_fc_fill_super( 1334 struct super_block *sb, 1335 struct fs_context *fc) 1336 { 1337 struct xfs_mount *mp = sb->s_fs_info; 1338 struct inode *root; 1339 int flags = 0, error; 1340 1341 mp->m_super = sb; 1342 1343 error = xfs_fc_validate_params(mp); 1344 if (error) 1345 goto out_free_names; 1346 1347 sb_min_blocksize(sb, BBSIZE); 1348 sb->s_xattr = xfs_xattr_handlers; 1349 sb->s_export_op = &xfs_export_operations; 1350 #ifdef CONFIG_XFS_QUOTA 1351 sb->s_qcop = &xfs_quotactl_operations; 1352 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1353 #endif 1354 sb->s_op = &xfs_super_operations; 1355 1356 /* 1357 * Delay mount work if the debug hook is set. This is debug 1358 * instrumention to coordinate simulation of xfs mount failures with 1359 * VFS superblock operations 1360 */ 1361 if (xfs_globals.mount_delay) { 1362 xfs_notice(mp, "Delaying mount for %d seconds.", 1363 xfs_globals.mount_delay); 1364 msleep(xfs_globals.mount_delay * 1000); 1365 } 1366 1367 if (fc->sb_flags & SB_SILENT) 1368 flags |= XFS_MFSI_QUIET; 1369 1370 error = xfs_open_devices(mp); 1371 if (error) 1372 goto out_free_names; 1373 1374 error = xfs_init_mount_workqueues(mp); 1375 if (error) 1376 goto out_close_devices; 1377 1378 error = xfs_init_percpu_counters(mp); 1379 if (error) 1380 goto out_destroy_workqueues; 1381 1382 /* Allocate stats memory before we do operations that might use it */ 1383 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1384 if (!mp->m_stats.xs_stats) { 1385 error = -ENOMEM; 1386 goto out_destroy_counters; 1387 } 1388 1389 error = xfs_readsb(mp, flags); 1390 if (error) 1391 goto out_free_stats; 1392 1393 error = xfs_finish_flags(mp); 1394 if (error) 1395 goto out_free_sb; 1396 1397 error = xfs_setup_devices(mp); 1398 if (error) 1399 goto out_free_sb; 1400 1401 /* 1402 * XFS block mappings use 54 bits to store the logical block offset. 1403 * This should suffice to handle the maximum file size that the VFS 1404 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1405 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1406 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1407 * to check this assertion. 1408 * 1409 * Avoid integer overflow by comparing the maximum bmbt offset to the 1410 * maximum pagecache offset in units of fs blocks. 1411 */ 1412 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) { 1413 xfs_warn(mp, 1414 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1415 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1416 XFS_MAX_FILEOFF); 1417 error = -EINVAL; 1418 goto out_free_sb; 1419 } 1420 1421 error = xfs_filestream_mount(mp); 1422 if (error) 1423 goto out_free_sb; 1424 1425 /* 1426 * we must configure the block size in the superblock before we run the 1427 * full mount process as the mount process can lookup and cache inodes. 1428 */ 1429 sb->s_magic = XFS_SUPER_MAGIC; 1430 sb->s_blocksize = mp->m_sb.sb_blocksize; 1431 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1432 sb->s_maxbytes = MAX_LFS_FILESIZE; 1433 sb->s_max_links = XFS_MAXLINK; 1434 sb->s_time_gran = 1; 1435 sb->s_time_min = S32_MIN; 1436 sb->s_time_max = S32_MAX; 1437 sb->s_iflags |= SB_I_CGROUPWB; 1438 1439 set_posix_acl_flag(sb); 1440 1441 /* version 5 superblocks support inode version counters. */ 1442 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1443 sb->s_flags |= SB_I_VERSION; 1444 1445 if (mp->m_flags & XFS_MOUNT_DAX) { 1446 bool rtdev_is_dax = false, datadev_is_dax; 1447 1448 xfs_warn(mp, 1449 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1450 1451 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1452 sb->s_blocksize); 1453 if (mp->m_rtdev_targp) 1454 rtdev_is_dax = bdev_dax_supported( 1455 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1456 if (!rtdev_is_dax && !datadev_is_dax) { 1457 xfs_alert(mp, 1458 "DAX unsupported by block device. Turning