1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_da_format.h" 15 #include "xfs_inode.h" 16 #include "xfs_btree.h" 17 #include "xfs_bmap.h" 18 #include "xfs_alloc.h" 19 #include "xfs_error.h" 20 #include "xfs_fsops.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_da_btree.h" 26 #include "xfs_dir2.h" 27 #include "xfs_extfree_item.h" 28 #include "xfs_mru_cache.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_icache.h" 31 #include "xfs_trace.h" 32 #include "xfs_icreate_item.h" 33 #include "xfs_filestream.h" 34 #include "xfs_quota.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_ondisk.h" 37 #include "xfs_rmap_item.h" 38 #include "xfs_refcount_item.h" 39 #include "xfs_bmap_item.h" 40 #include "xfs_reflink.h" 41 #include "xfs_defer.h" 42 43 #include <linux/namei.h> 44 #include <linux/dax.h> 45 #include <linux/init.h> 46 #include <linux/slab.h> 47 #include <linux/magic.h> 48 #include <linux/mount.h> 49 #include <linux/mempool.h> 50 #include <linux/writeback.h> 51 #include <linux/kthread.h> 52 #include <linux/freezer.h> 53 #include <linux/parser.h> 54 55 static const struct super_operations xfs_super_operations; 56 struct bio_set xfs_ioend_bioset; 57 58 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 59 #ifdef DEBUG 60 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 61 #endif 62 63 /* 64 * Table driven mount option parser. 65 */ 66 enum { 67 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_biosize, 68 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 69 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 70 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 71 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 72 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 73 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 74 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 75 Opt_discard, Opt_nodiscard, Opt_dax, Opt_err, 76 }; 77 78 static const match_table_t tokens = { 79 {Opt_logbufs, "logbufs=%u"}, /* number of XFS log buffers */ 80 {Opt_logbsize, "logbsize=%s"}, /* size of XFS log buffers */ 81 {Opt_logdev, "logdev=%s"}, /* log device */ 82 {Opt_rtdev, "rtdev=%s"}, /* realtime I/O device */ 83 {Opt_biosize, "biosize=%u"}, /* log2 of preferred buffered io size */ 84 {Opt_wsync, "wsync"}, /* safe-mode nfs compatible mount */ 85 {Opt_noalign, "noalign"}, /* turn off stripe alignment */ 86 {Opt_swalloc, "swalloc"}, /* turn on stripe width allocation */ 87 {Opt_sunit, "sunit=%u"}, /* data volume stripe unit */ 88 {Opt_swidth, "swidth=%u"}, /* data volume stripe width */ 89 {Opt_nouuid, "nouuid"}, /* ignore filesystem UUID */ 90 {Opt_grpid, "grpid"}, /* group-ID from parent directory */ 91 {Opt_nogrpid, "nogrpid"}, /* group-ID from current process */ 92 {Opt_bsdgroups, "bsdgroups"}, /* group-ID from parent directory */ 93 {Opt_sysvgroups,"sysvgroups"}, /* group-ID from current process */ 94 {Opt_allocsize, "allocsize=%s"},/* preferred allocation size */ 95 {Opt_norecovery,"norecovery"}, /* don't run XFS recovery */ 96 {Opt_inode64, "inode64"}, /* inodes can be allocated anywhere */ 97 {Opt_inode32, "inode32"}, /* inode allocation limited to 98 * XFS_MAXINUMBER_32 */ 99 {Opt_ikeep, "ikeep"}, /* do not free empty inode clusters */ 100 {Opt_noikeep, "noikeep"}, /* free empty inode clusters */ 101 {Opt_largeio, "largeio"}, /* report large I/O sizes in stat() */ 102 {Opt_nolargeio, "nolargeio"}, /* do not report large I/O sizes 103 * in stat(). */ 104 {Opt_attr2, "attr2"}, /* do use attr2 attribute format */ 105 {Opt_noattr2, "noattr2"}, /* do not use attr2 attribute format */ 106 {Opt_filestreams,"filestreams"},/* use filestreams allocator */ 107 {Opt_quota, "quota"}, /* disk quotas (user) */ 108 {Opt_noquota, "noquota"}, /* no quotas */ 109 {Opt_usrquota, "usrquota"}, /* user quota enabled */ 110 {Opt_grpquota, "grpquota"}, /* group quota enabled */ 111 {Opt_prjquota, "prjquota"}, /* project quota enabled */ 112 {Opt_uquota, "uquota"}, /* user quota (IRIX variant) */ 113 {Opt_gquota, "gquota"}, /* group quota (IRIX variant) */ 114 {Opt_pquota, "pquota"}, /* project quota (IRIX variant) */ 115 {Opt_uqnoenforce,"uqnoenforce"},/* user quota limit enforcement */ 116 {Opt_gqnoenforce,"gqnoenforce"},/* group quota limit enforcement */ 117 {Opt_pqnoenforce,"pqnoenforce"},/* project quota limit enforcement */ 118 {Opt_qnoenforce, "qnoenforce"}, /* same as uqnoenforce */ 119 {Opt_discard, "discard"}, /* Discard unused blocks */ 120 {Opt_nodiscard, "nodiscard"}, /* Do not discard unused blocks */ 121 {Opt_dax, "dax"}, /* Enable direct access to bdev pages */ 122 {Opt_err, NULL}, 123 }; 124 125 126 STATIC int 127 