1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 39 #include <linux/magic.h> 40 #include <linux/fs_context.h> 41 #include <linux/fs_parser.h> 42 43 static const struct super_operations xfs_super_operations; 44 45 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 46 #ifdef DEBUG 47 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 48 #endif 49 50 /* 51 * Table driven mount option parser. 52 */ 53 enum { 54 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 55 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 56 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 57 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 58 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 59 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 60 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 61 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 62 Opt_discard, Opt_nodiscard, Opt_dax, 63 }; 64 65 static const struct fs_parameter_spec xfs_param_specs[] = { 66 fsparam_u32("logbufs", Opt_logbufs), 67 fsparam_string("logbsize", Opt_logbsize), 68 fsparam_string("logdev", Opt_logdev), 69 fsparam_string("rtdev", Opt_rtdev), 70 fsparam_flag("wsync", Opt_wsync), 71 fsparam_flag("noalign", Opt_noalign), 72 fsparam_flag("swalloc", Opt_swalloc), 73 fsparam_u32("sunit", Opt_sunit), 74 fsparam_u32("swidth", Opt_swidth), 75 fsparam_flag("nouuid", Opt_nouuid), 76 fsparam_flag("grpid", Opt_grpid), 77 fsparam_flag("nogrpid", Opt_nogrpid), 78 fsparam_flag("bsdgroups", Opt_bsdgroups), 79 fsparam_flag("sysvgroups", Opt_sysvgroups), 80 fsparam_string("allocsize", Opt_allocsize), 81 fsparam_flag("norecovery", Opt_norecovery), 82 fsparam_flag("inode64", Opt_inode64), 83 fsparam_flag("inode32", Opt_inode32), 84 fsparam_flag("ikeep", Opt_ikeep), 85 fsparam_flag("noikeep", Opt_noikeep), 86 fsparam_flag("largeio", Opt_largeio), 87 fsparam_flag("nolargeio", Opt_nolargeio), 88 fsparam_flag("attr2", Opt_attr2), 89 fsparam_flag("noattr2", Opt_noattr2), 90 fsparam_flag("filestreams", Opt_filestreams), 91 fsparam_flag("quota", Opt_quota), 92 fsparam_flag("noquota", Opt_noquota), 93 fsparam_flag("usrquota", Opt_usrquota), 94 fsparam_flag("grpquota", Opt_grpquota), 95 fsparam_flag("prjquota", Opt_prjquota), 96 fsparam_flag("uquota", Opt_uquota), 97 fsparam_flag("gquota", Opt_gquota), 98 fsparam_flag("pquota", Opt_pquota), 99 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 100 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 101 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 102 fsparam_flag("qnoenforce", Opt_qnoenforce), 103 fsparam_flag("discard", Opt_discard), 104 fsparam_flag("nodiscard", Opt_nodiscard), 105 fsparam_flag("dax", Opt_dax), 106 {} 107 }; 108 109 static const struct fs_parameter_description xfs_fs_parameters = { 110 .name = "xfs", 111 .specs = xfs_param_specs, 112 }; 113 114 struct proc_xfs_info { 115 uint64_t flag; 116 char *str; 117 }; 118 119 static int 120 xfs_fs_show_options( 121 struct seq_file *m, 122 struct dentry *root) 123 { 124 static struct proc_xfs_info xfs_info_set[] = { 125 /* the few simple ones we can get from the mount struct */ 126 { XFS_MOUNT_IKEEP, ",ikeep" }, 127 { XFS_MOUNT_WSYNC, ",wsync" }, 128 { XFS_MOUNT_NOALIGN, ",noalign" }, 129 { XFS_MOUNT_SWALLOC, ",swalloc" }, 130 { XFS_MOUNT_NOUUID, ",nouuid" }, 131 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 132 { XFS_MOUNT_ATTR2, ",attr2" }, 133 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 134 { XFS_MOUNT_GRPID, ",grpid" }, 135 { XFS_MOUNT_DISCARD, ",discard" }, 136 { XFS_MOUNT_LARGEIO, ",largeio" }, 137 { XFS_MOUNT_DAX, ",dax" }, 138 { 0, NULL } 139 }; 140 struct xfs_mount *mp = XFS_M(root->d_sb); 141 struct proc_xfs_info *xfs_infop; 142 143 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 144 if (mp->m_flags & xfs_infop->flag) 145 seq_puts(m, xfs_infop->str); 146 } 147 148 seq_printf(m, ",inode%d", 149 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); 150 151 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) 152 seq_printf(m, ",allocsize=%dk", 153 (1 << mp->m_allocsize_log) >> 10); 154 155 if (mp->m_logbufs > 0) 156 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 157 if (mp->m_logbsize > 0) 158 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 159 160 if (mp->m_logname) 161 seq_show_option(m, "logdev", mp->m_logname); 162 if (mp->m_rtname) 163 seq_show_option(m, "rtdev", mp->m_rtname); 164 165 if (mp->m_dalign > 0) 166 seq_printf(m, ",sunit=%d", 167 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 168 if (mp->m_swidth > 0) 169 seq_printf(m, ",swidth=%d", 170 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 171 172 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 173 seq_puts(m, ",usrquota"); 174 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 175 seq_puts(m, ",uqnoenforce"); 176 177 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 178 if (mp->m_qflags & XFS_PQUOTA_ENFD) 179 seq_puts(m, ",prjquota"); 180 else 181 seq_puts(m, ",pqnoenforce"); 182 } 183 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 184 if (mp->m_qflags & XFS_GQUOTA_ENFD) 185 seq_puts(m, ",grpquota"); 186 else 187 seq_puts(m, ",gqnoenforce"); 188 } 189 190 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 191 seq_puts(m, ",noquota"); 192 193 return 0; 194 } 195 196 static uint64_t 197 xfs_max_file_offset( 198 unsigned int blockshift) 199 { 200 unsigned int pagefactor = 1; 201 unsigned int bitshift = BITS_PER_LONG - 1; 202 203 /* Figure out maximum filesize, on Linux this can depend on 204 * the filesystem blocksize (on 32 bit platforms). 205 * __block_write_begin does this in an [unsigned] long long... 206 * page->index << (PAGE_SHIFT - bbits) 207 * So, for page sized blocks (4K on 32 bit platforms), 208 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is 209 * (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1) 210 * but for smaller blocksizes it is less (bbits = log2 bsize). 211 */ 212 213 #if BITS_PER_LONG == 32 214 ASSERT(sizeof(sector_t) == 8); 215 pagefactor = PAGE_SIZE; 216 bitshift = BITS_PER_LONG; 217 #endif 218 219 return (((uint64_t)pagefactor) << bitshift) - 1; 220 } 221 222 /* 223 * Set parameters for inode allocation heuristics, taking into account 224 * filesystem size and inode32/inode64 mount options; i.e. specifically 225 * whether or not XFS_MOUNT_SMALL_INUMS is set. 226 * 227 * Inode allocation patterns are altered only if inode32 is requested 228 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 229 * If altered, XFS_MOUNT_32BITINODES is set as well. 230 * 231 * An agcount independent of that in the mount structure is provided 232 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 233 * to the potentially higher ag count. 234 * 235 * Returns the maximum AG index which may contain inodes. 236 */ 237 xfs_agnumber_t 238 xfs_set_inode_alloc( 239 struct xfs_mount *mp, 240 xfs_agnumber_t agcount) 241 { 242 xfs_agnumber_t index; 243 xfs_agnumber_t maxagi = 0; 244 xfs_sb_t *sbp = &mp->m_sb; 245 xfs_agnumber_t max_metadata; 246 xfs_agino_t agino; 247 xfs_ino_t ino; 248 249 /* 250 * Calculate how much should be reserved for inodes to meet 251 * the max inode percentage. Used only for inode32. 