off DAX."); 1459 mp->m_flags &= ~XFS_MOUNT_DAX; 1460 } 1461 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1462 xfs_alert(mp, 1463 "DAX and reflink cannot be used together!"); 1464 error = -EINVAL; 1465 goto out_filestream_unmount; 1466 } 1467 } 1468 1469 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1470 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1471 1472 if (!blk_queue_discard(q)) { 1473 xfs_warn(mp, "mounting with \"discard\" option, but " 1474 "the device does not support discard"); 1475 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1476 } 1477 } 1478 1479 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1480 if (mp->m_sb.sb_rblocks) { 1481 xfs_alert(mp, 1482 "reflink not compatible with realtime device!"); 1483 error = -EINVAL; 1484 goto out_filestream_unmount; 1485 } 1486 1487 if (xfs_globals.always_cow) { 1488 xfs_info(mp, "using DEBUG-only always_cow mode."); 1489 mp->m_always_cow = true; 1490 } 1491 } 1492 1493 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1494 xfs_alert(mp, 1495 "reverse mapping btree not compatible with realtime device!"); 1496 error = -EINVAL; 1497 goto out_filestream_unmount; 1498 } 1499 1500 error = xfs_mountfs(mp); 1501 if (error) 1502 goto out_filestream_unmount; 1503 1504 root = igrab(VFS_I(mp->m_rootip)); 1505 if (!root) { 1506 error = -ENOENT; 1507 goto out_unmount; 1508 } 1509 sb->s_root = d_make_root(root); 1510 if (!sb->s_root) { 1511 error = -ENOMEM; 1512 goto out_unmount; 1513 } 1514 1515 return 0; 1516 1517 out_filestream_unmount: 1518 xfs_filestream_unmount(mp); 1519 out_free_sb: 1520 xfs_freesb(mp); 1521 out_free_stats: 1522 free_percpu(mp->m_stats.xs_stats); 1523 out_destroy_counters: 1524 xfs_destroy_percpu_counters(mp); 1525 out_destroy_workqueues: 1526 xfs_destroy_mount_workqueues(mp); 1527 out_close_devices: 1528 xfs_close_devices(mp); 1529 out_free_names: 1530 sb->s_fs_info = NULL; 1531 xfs_mount_free(mp); 1532 return error; 1533 1534 out_unmount: 1535 xfs_filestream_unmount(mp); 1536 xfs_unmountfs(mp); 1537 goto out_free_sb; 1538 } 1539 1540 static int 1541 xfs_fc_get_tree( 1542 struct fs_context *fc) 1543 { 1544 return get_tree_bdev(fc, xfs_fc_fill_super); 1545 } 1546 1547 static int 1548 xfs_remount_rw( 1549 struct xfs_mount *mp) 1550 { 1551 struct xfs_sb *sbp = &mp->m_sb; 1552 int error; 1553 1554 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1555 xfs_warn(mp, 1556 "ro->rw transition prohibited on norecovery mount"); 1557 return -EINVAL; 1558 } 1559 1560 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1561 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1562 xfs_warn(mp, 1563 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1564 (sbp->sb_features_ro_compat & 1565 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1566 return -EINVAL; 1567 } 1568 1569 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1570 1571 /* 1572 * If this is the first remount to writeable state we might have some 1573 * superblock changes to update. 1574 */ 1575 if (mp->m_update_sb) { 1576 error = xfs_sync_sb(mp, false); 1577 if (error) { 1578 xfs_warn(mp, "failed to write sb changes"); 1579 return error; 1580 } 1581 mp->m_update_sb = false; 1582 } 1583 1584 /* 1585 * Fill out the reserve pool if it is empty. Use the stashed value if 1586 * it is non-zero, otherwise go with the default. 1587 */ 1588 xfs_restore_resvblks(mp); 1589 xfs_log_work_queue(mp); 1590 1591 /* Recover any CoW blocks that never got remapped. */ 1592 error = xfs_reflink_recover_cow(mp); 1593 if (error) { 1594 xfs_err(mp, 1595 "Error %d recovering leftover CoW allocations.", error); 1596 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1597 return error; 1598 } 1599 xfs_start_block_reaping(mp); 1600 1601 /* Create the per-AG metadata reservation pool .*/ 1602 error = xfs_fs_reserve_ag_blocks(mp); 1603 if (error && error != -ENOSPC) 1604 return error; 1605 1606 return 0; 1607 } 1608 1609 static int 1610 xfs_remount_ro( 1611 struct xfs_mount *mp) 1612 { 1613 int error; 1614 1615 /* 1616 * Cancel background eofb scanning so it cannot race with the final 1617 * log force+buftarg wait and deadlock the remount. 1618 */ 1619 xfs_stop_block_reaping(mp); 1620 1621 /* Get rid of any leftover CoW reservations... */ 1622 error = xfs_icache_free_cowblocks(mp, NULL); 1623 if (error) { 1624 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1625 return error; 1626 } 1627 1628 /* Free the per-AG metadata reservation pool. */ 1629 error = xfs_fs_unreserve_ag_blocks(mp); 1630 if (error) { 1631 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1632 return error; 1633 } 1634 1635 /* 1636 * Before we sync the metadata, we need to free up the reserve block 1637 * pool so that the used block count in the superblock on disk is 1638 * correct at the end of the remount. Stash the current* reserve pool 1639 * size so that if we get remounted rw, we can return it to the same 1640 * size. 1641 */ 1642 xfs_save_resvblks(mp); 1643 1644 xfs_quiesce_attr(mp); 1645 mp->m_flags |= XFS_MOUNT_RDONLY; 1646 1647 return 0; 1648 } 1649 1650 /* 1651 * Logically we would return an error here to prevent users from believing 1652 * they might have changed mount options using remount which can't be changed. 1653 * 1654 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1655 * arguments in some cases so we can't blindly reject options, but have to 1656 * check for each specified option if it actually differs from the currently 1657 * set option and only reject it if that's the case. 1658 * 1659 * Until that is implemented we return success for every remount request, and 1660 * silently ignore all options that we can't actually change. 1661 */ 1662 static int 1663 xfs_fc_reconfigure( 1664 struct fs_context *fc) 1665 { 1666 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1667 struct xfs_mount *new_mp = fc->s_fs_info; 1668 xfs_sb_t *sbp = &mp->m_sb; 1669 int flags = fc->sb_flags; 1670 int error; 1671 1672 error = xfs_fc_validate_params(new_mp); 1673 if (error) 1674 return error; 1675 1676 sync_filesystem(mp->m_super); 1677 1678 /* inode32 -> inode64 */ 1679 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1680 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1681 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1682 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1683 } 1684 1685 /* inode64 -> inode32 */ 1686 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1687 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1688 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1689 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1690 } 1691 1692 /* ro -> rw */ 1693 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1694 error = xfs_remount_rw(mp); 1695 if (error) 1696 return error; 1697 } 1698 1699 /* rw -> ro */ 1700 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1701 error = xfs_remount_ro(mp); 1702 if (error) 1703 return error; 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void xfs_fc_free( 1710 struct fs_context *fc) 1711 { 1712 struct xfs_mount *mp = fc->s_fs_info; 1713 1714 /* 1715 * mp is stored in the fs_context when it is initialized. 