252 */ 253 if (M_IGEO(mp)->maxicount) { 254 uint64_t icount; 255 256 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 257 do_div(icount, 100); 258 icount += sbp->sb_agblocks - 1; 259 do_div(icount, sbp->sb_agblocks); 260 max_metadata = icount; 261 } else { 262 max_metadata = agcount; 263 } 264 265 /* Get the last possible inode in the filesystem */ 266 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 267 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 268 269 /* 270 * If user asked for no more than 32-bit inodes, and the fs is 271 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 272 * the allocator to accommodate the request. 273 */ 274 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 275 mp->m_flags |= XFS_MOUNT_32BITINODES; 276 else 277 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 278 279 for (index = 0; index < agcount; index++) { 280 struct xfs_perag *pag; 281 282 ino = XFS_AGINO_TO_INO(mp, index, agino); 283 284 pag = xfs_perag_get(mp, index); 285 286 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 287 if (ino > XFS_MAXINUMBER_32) { 288 pag->pagi_inodeok = 0; 289 pag->pagf_metadata = 0; 290 } else { 291 pag->pagi_inodeok = 1; 292 maxagi++; 293 if (index < max_metadata) 294 pag->pagf_metadata = 1; 295 else 296 pag->pagf_metadata = 0; 297 } 298 } else { 299 pag->pagi_inodeok = 1; 300 pag->pagf_metadata = 0; 301 } 302 303 xfs_perag_put(pag); 304 } 305 306 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 307 } 308 309 STATIC int 310 xfs_blkdev_get( 311 xfs_mount_t *mp, 312 const char *name, 313 struct block_device **bdevp) 314 { 315 int error = 0; 316 317 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 318 mp); 319 if (IS_ERR(*bdevp)) { 320 error = PTR_ERR(*bdevp); 321 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 322 } 323 324 return error; 325 } 326 327 STATIC void 328 xfs_blkdev_put( 329 struct block_device *bdev) 330 { 331 if (bdev) 332 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 333 } 334 335 void 336 xfs_blkdev_issue_flush( 337 xfs_buftarg_t *buftarg) 338 { 339 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 340 } 341 342 STATIC void 343 xfs_close_devices( 344 struct xfs_mount *mp) 345 { 346 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 347 348 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 349 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 350 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 351 352 xfs_free_buftarg(mp->m_logdev_targp); 353 xfs_blkdev_put(logdev); 354 fs_put_dax(dax_logdev); 355 } 356 if (mp->m_rtdev_targp) { 357 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 358 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 359 360 xfs_free_buftarg(mp->m_rtdev_targp); 361 xfs_blkdev_put(rtdev); 362 fs_put_dax(dax_rtdev); 363 } 364 xfs_free_buftarg(mp->m_ddev_targp); 365 fs_put_dax(dax_ddev); 366 } 367 368 /* 369 * The file system configurations are: 370 * (1) device (partition) with data and internal log 371 * (2) logical volume with data and log subvolumes. 372 * (3) logical volume with data, log, and realtime subvolumes. 373 * 374 * We only have to handle opening the log and realtime volumes here if 375 * they are present. The data subvolume has already been opened by 376 * get_sb_bdev() and is stored in sb->s_bdev. 377 */ 378 STATIC int 379 xfs_open_devices( 380 struct xfs_mount *mp) 381 { 382 struct block_device *ddev = mp->m_super->s_bdev; 383 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 384 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 385 struct block_device *logdev = NULL, *rtdev = NULL; 386 int error; 387 388 /* 389 * Open real time and log devices - order is important. 390 */ 391 if (mp->m_logname) { 392 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 393 if (error) 394 goto out; 395 dax_logdev = fs_dax_get_by_bdev(logdev); 396 } 397 398 if (mp->m_rtname) { 399 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 400 if (error) 401 goto out_close_logdev; 402 403 if (rtdev == ddev || rtdev == logdev) { 404 xfs_warn(mp, 405 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 406 error = -EINVAL; 407 goto out_close_rtdev; 408 } 409 dax_rtdev = fs_dax_get_by_bdev(rtdev); 410 } 411 412 /* 413 * Setup xfs_mount buffer target pointers 414 */ 415 error = -ENOMEM; 416 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 417 if (!mp->m_ddev_targp) 418 goto out_close_rtdev; 419 420 if (rtdev) { 421 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 422 if (!mp->m_rtdev_targp) 423 goto out_free_ddev_targ; 424 } 425 426 if (logdev && logdev != ddev) { 427 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 428 if (!mp->m_logdev_targp) 429 goto out_free_rtdev_targ; 430 } else { 431 mp->m_logdev_targp = mp->m_ddev_targp; 432 } 433 434 return 0; 435 436 out_free_rtdev_targ: 437 if (mp->m_rtdev_targp) 438 xfs_free_buftarg(mp->m_rtdev_targp); 439 out_free_ddev_targ: 440 xfs_free_buftarg(mp->m_ddev_targp); 441 out_close_rtdev: 442 xfs_blkdev_put(rtdev); 443 fs_put_dax(dax_rtdev); 444 out_close_logdev: 445 if (logdev && logdev != ddev) { 446 xfs_blkdev_put(logdev); 447 fs_put_dax(dax_logdev); 448 } 449 out: 450 fs_put_dax(dax_ddev); 451 return error; 452 } 453 454 /* 455 * Setup xfs_mount buffer target pointers based on superblock 456 */ 457 STATIC int 458 xfs_setup_devices( 459 struct xfs_mount *mp) 460 { 461 int error; 462 463 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 464 if (error) 465 return error; 466 467 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 468 unsigned int log_sector_size = BBSIZE; 469 470 if (xfs_sb_version_hassector(&mp->m_sb)) 471 log_sector_size = mp->m_sb.sb_logsectsize; 472 error = xfs_setsize_buftarg(mp->m_logdev_targp, 473 log_sector_size); 474 if (error) 475 return error; 476 } 477 if (mp->m_rtdev_targp) { 478 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 479 mp->m_sb.sb_sectsize); 480 if (error) 481 return error; 482 } 483 484 return 0; 485 } 486 487 STATIC int 488 xfs_init_mount_workqueues( 489 struct xfs_mount *mp) 490 { 491 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 492 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); 493 if (!mp->m_buf_workqueue) 494 goto out; 495 496 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 497 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 498 if (!mp->m_unwritten_workqueue) 499 goto out_destroy_buf; 500 501 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 502 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 503 0, mp->m_super->s_id); 504 if (!mp->m_cil_workqueue) 505 goto out_destroy_unwritten; 506 507 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 508 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 509 if (!mp->m_reclaim_workqueue) 510 goto out_destroy_cil; 511 512 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 513 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); 514 if (!mp->m_eofblocks_workqueue) 515 goto out_destroy_reclaim; 516 517 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 518 mp->m_super->s_id); 519 if (!mp->m_sync_workqueue) 520 goto out_destroy_eofb; 521 522 return 0; 523 524 out_destroy_eofb: 525 destroy_workqueue(mp->m_eofblocks_workqueue); 526 out_destroy_reclaim: 527 destroy_workqueue(mp->m_reclaim_workqueue); 528 out_destroy_cil: 529 destroy_workqueue(mp->m_cil_workqueue); 530 out_destroy_unwritten: 531 destroy_workqueue(mp->m_unwritten_workqueue); 532 out_destroy_buf: 533 destroy_workqueue(mp->m_buf_workqueue); 534 out: 535 return -ENOMEM; 536 } 537 538 STATIC void 539 xfs_destroy_mount_workqueues( 540 struct xfs_mount *mp) 541 { 542 destroy_workqueue(mp->m_sync_workqueue); 543 destroy_workqueue(mp->m_eofblocks_workqueue); 544 destroy_workqueue(mp->m_reclaim_workqueue); 545 destroy_workqueue(mp->m_cil_workqueue); 546 destroy_workqueue(mp->m_unwritten_workqueue); 547 destroy_workqueue(mp->m_buf_workqueue); 548 } 549 550 /* 551 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 552 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 553 * for IO to complete so that we effectively throttle multiple callers to the 554 * rate at which IO is completing. 