1716 * mp is transferred to the superblock on a successful mount, 1717 * but if an error occurs before the transfer we have to free 1718 * it here. 1719 */ 1720 if (mp) 1721 xfs_mount_free(mp); 1722 } 1723 1724 static const struct fs_context_operations xfs_context_ops = { 1725 .parse_param = xfs_fc_parse_param, 1726 .get_tree = xfs_fc_get_tree, 1727 .reconfigure = xfs_fc_reconfigure, 1728 .free = xfs_fc_free, 1729 }; 1730 1731 static int xfs_init_fs_context( 1732 struct fs_context *fc) 1733 { 1734 struct xfs_mount *mp; 1735 1736 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1737 if (!mp) 1738 return -ENOMEM; 1739 1740 spin_lock_init(&mp->m_sb_lock); 1741 spin_lock_init(&mp->m_agirotor_lock); 1742 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1743 spin_lock_init(&mp->m_perag_lock); 1744 mutex_init(&mp->m_growlock); 1745 atomic_set(&mp->m_active_trans, 0); 1746 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1747 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1748 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1749 mp->m_kobj.kobject.kset = xfs_kset; 1750 /* 1751 * We don't create the finobt per-ag space reservation until after log 1752 * recovery, so we must set this to true so that an ifree transaction 1753 * started during log recovery will not depend on space reservations 1754 * for finobt expansion. 1755 */ 1756 mp->m_finobt_nores = true; 1757 1758 /* 1759 * These can be overridden by the mount option parsing. 1760 */ 1761 mp->m_logbufs = -1; 1762 mp->m_logbsize = -1; 1763 mp->m_allocsize_log = 16; /* 64k */ 1764 1765 /* 1766 * Copy binary VFS mount flags we are interested in. 1767 */ 1768 if (fc->sb_flags & SB_RDONLY) 1769 mp->m_flags |= XFS_MOUNT_RDONLY; 1770 if (fc->sb_flags & SB_DIRSYNC) 1771 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1772 if (fc->sb_flags & SB_SYNCHRONOUS) 1773 mp->m_flags |= XFS_MOUNT_WSYNC; 1774 1775 fc->s_fs_info = mp; 1776 fc->ops = &xfs_context_ops; 1777 1778 return 0; 1779 } 1780 1781 static struct file_system_type xfs_fs_type = { 1782 .owner = THIS_MODULE, 1783 .name = "xfs", 1784 .init_fs_context = xfs_init_fs_context, 1785 .parameters = &xfs_fs_parameters, 1786 .kill_sb = kill_block_super, 1787 .fs_flags = FS_REQUIRES_DEV, 1788 }; 1789 MODULE_ALIAS_FS("xfs"); 1790 1791 STATIC int __init 1792 xfs_init_zones(void) 1793 { 1794 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1795 sizeof(struct xlog_ticket), 1796 0, 0, NULL); 1797 if (!xfs_log_ticket_zone) 1798 goto out; 1799 1800 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1801 sizeof(struct xfs_extent_free_item), 1802 0, 0, NULL); 1803 if (!xfs_bmap_free_item_zone) 1804 goto out_destroy_log_ticket_zone; 1805 1806 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1807 sizeof(struct xfs_btree_cur), 1808 0, 0, NULL); 1809 if (!xfs_btree_cur_zone) 1810 goto out_destroy_bmap_free_item_zone; 1811 1812 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1813 sizeof(struct xfs_da_state), 1814 0, 0, NULL); 1815 if (!xfs_da_state_zone) 1816 goto out_destroy_btree_cur_zone; 1817 1818 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1819 sizeof(struct xfs_ifork), 1820 0, 0, NULL); 1821 if (!xfs_ifork_zone) 1822 goto out_destroy_da_state_zone; 1823 1824 xfs_trans_zone = kmem_cache_create("xf_trans", 1825 sizeof(struct xfs_trans), 1826 0, 0, NULL); 1827 if (!xfs_trans_zone) 1828 goto out_destroy_ifork_zone; 1829 1830 1831 /* 1832 * The size of the zone allocated buf log item is the maximum 1833 * size possible under XFS. This wastes a little bit of memory, 1834 * but it is much faster. 1835 */ 1836 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1837 sizeof(struct xfs_buf_log_item), 1838 0, 0, NULL); 1839 if (!xfs_buf_item_zone) 1840 goto out_destroy_trans_zone; 1841 1842 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1843 (sizeof(struct xfs_efd_log_item) + 1844 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1845 sizeof(struct xfs_extent)), 1846 0, 0, NULL); 1847 if (!xfs_efd_zone) 1848 goto out_destroy_buf_item_zone; 1849 1850 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1851 (sizeof(struct xfs_efi_log_item) + 1852 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1853 sizeof(struct xfs_extent)), 1854 0, 0, NULL); 1855 if (!xfs_efi_zone) 1856 goto out_destroy_efd_zone; 1857 1858 xfs_inode_zone = kmem_cache_create("xfs_inode", 1859 sizeof(struct xfs_inode), 0, 1860 (SLAB_HWCACHE_ALIGN | 1861 SLAB_RECLAIM_ACCOUNT | 1862 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1863 xfs_fs_inode_init_once); 1864 if (!xfs_inode_zone) 1865 goto out_destroy_efi_zone; 1866 1867 xfs_ili_zone = kmem_cache_create("xfs_ili", 1868 sizeof(struct xfs_inode_log_item), 0, 1869 SLAB_MEM_SPREAD, NULL); 1870 if (!xfs_ili_zone) 1871 goto out_destroy_inode_zone; 1872 1873 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1874 sizeof(struct xfs_icreate_item), 1875 0, 0, NULL); 1876 if (!xfs_icreate_zone) 1877 goto out_destroy_ili_zone; 1878 1879 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1880 sizeof(struct xfs_rud_log_item), 1881 0, 0, NULL); 1882 if (!xfs_rud_zone) 1883 goto out_destroy_icreate_zone; 1884 1885 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1886 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1887 0, 0, NULL); 1888 if (!xfs_rui_zone) 1889 goto out_destroy_rud_zone; 1890 1891 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1892 sizeof(struct xfs_cud_log_item), 1893 0, 0, NULL); 1894 if (!xfs_cud_zone) 1895 goto out_destroy_rui_zone; 1896 1897 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1898 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1899 0, 0, NULL); 1900 if (!xfs_cui_zone) 1901 goto out_destroy_cud_zone; 1902 1903 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1904 sizeof(struct xfs_bud_log_item), 1905 0, 0, NULL); 1906 if (!xfs_bud_zone) 1907 goto out_destroy_cui_zone; 1908 1909 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1910 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1911 0, 0, NULL); 1912 if (!xfs_bui_zone) 1913 goto out_destroy_bud_zone; 1914 1915 return 0; 1916 1917 out_destroy_bud_zone: 1918 kmem_cache_destroy(xfs_bud_zone); 1919 out_destroy_cui_zone: 1920 kmem_cache_destroy(xfs_cui_zone); 1921 out_destroy_cud_zone: 1922 kmem_cache_destroy(xfs_cud_zone); 1923 out_destroy_rui_zone: 1924 kmem_cache_destroy(xfs_rui_zone); 1925 out_destroy_rud_zone: 1926 kmem_cache_destroy(xfs_rud_zone); 1927 out_destroy_icreate_zone: 1928 kmem_cache_destroy(xfs_icreate_zone); 1929 out_destroy_ili_zone: 1930 kmem_cache_destroy(xfs_ili_zone); 1931 out_destroy_inode_zone: 1932 kmem_cache_destroy(xfs_inode_zone); 1933 out_destroy_efi_zone: 1934 kmem_cache_destroy(xfs_efi_zone); 1935 out_destroy_efd_zone: 1936 kmem_cache_destroy(xfs_efd_zone); 1937 out_destroy_buf_item_zone: 1938 kmem_cache_destroy(xfs_buf_item_zone); 1939 out_destroy_trans_zone: 1940 kmem_cache_destroy(xfs_trans_zone); 1941 out_destroy_ifork_zone: 1942 kmem_cache_destroy(xfs_ifork_zone); 1943 out_destroy_da_state_zone: 1944 kmem_cache_destroy(xfs_da_state_zone); 1945 out_destroy_btree_cur_zone: 1946 kmem_cache_destroy(xfs_btree_cur_zone); 1947 out_destroy_bmap_free_item_zone: 1948 kmem_cache_destroy(xfs_bmap_free_item_zone); 1949 out_destroy_log_ticket_zone: 1950 kmem_cache_destroy(xfs_log_ticket_zone); 1951 out: 1952 return -ENOMEM; 1953 } 1954 1955 STATIC void 1956 xfs_destroy_zones(void) 1957 { 1958 /* 1959 * Make sure all delayed rcu free are flushed before we 1960 * destroy caches. 1961 */ 1962 rcu_barrier(); 1963 kmem_cache_destroy(xfs_bui_zone); 1964 kmem_cache_destroy(xfs_bud_zone); 1965 kmem_cache_destroy(xfs_cui_zone); 1966 kmem_cache_destroy(xfs_cud_zone); 1967 kmem_cache_destroy(xfs_rui_zone); 1968 kmem_cache_destroy(xfs_rud_zone); 1969 kmem_cache_destroy(xfs_icreate_zone); 1970 kmem_cache_destroy(xfs_ili_zone); 1971 kmem_cache_destroy(xfs_inode_zone); 1972 kmem_cache_destroy(xfs_efi_zone); 1973 kmem_cache_destroy(xfs_efd_zone); 1974 kmem_cache_destroy(xfs_buf_item_zone); 1975 kmem_cache_destroy(xfs_trans_zone); 1976 kmem_cache_destroy(xfs_ifork_zone); 1977 kmem_cache_destroy(xfs_da_state_zone); 1978 kmem_cache_destroy(xfs_btree_cur_zone); 1979 kmem_cache_destroy(xfs_bmap_free_item_zone); 1980 kmem_cache_destroy(xfs_log_ticket_zone); 1981 } 1982 1983 STATIC int __init 1984 xfs_init_workqueues(void) 1985 { 1986 /* 1987 * The allocation workqueue can be used in memory reclaim situations 1988 * (writepage path), and parallelism is only limited by the number of 1989 * AGs in all the filesystems mounted. Hence use the default large 1990 * max_active value for this workqueue. 