555 */ 556 void 557 xfs_flush_inodes( 558 struct xfs_mount *mp) 559 { 560 struct super_block *sb = mp->m_super; 561 562 if (down_read_trylock(&sb->s_umount)) { 563 sync_inodes_sb(sb); 564 up_read(&sb->s_umount); 565 } 566 } 567 568 /* Catch misguided souls that try to use this interface on XFS */ 569 STATIC struct inode * 570 xfs_fs_alloc_inode( 571 struct super_block *sb) 572 { 573 BUG(); 574 return NULL; 575 } 576 577 #ifdef DEBUG 578 static void 579 xfs_check_delalloc( 580 struct xfs_inode *ip, 581 int whichfork) 582 { 583 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 584 struct xfs_bmbt_irec got; 585 struct xfs_iext_cursor icur; 586 587 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 588 return; 589 do { 590 if (isnullstartblock(got.br_startblock)) { 591 xfs_warn(ip->i_mount, 592 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 593 ip->i_ino, 594 whichfork == XFS_DATA_FORK ? "data" : "cow", 595 got.br_startoff, got.br_blockcount); 596 } 597 } while (xfs_iext_next_extent(ifp, &icur, &got)); 598 } 599 #else 600 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 601 #endif 602 603 /* 604 * Now that the generic code is guaranteed not to be accessing 605 * the linux inode, we can inactivate and reclaim the inode. 606 */ 607 STATIC void 608 xfs_fs_destroy_inode( 609 struct inode *inode) 610 { 611 struct xfs_inode *ip = XFS_I(inode); 612 613 trace_xfs_destroy_inode(ip); 614 615 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 616 XFS_STATS_INC(ip->i_mount, vn_rele); 617 XFS_STATS_INC(ip->i_mount, vn_remove); 618 619 xfs_inactive(ip); 620 621 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 622 xfs_check_delalloc(ip, XFS_DATA_FORK); 623 xfs_check_delalloc(ip, XFS_COW_FORK); 624 ASSERT(0); 625 } 626 627 XFS_STATS_INC(ip->i_mount, vn_reclaim); 628 629 /* 630 * We should never get here with one of the reclaim flags already set. 631 */ 632 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 633 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 634 635 /* 636 * We always use background reclaim here because even if the 637 * inode is clean, it still may be under IO and hence we have 638 * to take the flush lock. The background reclaim path handles 639 * this more efficiently than we can here, so simply let background 640 * reclaim tear down all inodes. 641 */ 642 xfs_inode_set_reclaim_tag(ip); 643 } 644 645 static void 646 xfs_fs_dirty_inode( 647 struct inode *inode, 648 int flag) 649 { 650 struct xfs_inode *ip = XFS_I(inode); 651 struct xfs_mount *mp = ip->i_mount; 652 struct xfs_trans *tp; 653 654 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 655 return; 656 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 657 return; 658 659 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 660 return; 661 xfs_ilock(ip, XFS_ILOCK_EXCL); 662 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 663 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 664 xfs_trans_commit(tp); 665 } 666 667 /* 668 * Slab object creation initialisation for the XFS inode. 669 * This covers only the idempotent fields in the XFS inode; 670 * all other fields need to be initialised on allocation 671 * from the slab. This avoids the need to repeatedly initialise 672 * fields in the xfs inode that left in the initialise state 673 * when freeing the inode. 674 */ 675 STATIC void 676 xfs_fs_inode_init_once( 677 void *inode) 678 { 679 struct xfs_inode *ip = inode; 680 681 memset(ip, 0, sizeof(struct xfs_inode)); 682 683 /* vfs inode */ 684 inode_init_once(VFS_I(ip)); 685 686 /* xfs inode */ 687 atomic_set(&ip->i_pincount, 0); 688 spin_lock_init(&ip->i_flags_lock); 689 690 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 691 "xfsino", ip->i_ino); 692 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 693 "xfsino", ip->i_ino); 694 } 695 696 /* 697 * We do an unlocked check for XFS_IDONTCACHE here because we are already 698 * serialised against cache hits here via the inode->i_lock and igrab() in 699 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 700 * racing with us, and it avoids needing to grab a spinlock here for every inode 701 * we drop the final reference on. 702 */ 703 STATIC int 704 xfs_fs_drop_inode( 705 struct inode *inode) 706 { 707 struct xfs_inode *ip = XFS_I(inode); 708 709 /* 710 * If this unlinked inode is in the middle of recovery, don't 711 * drop the inode just yet; log recovery will take care of 712 * that. See the comment for this inode flag. 713 */ 714 if (ip->i_flags & XFS_IRECOVERY) { 715 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 716 return 0; 717 } 718 719 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 720 } 721 722 static void 723 xfs_mount_free( 724 struct xfs_mount *mp) 725 { 726 kfree(mp->m_rtname); 727 kfree(mp->m_logname); 728 kmem_free(mp); 729 } 730 731 STATIC int 732 xfs_fs_sync_fs( 733 struct super_block *sb, 734 int wait) 735 { 736 struct xfs_mount *mp = XFS_M(sb); 737 738 /* 739 * Doing anything during the async pass would be counterproductive. 740 */ 741 if (!wait) 742 return 0; 743 744 xfs_log_force(mp, XFS_LOG_SYNC); 745 if (laptop_mode) { 746 /* 747 * The disk must be active because we're syncing. 748 * We schedule log work now (now that the disk is 749 * active) instead of later (when it might not be). 750 */ 751 flush_delayed_work(&mp->m_log->l_work); 752 } 753 754 return 0; 755 } 756 757 STATIC int 758 xfs_fs_statfs( 759 struct dentry *dentry, 760 struct kstatfs *statp) 761 { 762 struct xfs_mount *mp = XFS_M(dentry->d_sb); 763 xfs_sb_t *sbp = &mp->m_sb; 764 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 765 uint64_t fakeinos, id; 766 uint64_t icount; 767 uint64_t ifree; 768 uint64_t fdblocks; 769 xfs_extlen_t lsize; 770 int64_t ffree; 771 772 statp->f_type = XFS_SUPER_MAGIC; 773 statp->f_namelen = MAXNAMELEN - 1; 774 775 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 776 statp->f_fsid.val[0] = (u32)id; 777 statp->f_fsid.val[1] = (u32)(id >> 32); 778 779 icount = percpu_counter_sum(&mp->m_icount); 780 ifree = percpu_counter_sum(&mp->m_ifree); 781 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 782 783 spin_lock(&mp->m_sb_lock); 784 statp->f_bsize = sbp->sb_blocksize; 785 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 786 statp->f_blocks = sbp->sb_dblocks - lsize; 787 spin_unlock(&mp->m_sb_lock); 788 789 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 790 statp->f_bavail = statp->f_bfree; 791 792 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 793 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 794 if (M_IGEO(mp)->maxicount) 795 statp->f_files = min_t(typeof(statp->f_files), 796 statp->f_files, 797 M_IGEO(mp)->maxicount); 798 799 /* If sb_icount overshot maxicount, report actual allocation */ 800 statp->f_files = max_t(typeof(statp->f_files), 801 statp->f_files, 802 sbp->sb_icount); 803 804 /* make sure statp->f_ffree does not underflow */ 805 ffree = statp->f_files - (icount - ifree); 806 statp->f_ffree = max_t(int64_t, ffree, 0); 807 808 809 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 810 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 811 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 812 xfs_qm_statvfs(ip, statp); 813 814 if (XFS_IS_REALTIME_MOUNT(mp) && 815 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 816 statp->f_blocks = sbp->sb_rblocks; 817 statp->f_bavail = statp->f_bfree = 818 sbp->sb_frextents * sbp->sb_rextsize; 819 } 820 821 return 0; 822 } 823 824 STATIC void 825 xfs_save_resvblks(struct xfs_mount *mp) 826 { 827 uint64_t resblks = 0; 828 829 mp->m_resblks_save = mp->m_resblks; 830 xfs_reserve_blocks(mp, &resblks, NULL); 831 } 832 833 STATIC void 834 xfs_restore_resvblks(struct xfs_mount *mp) 835 { 836 uint64_t resblks; 837 838 if (mp->m_resblks_save) { 839 resblks = mp->m_resblks_save; 840 mp->m_resblks_save = 0; 841 } else 842 resblks = xfs_default_resblks(mp); 843 844 xfs_reserve_blocks(mp, &resblks, NULL); 845 } 846 847 /* 848 * Trigger writeback of all the dirty metadata in the file system. 849 * 850 * This ensures that the metadata is written to their location on disk rather 851 * than just existing in transactions in the log. This means after a quiesce 852 * there is no log replay required to write the inodes to disk - this is the 853 * primary difference between a sync and a quiesce. 854 * 855 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 856 * it is started again when appropriate. 857 */ 858 void 859 xfs_quiesce_attr( 860 struct xfs_mount *mp) 861 { 862 int error = 0; 863 864 /* wait for all modifications to complete */ 865 while (atomic_read(&mp->m_active_trans) > 0) 866 delay(100); 867 868 /* force the log to unpin objects from the now complete transactions */ 869 xfs_log_force(mp, XFS_LOG_SYNC); 870 871 /* reclaim inodes to do any IO before the freeze completes */ 872 xfs_reclaim_inodes(mp, 0); 873 xfs_reclaim_inodes(mp, SYNC_WAIT); 874 875 /* Push the superblock and write an unmount record */ 876 error = xfs_log_sbcount(mp); 877 if (error) 878 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 879 "Frozen image may not be consistent."); 880 /* 881 * Just warn here till VFS can correctly support 882 * read-only remount without racing. 883 */ 884 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 885 886 xfs_log_quiesce(mp); 887 } 888 889 /* 890 * Second stage of a freeze. The data is already frozen so we only 891 * need to take care of the metadata. Once that's done sync the superblock 892 * to the log to dirty it in case of a crash while frozen. This ensures that we 893 * will recover the unlinked inode lists on the next mount. 894 */ 895 STATIC int 896 xfs_fs_freeze( 897 struct super_block *sb) 898 { 899 struct xfs_mount *mp = XFS_M(sb); 900 901 xfs_stop_block_reaping(mp); 902 xfs_save_resvblks(mp); 903 xfs_quiesce_attr(mp); 904 return xfs_sync_sb(mp, true); 905 } 906 907 STATIC int 908 xfs_fs_unfreeze( 909 struct super_block *sb) 910 { 911 struct xfs_mount *mp = XFS_M(sb); 912 913 xfs_restore_resvblks(mp); 914 xfs_log_work_queue(mp); 915 xfs_start_block_reaping(mp); 916 return 0; 917 } 918 919 /* 920 * This function fills in xfs_mount_t fields based on mount args. 921 * Note: the superblock _has_ now been read in. 922 */ 923 STATIC int 924 xfs_finish_flags( 925 struct xfs_mount *mp) 926 { 927 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 928 929 /* Fail a mount where the logbuf is smaller than the log stripe */ 930 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 931 if (mp->m_logbsize <= 0 && 932 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 933 mp->m_logbsize = mp->m_sb.sb_logsunit; 934 } else if (mp->m_logbsize > 0 && 935 mp->m_logbsize < mp->m_sb.sb_logsunit) { 936 xfs_warn(mp, 937 "logbuf size must be greater than or equal to log stripe size"); 938 return -EINVAL; 939 } 940 } else { 941 /* Fail a mount if the logbuf is larger than 32K */ 942 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 943 xfs_warn(mp, 944 "logbuf size for version 1 logs must be 16K or 32K"); 945 return -EINVAL; 946 } 947 } 948 949 /* 950 * V5 filesystems always use attr2 format for attributes. 951 */ 952 if (xfs_sb_version_hascrc(&mp->m_sb) && 953 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 954 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 955 "attr2 is always enabled for V5 filesystems."); 956 return -EINVAL; 957 } 958 959 /* 960 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 961 * told by noattr2 to turn it off 962 */ 963 if (xfs_sb_version_hasattr2(&mp->m_sb) && 964 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 965 mp->m_flags |= XFS_MOUNT_ATTR2; 966 967 /* 968 * prohibit r/w mounts of read-only filesystems 969 */ 970 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 971 xfs_warn(mp, 972 "cannot mount a read-only filesystem as read-write"); 973 return -EROFS; 974 } 975 976 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 977 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 978 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 979 xfs_warn(mp, 980 "Super block does not support project and group quota together"); 981 return -EINVAL; 982 } 983 984 return 0; 985 } 986 987 static int 988 xfs_init_percpu_counters( 989 struct xfs_mount *mp) 990 { 991 int error; 992 993 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 994 if (error) 995 return -ENOMEM; 996 997 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 998 if (error) 999 goto free_icount; 1000 1001 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1002 if (error) 1003 goto free_ifree; 1004 1005 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1006 if (error) 1007 goto free_fdblocks; 1008 1009 return 0; 1010 1011 free_fdblocks: 1012 percpu_counter_destroy(&mp->m_fdblocks); 1013 free_ifree: 1014 percpu_counter_destroy(&mp->m_ifree); 1015 free_icount: 1016 percpu_counter_destroy(&mp->m_icount); 1017 return -ENOMEM; 1018 } 1019 1020 void 1021 xfs_reinit_percpu_counters( 1022 struct xfs_mount *mp) 1023 { 1024 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1025 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1026 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1027 } 1028 1029 static void 1030 xfs_destroy_percpu_counters( 1031 struct xfs_mount *mp) 1032 { 1033 percpu_counter_destroy(&mp->m_icount); 1034 percpu_counter_destroy(&mp->m_ifree); 1035 percpu_counter_destroy(&mp->m_fdblocks); 1036 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1037 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1038 percpu_counter_destroy(&mp->m_delalloc_blks); 1039 } 1040 1041 static void 1042 xfs_fs_put_super( 1043 struct super_block *sb) 1044 { 1045 struct xfs_mount *mp = XFS_M(sb); 1046 1047 /* if ->fill_super failed, we have no mount to tear down */ 1048 if (!sb->s_fs_info) 1049 return; 1050 1051 xfs_notice(mp, "Unmounting Filesystem"); 1052 xfs_filestream_unmount(mp); 1053 xfs_unmountfs(mp); 1054 1055 xfs_freesb(mp); 1056 free_percpu(mp->m_stats.xs_stats); 1057 xfs_destroy_percpu_counters(mp); 1058 xfs_destroy_mount_workqueues(mp); 1059 xfs_close_devices(mp); 1060 1061 sb->s_fs_info = NULL; 1062 xfs_mount_free(mp); 1063 } 1064 1065 static long 1066 xfs_fs_nr_cached_objects( 1067 struct super_block *sb, 1068 struct shrink_control *sc) 1069 { 1070 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1071 if (WARN_ON_ONCE(!sb->s_fs_info)) 1072 return 0; 1073 return xfs_reclaim_inodes_count(XFS_M(sb)); 1074 } 1075 1076 static long 1077 xfs_fs_free_cached_objects( 1078 struct super_block *sb, 1079 struct shrink_control *sc) 1080 { 1081 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1082 } 1083 1084 static const struct super_operations xfs_super_operations = { 1085 .alloc_inode = xfs_fs_alloc_inode, 1086 .destroy_inode = xfs_fs_destroy_inode, 1087 .dirty_inode = xfs_fs_dirty_inode, 1088 .drop_inode = xfs_fs_drop_inode, 1089 .put_super = xfs_fs_put_super, 1090 .sync_fs = xfs_fs_sync_fs, 1091 .freeze_fs = xfs_fs_freeze, 1092 .unfreeze_fs = xfs_fs_unfreeze, 1093 .statfs = xfs_fs_statfs, 1094 .show_options = xfs_fs_show_options, 1095 .nr_cached_objects = xfs_fs_nr_cached_objects, 1096 .free_cached_objects = xfs_fs_free_cached_objects, 1097 }; 1098 1099 static int 1100 suffix_kstrtoint( 1101 const char *s, 1102 unsigned int base, 1103 int *res) 1104 { 1105 int last, shift_left_factor = 0, _res; 1106 char *value; 1107 int ret = 0; 1108 1109 value = kstrdup(s, GFP_KERNEL); 1110 if (!value) 1111 return -ENOMEM; 1112 1113 last = strlen(value) - 1; 1114 if (value[last] == 'K' || value[last] == 'k') { 1115 shift_left_factor = 10; 1116 value[last] = '\0'; 1117 } 1118 if (value[last] == 'M' || value[last] == 'm') { 1119 shift_left_factor = 20; 1120 value[last] = '\0'; 1121 } 1122 if (value[last] == 'G' || value[last] == 'g') { 1123 shift_left_factor = 30; 1124 value[last] = '\0'; 1125 } 1126 1127 if (kstrtoint(value, base, &_res)) 1128 ret = -EINVAL; 1129 kfree(value); 1130 *res = _res << shift_left_factor; 1131 return ret; 1132 } 1133 1134 /* 1135 * Set mount state from a mount option. 1136 * 1137 * NOTE: mp->m_super is NULL here! 1138 */ 1139 static int 1140 xfs_fc_parse_param( 1141 struct fs_context *fc, 1142 struct fs_parameter *param) 1143 { 1144 struct xfs_mount *mp = fc->s_fs_info; 1145 struct fs_parse_result result; 1146 int size = 0; 1147 int opt; 1148 1149 opt = fs_parse(fc, &xfs_fs_parameters, param, &result); 1150 if (opt < 0) 1151 return opt; 1152 1153 switch (opt) { 1154 case Opt_logbufs: 1155 mp->m_logbufs = result.uint_32; 1156 return 0; 1157 case Opt_logbsize: 1158 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) 1159 return -EINVAL; 1160 return 0; 1161 case Opt_logdev: 1162 kfree(mp->m_logname); 1163 mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1164 if (!mp->m_logname) 1165 return -ENOMEM; 1166 return 0; 1167 case Opt_rtdev: 1168 kfree(mp->m_rtname); 1169 mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1170 if (!mp->m_rtname) 1171 return -ENOMEM; 1172 return 0; 1173 case Opt_allocsize: 1174 if (suffix_kstrtoint(param->string, 10, &size)) 1175 return -EINVAL; 1176 mp->m_allocsize_log = ffs(size) - 1; 1177 mp->m_flags |= XFS_MOUNT_ALLOCSIZE; 1178 return 0; 1179 case Opt_grpid: 1180 case Opt_bsdgroups: 1181 mp->m_flags |= XFS_MOUNT_GRPID; 1182 return 0; 1183 case Opt_nogrpid: 1184 case Opt_sysvgroups: 1185 mp->m_flags &= ~XFS_MOUNT_GRPID; 1186 return 0; 1187 case Opt_wsync: 1188 mp->m_flags |= XFS_MOUNT_WSYNC; 1189 return 0; 1190 case Opt_norecovery: 1191 mp->m_flags |= XFS_MOUNT_NORECOVERY; 1192 return 0; 1193 case Opt_noalign: 1194 mp->m_flags |= XFS_MOUNT_NOALIGN; 1195 return 0; 1196 case Opt_swalloc: 1197 mp->m_flags |= XFS_MOUNT_SWALLOC; 1198 return 0; 1199 case Opt_sunit: 1200 mp->m_dalign = result.uint_32; 1201 return 0; 1202 case Opt_swidth: 1203 mp->m_swidth = result.uint_32; 1204 return 0; 1205 case Opt_inode32: 1206 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1207 return 0; 1208 case Opt_inode64: 1209 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1210 return 0; 1211 case Opt_nouuid: 1212 mp->m_flags |= XFS_MOUNT_NOUUID; 1213 return 0; 1214 case Opt_ikeep: 1215 mp->m_flags |= XFS_MOUNT_IKEEP; 1216 return 0; 1217 case Opt_noikeep: 1218 mp->m_flags &= ~XFS_MOUNT_IKEEP; 1219 return 0; 1220 case Opt_largeio: 1221 mp->m_flags |= XFS_MOUNT_LARGEIO; 1222 return 0; 1223 case Opt_nolargeio: 1224 mp->m_flags &= ~XFS_MOUNT_LARGEIO; 1225 return 0; 1226 case Opt_attr2: 1227 mp->m_flags |= XFS_MOUNT_ATTR2; 1228 return 0; 1229 case Opt_noattr2: 1230 mp->m_flags &= ~XFS_MOUNT_ATTR2; 1231 mp->m_flags |= XFS_MOUNT_NOATTR2; 1232 return 0; 1233 case Opt_filestreams: 1234 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 1235 return 0; 1236 case Opt_noquota: 1237 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1238 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1239 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 1240 return 0; 1241 case Opt_quota: 1242 case Opt_uquota: 1243 case Opt_usrquota: 1244 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 1245 XFS_UQUOTA_ENFD); 1246 return 0; 1247 case Opt_qnoenforce: 1248 case Opt_uqnoenforce: 1249 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 1250 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1251 return 0; 1252 case Opt_pquota: 1253 case Opt_prjquota: 1254 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 1255 XFS_PQUOTA_ENFD); 1256 return 0; 1257 case Opt_pqnoenforce: 1258 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 1259 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1260 return 0; 1261 case Opt_gquota: 1262 case Opt_grpquota: 1263 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 1264 XFS_GQUOTA_ENFD); 1265 return 0; 1266 case Opt_gqnoenforce: 1267 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 1268 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1269 return 0; 1270 case Opt_discard: 1271 mp->m_flags |= XFS_MOUNT_DISCARD; 1272 return 0; 1273 case Opt_nodiscard: 1274 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1275 return 0; 1276 #ifdef CONFIG_FS_DAX 1277 case Opt_dax: 1278 mp->m_flags |= XFS_MOUNT_DAX; 1279 return 0; 1280 #endif 1281 default: 1282 xfs_warn(mp, "unknown mount option [%s].", param->key); 1283 return -EINVAL; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int 1290 xfs_fc_validate_params( 1291 struct xfs_mount *mp) 1292 { 1293 /* 1294 * no recovery flag requires a read-only mount 1295 */ 1296 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 1297 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1298 xfs_warn(mp, "no-recovery mounts must be read-only."); 1299 return -EINVAL; 1300 } 1301 1302 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && 1303 (mp->m_dalign || mp->m_swidth)) { 1304 xfs_warn(mp, 1305 "sunit and swidth options incompatible with the noalign option"); 1306 return -EINVAL; 1307 } 1308 1309 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1310 xfs_warn(mp, "quota support not available in this kernel."); 1311 return -EINVAL; 1312 } 1313 1314 if ((mp->m_dalign && !mp->m_swidth) || 1315 (!mp->m_dalign && mp->m_swidth)) { 1316 xfs_warn(mp, "sunit and swidth must be specified together"); 1317 return -EINVAL; 1318 } 1319 1320 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1321 xfs_warn(mp, 1322 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1323 mp->m_swidth, mp->m_dalign); 1324 return -EINVAL; 1325 } 1326 1327 if (mp->m_logbufs != -1 && 1328 mp->m_logbufs != 0 && 1329 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1330 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1331 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1332 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1333 return -EINVAL; 1334 } 1335 1336 if (mp->m_logbsize != -1 && 1337 mp->m_logbsize != 0 && 1338 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1339 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1340 !is_power_of_2(mp->m_logbsize))) { 1341 xfs_warn(mp, 1342 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1343 mp->m_logbsize); 1344 return -EINVAL; 1345 } 1346 1347 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && 1348 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1349 