1991 */ 1992 xfs_alloc_wq = alloc_workqueue("xfsalloc", 1993 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 1994 if (!xfs_alloc_wq) 1995 return -ENOMEM; 1996 1997 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 1998 if (!xfs_discard_wq) 1999 goto out_free_alloc_wq; 2000 2001 return 0; 2002 out_free_alloc_wq: 2003 destroy_workqueue(xfs_alloc_wq); 2004 return -ENOMEM; 2005 } 2006 2007 STATIC void 2008 xfs_destroy_workqueues(void) 2009 { 2010 destroy_workqueue(xfs_discard_wq); 2011 destroy_workqueue(xfs_alloc_wq); 2012 } 2013 2014 STATIC int __init 2015 init_xfs_fs(void) 2016 { 2017 int error; 2018 2019 xfs_check_ondisk_structs(); 2020 2021 printk(KERN_INFO XFS_VERSION_STRING " with " 2022 XFS_BUILD_OPTIONS " enabled\n"); 2023 2024 xfs_dir_startup(); 2025 2026 error = xfs_init_zones(); 2027 if (error) 2028 goto out; 2029 2030 error = xfs_init_workqueues(); 2031 if (error) 2032 goto out_destroy_zones; 2033 2034 error = xfs_mru_cache_init(); 2035 if (error) 2036 goto out_destroy_wq; 2037 2038 error = xfs_buf_init(); 2039 if (error) 2040 goto out_mru_cache_uninit; 2041 2042 error = xfs_init_procfs(); 2043 if (error) 2044 goto out_buf_terminate; 2045 2046 error = xfs_sysctl_register(); 2047 if (error) 2048 goto out_cleanup_procfs; 2049 2050 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2051 if (!xfs_kset) { 2052 error = -ENOMEM; 2053 goto out_sysctl_unregister; 2054 } 2055 2056 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2057 2058 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2059 if (!xfsstats.xs_stats) { 2060 error = -ENOMEM; 2061 goto out_kset_unregister; 2062 } 2063 2064 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2065 "stats"); 2066 if (error) 2067 goto out_free_stats; 2068 2069 #ifdef DEBUG 2070 xfs_dbg_kobj.kobject.kset = xfs_kset; 2071 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2072 if (error) 2073 goto out_remove_stats_kobj; 2074 #endif 2075 2076 error = xfs_qm_init(); 2077 if (error) 2078 goto out_remove_dbg_kobj; 2079 2080 error = register_filesystem(&xfs_fs_type); 2081 if (error) 2082 goto out_qm_exit; 2083 return 0; 2084 2085 out_qm_exit: 2086 xfs_qm_exit(); 2087 out_remove_dbg_kobj: 2088 #ifdef DEBUG 2089 xfs_sysfs_del(&xfs_dbg_kobj); 2090 out_remove_stats_kobj: 2091 #endif 2092 xfs_sysfs_del(&xfsstats.xs_kobj); 2093 out_free_stats: 2094 free_percpu(xfsstats.xs_stats); 2095 out_kset_unregister: 2096 kset_unregister(xfs_kset); 2097 out_sysctl_unregister: 2098 xfs_sysctl_unregister(); 2099 out_cleanup_procfs: 2100 xfs_cleanup_procfs(); 2101 out_buf_terminate: 2102 xfs_buf_terminate(); 2103 out_mru_cache_uninit: 2104 xfs_mru_cache_uninit(); 2105 out_destroy_wq: 2106 xfs_destroy_workqueues(); 2107 out_destroy_zones: 2108 xfs_destroy_zones(); 2109 out: 2110 return error; 2111 } 2112 2113 STATIC void __exit 2114 exit_xfs_fs(void) 2115 { 2116 xfs_qm_exit(); 2117 unregister_filesystem(&xfs_fs_type); 2118 #ifdef DEBUG 2119 xfs_sysfs_del(&xfs_dbg_kobj); 2120 #endif 2121 xfs_sysfs_del(&xfsstats.xs_kobj); 2122 free_percpu(xfsstats.xs_stats); 2123 kset_unregister(xfs_kset); 2124 xfs_sysctl_unregister(); 2125 xfs_cleanup_procfs(); 2126 xfs_buf_terminate(); 2127 xfs_mru_cache_uninit(); 2128 xfs_destroy_workqueues(); 2129 xfs_destroy_zones(); 2130 xfs_uuid_table_free(); 2131 } 2132 2133 module_init(init_xfs_fs); 2134 module_exit(exit_xfs_fs); 2135 2136 MODULE_AUTHOR("Silicon Graphics, Inc."); 2137 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2138 MODULE_LICENSE("GPL"); 2139