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1350 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1351 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1352 return -EINVAL; 1353 } 1354 1355 return 0; 1356 } 1357 1358 static int 1359 xfs_fc_fill_super( 1360 struct super_block *sb, 1361 struct fs_context *fc) 1362 { 1363 struct xfs_mount *mp = sb->s_fs_info; 1364 struct inode *root; 1365 int flags = 0, error; 1366 1367 mp->m_super = sb; 1368 1369 error = xfs_fc_validate_params(mp); 1370 if (error) 1371 goto out_free_names; 1372 1373 sb_min_blocksize(sb, BBSIZE); 1374 sb->s_xattr = xfs_xattr_handlers; 1375 sb->s_export_op = &xfs_export_operations; 1376 #ifdef CONFIG_XFS_QUOTA 1377 sb->s_qcop = &xfs_quotactl_operations; 1378 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1379 #endif 1380 sb->s_op = &xfs_super_operations; 1381 1382 /* 1383 * Delay mount work if the debug hook is set. This is debug 1384 * instrumention to coordinate simulation of xfs mount failures with 1385 * VFS superblock operations 1386 */ 1387 if (xfs_globals.mount_delay) { 1388 xfs_notice(mp, "Delaying mount for %d seconds.", 1389 xfs_globals.mount_delay); 1390 msleep(xfs_globals.mount_delay * 1000); 1391 } 1392 1393 if (fc->sb_flags & SB_SILENT) 1394 flags |= XFS_MFSI_QUIET; 1395 1396 error = xfs_open_devices(mp); 1397 if (error) 1398 goto out_free_names; 1399 1400 error = xfs_init_mount_workqueues(mp); 1401 if (error) 1402 goto out_close_devices; 1403 1404 error = xfs_init_percpu_counters(mp); 1405 if (error) 1406 goto out_destroy_workqueues; 1407 1408 /* Allocate stats memory before we do operations that might use it */ 1409 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1410 if (!mp->m_stats.xs_stats) { 1411 error = -ENOMEM; 1412 goto out_destroy_counters; 1413 } 1414 1415 error = xfs_readsb(mp, flags); 1416 if (error) 1417 goto out_free_stats; 1418 1419 error = xfs_finish_flags(mp); 1420 if (error) 1421 goto out_free_sb; 1422 1423 error = xfs_setup_devices(mp); 1424 if (error) 1425 goto out_free_sb; 1426 1427 error = xfs_filestream_mount(mp); 1428 if (error) 1429 goto out_free_sb; 1430 1431 /* 1432 * we must configure the block size in the superblock before we run the 1433 * full mount process as the mount process can lookup and cache inodes. 1434 */ 1435 sb->s_magic = XFS_SUPER_MAGIC; 1436 sb->s_blocksize = mp->m_sb.sb_blocksize; 1437 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1438 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); 1439 sb->s_max_links = XFS_MAXLINK; 1440 sb->s_time_gran = 1; 1441 sb->s_time_min = S32_MIN; 1442 sb->s_time_max = S32_MAX; 1443 sb->s_iflags |= SB_I_CGROUPWB; 1444 1445 set_posix_acl_flag(sb); 1446 1447 /* version 5 superblocks support inode version counters. */ 1448 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1449 sb->s_flags |= SB_I_VERSION; 1450 1451 if (mp->m_flags & XFS_MOUNT_DAX) { 1452 bool rtdev_is_dax = false, datadev_is_dax; 1453 1454 xfs_warn(mp, 1455 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1456 1457 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1458 sb->s_blocksize); 1459 if (mp->m_rtdev_targp) 1460 rtdev_is_dax = bdev_dax_supported( 1461 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1462 if (!rtdev_is_dax && !datadev_is_dax) { 1463 xfs_alert(mp, 1464 "DAX unsupported by block device. Turning off DAX."); 1465 mp->m_flags &= ~XFS_MOUNT_DAX; 1466 } 1467 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1468 xfs_alert(mp, 1469 "DAX and reflink cannot be used together!"); 1470 error = -EINVAL; 1471 goto out_filestream_unmount; 1472 } 1473 } 1474 1475 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1476 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1477 1478 if (!blk_queue_discard(q)) { 1479 xfs_warn(mp, "mounting with \"discard\" option, but " 1480 "the device does not support discard"); 1481 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1482 } 1483 } 1484 1485 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1486 if (mp->m_sb.sb_rblocks) { 1487 xfs_alert(mp, 1488 "reflink not compatible with realtime device!"); 1489 error = -EINVAL; 1490 goto out_filestream_unmount; 1491 } 1492 1493 if (xfs_globals.always_cow) { 1494 xfs_info(mp, "using DEBUG-only always_cow mode."); 1495 mp->m_always_cow = true; 1496 } 1497 } 1498 1499 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1500 xfs_alert(mp, 1501 "reverse mapping btree not compatible with realtime device!"); 1502 error = -EINVAL; 1503 goto out_filestream_unmount; 1504 } 1505 1506 error = xfs_mountfs(mp); 1507 if (error) 1508 goto out_filestream_unmount; 1509 1510 root = igrab(VFS_I(mp->m_rootip)); 1511 if (!root) { 1512 error = -ENOENT; 1513 goto out_unmount; 1514 } 1515 sb->s_root = d_make_root(root); 1516 if (!sb->s_root) { 1517 error = -ENOMEM; 1518 goto out_unmount; 1519 } 1520 1521 return 0; 1522 1523 out_filestream_unmount: 1524 xfs_filestream_unmount(mp); 1525 out_free_sb: 1526 xfs_freesb(mp); 1527 out_free_stats: 1528 free_percpu(mp->m_stats.xs_stats); 1529 out_destroy_counters: 1530 xfs_destroy_percpu_counters(mp); 1531 out_destroy_workqueues: 1532 xfs_destroy_mount_workqueues(mp); 1533 out_close_devices: 1534 xfs_close_devices(mp); 1535 out_free_names: 1536 sb->s_fs_info = NULL; 1537 xfs_mount_free(mp); 1538 return error; 1539 1540 out_unmount: 1541 xfs_filestream_unmount(mp); 1542 xfs_unmountfs(mp); 1543 goto out_free_sb; 1544 } 1545 1546 static int 1547 xfs_fc_get_tree( 1548 struct fs_context *fc) 1549 { 1550 return get_tree_bdev(fc, xfs_fc_fill_super); 1551 } 1552 1553 static int 1554 xfs_remount_rw( 1555 struct xfs_mount *mp) 1556 { 1557 struct xfs_sb *sbp = &mp->m_sb; 1558 int error; 1559 1560 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1561 xfs_warn(mp, 1562 "ro->rw transition prohibited on norecovery mount"); 1563 return -EINVAL; 1564 } 1565 1566 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1567 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1568 xfs_warn(mp, 1569 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1570 (sbp->sb_features_ro_compat & 1571 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1572 return -EINVAL; 1573 } 1574 1575 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1576 1577 /* 1578 * If this is the first remount to writeable state we might have some 1579 * superblock changes to update. 1580 */ 1581 if (mp->m_update_sb) { 1582 error = xfs_sync_sb(mp, false); 1583 if (error) { 1584 xfs_warn(mp, "failed to write sb changes"); 1585 return error; 1586 } 1587 mp->m_update_sb = false; 1588 } 1589 1590 /* 1591 * Fill out the reserve pool if it is empty. Use the stashed value if 1592 * it is non-zero, otherwise go with the default. 1593 */ 1594 xfs_restore_resvblks(mp); 1595 xfs_log_work_queue(mp); 1596 1597 /* Recover any CoW blocks that never got remapped. */ 1598 error = xfs_reflink_recover_cow(mp); 1599 if (error) { 1600 xfs_err(mp, 1601 "Error %d recovering leftover CoW allocations.", error); 1602 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1603 return error; 1604 } 1605 xfs_start_block_reaping(mp); 1606 1607 /* Create the per-AG metadata reservation pool .*/ 1608 error = xfs_fs_reserve_ag_blocks(mp); 1609 if (error && error != -ENOSPC) 1610 return error; 1611 1612 return 0; 1613 } 1614 1615 static int 1616 xfs_remount_ro( 1617 struct xfs_mount *mp) 1618 { 1619 int error; 1620 1621 /* 1622 * Cancel background eofb scanning so it cannot race with the final 1623 * log force+buftarg wait and deadlock the remount. 1624 */ 1625 xfs_stop_block_reaping(mp); 1626 1627 /* Get rid of any leftover CoW reservations... */ 1628 error = xfs_icache_free_cowblocks(mp, NULL); 1629 if (error) { 1630 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1631 return error; 1632 } 1633 1634 /* Free the per-AG metadata reservation pool. */ 1635 error = xfs_fs_unreserve_ag_blocks(mp); 1636 if (error) { 1637 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1638 return error; 1639 } 1640 1641 /* 1642 * Before we sync the metadata, we need to free up the reserve block 1643 * pool so that the used block count in the superblock on disk is 1644 * correct at the end of the remount. Stash the current* reserve pool 1645 * size so that if we get remounted rw, we can return it to the same 1646 * size. 1647 */ 1648 xfs_save_resvblks(mp); 1649 1650 xfs_quiesce_attr(mp); 1651 mp->m_flags |= XFS_MOUNT_RDONLY; 1652 1653 return 0; 1654 } 1655 1656 /* 1657 * Logically we would return an error here to prevent users from believing 1658 * they might have changed mount options using remount which can't be changed. 1659 * 1660 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1661 * arguments in some cases so we can't blindly reject options, but have to 1662 * check for each specified option if it actually differs from the currently 1663 * set option and only reject it if that's the case. 1664 * 1665 * Until that is implemented we return success for every remount request, and 1666 * silently ignore all options that we can't actually change. 1667 */ 1668 static int 1669 xfs_fc_reconfigure( 1670 struct fs_context *fc) 1671 { 1672 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1673 struct xfs_mount *new_mp = fc->s_fs_info; 1674 xfs_sb_t *sbp = &mp->m_sb; 1675 int flags = fc->sb_flags; 1676 int error; 1677 1678 error = xfs_fc_validate_params(new_mp); 1679 if (error) 1680 return error; 1681 1682 sync_filesystem(mp->m_super); 1683 1684 /* inode32 -> inode64 */ 1685 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1686 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1687 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1688 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1689 } 1690 1691 /* inode64 -> inode32 */ 1692 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && 1693 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { 1694 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1695 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1696 } 1697 1698 /* ro -> rw */ 1699 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { 1700 error = xfs_remount_rw(mp); 1701 if (error) 1702 return error; 1703 } 1704 1705 /* rw -> ro */ 1706 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { 1707 error = xfs_remount_ro(mp); 1708 if (error) 1709 return error; 1710 } 1711 1712 return 0; 1713 } 1714 1715 static void xfs_fc_free( 1716 struct fs_context *fc) 1717 { 1718 struct xfs_mount *mp = fc->s_fs_info; 1719 1720 /* 1721 * mp is stored in the fs_context when it is initialized. 1722 * mp is transferred to the superblock on a successful mount, 1723 * but if an error occurs before the transfer we have to free 1724 * it here. 1725 */ 1726 if (mp) 1727 xfs_mount_free(mp); 1728 } 1729 1730 static const struct fs_context_operations xfs_context_ops = { 1731 .parse_param = xfs_fc_parse_param, 1732 .get_tree = xfs_fc_get_tree, 1733 .reconfigure = xfs_fc_reconfigure, 1734 .free = xfs_fc_free, 1735 }; 1736 1737 static int xfs_init_fs_context( 1738 struct fs_context *fc) 1739 { 1740 struct xfs_mount *mp; 1741 1742 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1743 if (!mp) 1744 return -ENOMEM; 1745 1746 spin_lock_init(&mp->m_sb_lock); 1747 spin_lock_init(&mp->m_agirotor_lock); 1748 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1749 spin_lock_init(&mp->m_perag_lock); 1750 mutex_init(&mp->m_growlock); 1751 atomic_set(&mp->m_active_trans, 0); 1752 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1753 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1754 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1755 mp->m_kobj.kobject.kset = xfs_kset; 1756 /* 1757 * We don't create the finobt per-ag space reservation until after log 1758 * recovery, so we must set this to true so that an ifree transaction 1759 * started during log recovery will not depend on space reservations 1760 * for finobt expansion. 1761 */ 1762 mp->m_finobt_nores = true; 1763 1764 /* 1765 * These can be overridden by the mount option parsing. 1766 */ 1767 mp->m_logbufs = -1; 1768 mp->m_logbsize = -1; 1769 mp->m_allocsize_log = 16; /* 64k */ 1770 1771 /* 1772 * Copy binary VFS mount flags we are interested in. 1773 */ 1774 if (fc->sb_flags & SB_RDONLY) 1775 mp->m_flags |= XFS_MOUNT_RDONLY; 1776 if (fc->sb_flags & SB_DIRSYNC) 1777 mp->m_flags |= XFS_MOUNT_DIRSYNC; 1778 if (fc->sb_flags & SB_SYNCHRONOUS) 1779 mp->m_flags |= XFS_MOUNT_WSYNC; 1780 1781 fc->s_fs_info = mp; 1782 fc->ops = &xfs_context_ops; 1783 1784 return 0; 1785 } 1786 1787 static struct file_system_type xfs_fs_type = { 1788 .owner = THIS_MODULE, 1789 .name = "xfs", 1790 .init_fs_context = xfs_init_fs_context, 1791 .parameters = &xfs_fs_parameters, 1792 .kill_sb = kill_block_super, 1793 .fs_flags = FS_REQUIRES_DEV, 1794 }; 1795 MODULE_ALIAS_FS("xfs"); 1796 1797 STATIC int __init 1798 xfs_init_zones(void) 1799 { 1800 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", 1801 sizeof(struct xlog_ticket), 1802 0, 0, NULL); 1803 if (!xfs_log_ticket_zone) 1804 goto out; 1805 1806 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", 1807 sizeof(struct xfs_extent_free_item), 1808 0, 0, NULL); 1809 if (!xfs_bmap_free_item_zone) 1810 goto out_destroy_log_ticket_zone; 1811 1812 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", 1813 sizeof(struct xfs_btree_cur), 1814 0, 0, NULL); 1815 if (!xfs_btree_cur_zone) 1816 goto out_destroy_bmap_free_item_zone; 1817 1818 xfs_da_state_zone = kmem_cache_create("xfs_da_state", 1819 sizeof(struct xfs_da_state), 1820 0, 0, NULL); 1821 if (!xfs_da_state_zone) 1822 goto out_destroy_btree_cur_zone; 1823 1824 xfs_ifork_zone = kmem_cache_create("xfs_ifork", 1825 sizeof(struct xfs_ifork), 1826 0, 0, NULL); 1827 if (!xfs_ifork_zone) 1828 goto out_destroy_da_state_zone; 1829 1830 xfs_trans_zone = kmem_cache_create("xf_trans", 1831 sizeof(struct xfs_trans), 1832 0, 0, NULL); 1833 if (!xfs_trans_zone) 1834 goto out_destroy_ifork_zone; 1835 1836 1837 /* 1838 * The size of the zone allocated buf log item is the maximum 1839 * size possible under XFS. This wastes a little bit of memory, 1840 * but it is much faster. 1841 */ 1842 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", 1843 sizeof(struct xfs_buf_log_item), 1844 0, 0, NULL); 1845 if (!xfs_buf_item_zone) 1846 goto out_destroy_trans_zone; 1847 1848 xfs_efd_zone = kmem_cache_create("xfs_efd_item", 1849 (sizeof(struct xfs_efd_log_item) + 1850 (XFS_EFD_MAX_FAST_EXTENTS - 1) * 1851 sizeof(struct xfs_extent)), 1852 0, 0, NULL); 1853 if (!xfs_efd_zone) 1854 goto out_destroy_buf_item_zone; 1855 1856 xfs_efi_zone = kmem_cache_create("xfs_efi_item", 1857 (sizeof(struct xfs_efi_log_item) + 1858 (XFS_EFI_MAX_FAST_EXTENTS - 1) * 1859 sizeof(struct xfs_extent)), 1860 0, 0, NULL); 1861 if (!xfs_efi_zone) 1862 goto out_destroy_efd_zone; 1863 1864 xfs_inode_zone = kmem_cache_create("xfs_inode", 1865 sizeof(struct xfs_inode), 0, 1866 (SLAB_HWCACHE_ALIGN | 1867 SLAB_RECLAIM_ACCOUNT | 1868 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1869 xfs_fs_inode_init_once); 1870 if (!xfs_inode_zone) 1871 goto out_destroy_efi_zone; 1872 1873 xfs_ili_zone = kmem_cache_create("xfs_ili", 1874 sizeof(struct xfs_inode_log_item), 0, 1875 SLAB_MEM_SPREAD, NULL); 1876 if (!xfs_ili_zone) 1877 goto out_destroy_inode_zone; 1878 1879 xfs_icreate_zone = kmem_cache_create("xfs_icr", 1880 sizeof(struct xfs_icreate_item), 1881 0, 0, NULL); 1882 if (!xfs_icreate_zone) 1883 goto out_destroy_ili_zone; 1884 1885 xfs_rud_zone = kmem_cache_create("xfs_rud_item", 1886 sizeof(struct xfs_rud_log_item), 1887 0, 0, NULL); 1888 if (!xfs_rud_zone) 1889 goto out_destroy_icreate_zone; 1890 1891 xfs_rui_zone = kmem_cache_create("xfs_rui_item", 1892 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1893 0, 0, NULL); 1894 if (!xfs_rui_zone) 1895 goto out_destroy_rud_zone; 1896 1897 xfs_cud_zone = kmem_cache_create("xfs_cud_item", 1898 sizeof(struct xfs_cud_log_item), 1899 0, 0, NULL); 1900 if (!xfs_cud_zone) 1901 goto out_destroy_rui_zone; 1902 1903 xfs_cui_zone = kmem_cache_create("xfs_cui_item", 1904 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1905 0, 0, NULL); 1906 if (!xfs_cui_zone) 1907 goto out_destroy_cud_zone; 1908 1909 xfs_bud_zone = kmem_cache_create("xfs_bud_item", 1910 sizeof(struct xfs_bud_log_item), 1911 0, 0, NULL); 1912 if (!xfs_bud_zone) 1913 goto out_destroy_cui_zone; 1914 1915 xfs_bui_zone = kmem_cache_create("xfs_bui_item", 1916 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1917 0, 0, NULL); 1918 if (!xfs_bui_zone) 1919 goto out_destroy_bud_zone; 1920 1921 return 0; 1922 1923 out_destroy_bud_zone: 1924 kmem_cache_destroy(xfs_bud_zone); 1925 out_destroy_cui_zone: 1926 kmem_cache_destroy(xfs_cui_zone); 1927 out_destroy_cud_zone: 1928 kmem_cache_destroy(xfs_cud_zone); 1929 out_destroy_rui_zone: 1930 kmem_cache_destroy(xfs_rui_zone); 1931 out_destroy_rud_zone: 1932 kmem_cache_destroy(xfs_rud_zone); 1933 out_destroy_icreate_zone: 1934 kmem_cache_destroy(xfs_icreate_zone); 1935 out_destroy_ili_zone: 1936 kmem_cache_destroy(xfs_ili_zone); 1937 out_destroy_inode_zone: 1938 kmem_cache_destroy(xfs_inode_zone); 1939 out_destroy_efi_zone: 1940 kmem_cache_destroy(xfs_efi_zone); 1941 out_destroy_efd_zone: 1942 kmem_cache_destroy(xfs_efd_zone); 1943 out_destroy_buf_item_zone: 1944 kmem_cache_destroy(xfs_buf_item_zone); 1945 out_destroy_trans_zone: 1946 kmem_cache_destroy(xfs_trans_zone); 1947 out_destroy_ifork_zone: 1948 kmem_cache_destroy(xfs_ifork_zone); 1949 out_destroy_da_state_zone: 1950 kmem_cache_destroy(xfs_da_state_zone); 1951 out_destroy_btree_cur_zone: 1952 kmem_cache_destroy(xfs_btree_cur_zone); 1953 out_destroy_bmap_free_item_zone: 1954 kmem_cache_destroy(xfs_bmap_free_item_zone); 1955 out_destroy_log_ticket_zone: 1956 kmem_cache_destroy(xfs_log_ticket_zone); 1957 out: 1958 return -ENOMEM; 1959 } 1960 1961 STATIC void 1962 xfs_destroy_zones(void) 1963 { 1964 /* 1965 * Make sure all delayed rcu free are flushed before we 1966 * destroy caches. 1967 */ 1968 rcu_barrier(); 1969 kmem_cache_destroy(xfs_bui_zone); 1970 kmem_cache_destroy(xfs_bud_zone); 1971 kmem_cache_destroy(xfs_cui_zone); 1972 kmem_cache_destroy(xfs_cud_zone); 1973 kmem_cache_destroy(xfs_rui_zone); 1974 kmem_cache_destroy(xfs_rud_zone); 1975 kmem_cache_destroy(xfs_icreate_zone); 1976 kmem_cache_destroy(xfs_ili_zone); 1977 kmem_cache_destroy(xfs_inode_zone); 1978 kmem_cache_destroy(xfs_efi_zone); 1979 kmem_cache_destroy(xfs_efd_zone); 1980 kmem_cache_destroy(xfs_buf_item_zone); 1981 kmem_cache_destroy(xfs_trans_zone); 1982 kmem_cache_destroy(xfs_ifork_zone); 1983 kmem_cache_destroy(xfs_da_state_zone); 1984 kmem_cache_destroy(xfs_btree_cur_zone); 1985 kmem_cache_destroy(xfs_bmap_free_item_zone); 1986 kmem_cache_destroy(xfs_log_ticket_zone); 1987 } 1988 1989 STATIC int __init 1990 xfs_init_workqueues(void) 1991 { 1992 /* 1993 * The allocation workqueue can be used in memory reclaim situations 1994 * (writepage path), and parallelism is only limited by the number of 1995 * AGs in all the filesystems mounted. Hence use the default large 1996 * max_active value for this workqueue. 1997 */ 1998 xfs_alloc_wq = alloc_workqueue("xfsalloc", 1999 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2000 if (!xfs_alloc_wq) 2001 return -ENOMEM; 2002 2003 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2004 if (!xfs_discard_wq) 2005 goto out_free_alloc_wq; 2006 2007 return 0; 2008 out_free_alloc_wq: 2009 destroy_workqueue(xfs_alloc_wq); 2010 return -ENOMEM; 2011 } 2012 2013 STATIC void 2014 xfs_destroy_workqueues(void) 2015 { 2016 destroy_workqueue(xfs_discard_wq); 2017 destroy_workqueue(xfs_alloc_wq); 2018 } 2019 2020 STATIC int __init 2021 init_xfs_fs(void) 2022 { 2023 int error; 2024 2025 xfs_check_ondisk_structs(); 2026 2027 printk(KERN_INFO XFS_VERSION_STRING " with " 2028 XFS_BUILD_OPTIONS " enabled\n"); 2029 2030 xfs_dir_startup(); 2031 2032 error = xfs_init_zones(); 2033 if (error) 2034 goto out; 2035 2036 error = xfs_init_workqueues(); 2037 if (error) 2038 goto out_destroy_zones; 2039 2040 error = xfs_mru_cache_init(); 2041 if (error) 2042 goto out_destroy_wq; 2043 2044 error = xfs_buf_init(); 2045 if (error) 2046 goto out_mru_cache_uninit; 2047 2048 error = xfs_init_procfs(); 2049 if (error) 2050 goto out_buf_terminate; 2051 2052 error = xfs_sysctl_register(); 2053 if (error) 2054 goto out_cleanup_procfs; 2055 2056 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2057 if (!xfs_kset) { 2058 error = -ENOMEM; 2059 goto out_sysctl_unregister; 2060 } 2061 2062 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2063 2064 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2065 if (!xfsstats.xs_stats) { 2066 error = -ENOMEM; 2067 goto out_kset_unregister; 2068 } 2069 2070 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2071 "stats"); 2072 if (error) 2073 goto out_free_stats; 2074 2075 #ifdef DEBUG 2076 xfs_dbg_kobj.kobject.kset = xfs_kset; 2077 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2078 if (error) 2079 goto out_remove_stats_kobj; 2080 #endif 2081 2082 error = xfs_qm_init(); 2083 if (error) 2084 goto out_remove_dbg_kobj; 2085 2086 error = register_filesystem(&xfs_fs_type); 2087 if (error) 2088 goto out_qm_exit; 2089 return 0; 2090 2091 out_qm_exit: 2092 xfs_qm_exit(); 2093 out_remove_dbg_kobj: 2094 #ifdef DEBUG 2095 xfs_sysfs_del(&xfs_dbg_kobj); 2096 out_remove_stats_kobj: 2097 #endif 2098 xfs_sysfs_del(&xfsstats.xs_kobj); 2099 out_free_stats: 2100 free_percpu(xfsstats.xs_stats); 2101 out_kset_unregister: 2102 kset_unregister(xfs_kset); 2103 out_sysctl_unregister: 2104 xfs_sysctl_unregister(); 2105 out_cleanup_procfs: 2106 xfs_cleanup_procfs(); 2107 out_buf_terminate: 2108 xfs_buf_terminate(); 2109 out_mru_cache_uninit: 2110 xfs_mru_cache_uninit(); 2111 out_destroy_wq: 2112 xfs_destroy_workqueues(); 2113 out_destroy_zones: 2114 xfs_destroy_zones(); 2115 out: 2116 return error; 2117 } 2118 2119 STATIC void __exit 2120 exit_xfs_fs(void) 2121 { 2122 xfs_qm_exit(); 2123 unregister_filesystem(&xfs_fs_type); 2124 #ifdef DEBUG 2125 xfs_sysfs_del(&xfs_dbg_kobj); 2126 #endif 2127 xfs_sysfs_del(&xfsstats.xs_kobj); 2128 free_percpu(xfsstats.xs_stats); 2129 kset_unregister(xfs_kset); 2130 xfs_sysctl_unregister(); 2131 xfs_cleanup_procfs(); 2132 xfs_buf_terminate(); 2133 xfs_mru_cache_uninit(); 2134 xfs_destroy_workqueues(); 2135 xfs_destroy_zones(); 2136 xfs_uuid_table_free(); 2137 } 2138 2139 module_init(init_xfs_fs); 2140 module_exit(exit_xfs_fs); 2141 2142 MODULE_AUTHOR("Silicon Graphics, Inc."); 2143 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2144 MODULE_LICENSE("GPL"); 2145