suffix_kstrtoint(const substring_t *s, unsigned int base, int *res) 128 { 129 int last, shift_left_factor = 0, _res; 130 char *value; 131 int ret = 0; 132 133 value = match_strdup(s); 134 if (!value) 135 return -ENOMEM; 136 137 last = strlen(value) - 1; 138 if (value[last] == 'K' || value[last] == 'k') { 139 shift_left_factor = 10; 140 value[last] = '\0'; 141 } 142 if (value[last] == 'M' || value[last] == 'm') { 143 shift_left_factor = 20; 144 value[last] = '\0'; 145 } 146 if (value[last] == 'G' || value[last] == 'g') { 147 shift_left_factor = 30; 148 value[last] = '\0'; 149 } 150 151 if (kstrtoint(value, base, &_res)) 152 ret = -EINVAL; 153 kfree(value); 154 *res = _res << shift_left_factor; 155 return ret; 156 } 157 158 /* 159 * This function fills in xfs_mount_t fields based on mount args. 160 * Note: the superblock has _not_ yet been read in. 161 * 162 * Note that this function leaks the various device name allocations on 163 * failure. The caller takes care of them. 164 * 165 * *sb is const because this is also used to test options on the remount 166 * path, and we don't want this to have any side effects at remount time. 167 * Today this function does not change *sb, but just to future-proof... 168 */ 169 STATIC int 170 xfs_parseargs( 171 struct xfs_mount *mp, 172 char *options) 173 { 174 const struct super_block *sb = mp->m_super; 175 char *p; 176 substring_t args[MAX_OPT_ARGS]; 177 int dsunit = 0; 178 int dswidth = 0; 179 int iosize = 0; 180 uint8_t iosizelog = 0; 181 182 /* 183 * set up the mount name first so all the errors will refer to the 184 * correct device. 185 */ 186 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL); 187 if (!mp->m_fsname) 188 return -ENOMEM; 189 mp->m_fsname_len = strlen(mp->m_fsname) + 1; 190 191 /* 192 * Copy binary VFS mount flags we are interested in. 193 */ 194 if (sb_rdonly(sb)) 195 mp->m_flags |= XFS_MOUNT_RDONLY; 196 if (sb->s_flags & SB_DIRSYNC) 197 mp->m_flags |= XFS_MOUNT_DIRSYNC; 198 if (sb->s_flags & SB_SYNCHRONOUS) 199 mp->m_flags |= XFS_MOUNT_WSYNC; 200 201 /* 202 * Set some default flags that could be cleared by the mount option 203 * parsing. 204 */ 205 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; 206 207 /* 208 * These can be overridden by the mount option parsing. 209 */ 210 mp->m_logbufs = -1; 211 mp->m_logbsize = -1; 212 213 if (!options) 214 goto done; 215 216 while ((p = strsep(&options, ",")) != NULL) { 217 int token; 218 219 if (!*p) 220 continue; 221 222 token = match_token(p, tokens, args); 223 switch (token) { 224 case Opt_logbufs: 225 if (match_int(args, &mp->m_logbufs)) 226 return -EINVAL; 227 break; 228 case Opt_logbsize: 229 if (suffix_kstrtoint(args, 10, &mp->m_logbsize)) 230 return -EINVAL; 231 break; 232 case Opt_logdev: 233 kfree(mp->m_logname); 234 mp->m_logname = match_strdup(args); 235 if (!mp->m_logname) 236 return -ENOMEM; 237 break; 238 case Opt_rtdev: 239 kfree(mp->m_rtname); 240 mp->m_rtname = match_strdup(args); 241 if (!mp->m_rtname) 242 return -ENOMEM; 243 break; 244 case Opt_allocsize: 245 case Opt_biosize: 246 if (suffix_kstrtoint(args, 10, &iosize)) 247 return -EINVAL; 248 iosizelog = ffs(iosize) - 1; 249 break; 250 case Opt_grpid: 251 case Opt_bsdgroups: 252 mp->m_flags |= XFS_MOUNT_GRPID; 253 break; 254 case Opt_nogrpid: 255 case Opt_sysvgroups: 256 mp->m_flags &= ~XFS_MOUNT_GRPID; 257 break; 258 case Opt_wsync: 259 mp->m_flags |= XFS_MOUNT_WSYNC; 260 break; 261 case Opt_norecovery: 262 mp->m_flags |= XFS_MOUNT_NORECOVERY; 263 break; 264 case Opt_noalign: 265 mp->m_flags |= XFS_MOUNT_NOALIGN; 266 break; 267 case Opt_swalloc: 268 mp->m_flags |= XFS_MOUNT_SWALLOC; 269 break; 270 case Opt_sunit: 271 if (match_int(args, &dsunit)) 272 return -EINVAL; 273 break; 274 case Opt_swidth: 275 if (match_int(args, &dswidth)) 276 return -EINVAL; 277 break; 278 case Opt_inode32: 279 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 280 break; 281 case Opt_inode64: 282 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 283 break; 284 case Opt_nouuid: 285 mp->m_flags |= XFS_MOUNT_NOUUID; 286 break; 287 case Opt_ikeep: 288 mp->m_flags |= XFS_MOUNT_IKEEP; 289 break; 290 case Opt_noikeep: 291 mp->m_flags &= ~XFS_MOUNT_IKEEP; 292 break; 293 case Opt_largeio: 294 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE; 295 break; 296 case Opt_nolargeio: 297 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; 298 break; 299 case Opt_attr2: 300 mp->m_flags |= XFS_MOUNT_ATTR2; 301 break; 302 case Opt_noattr2: 303 mp->m_flags &= ~XFS_MOUNT_ATTR2; 304 mp->m_flags |= XFS_MOUNT_NOATTR2; 305 break; 306 case Opt_filestreams: 307 mp->m_flags |= XFS_MOUNT_FILESTREAMS; 308 break; 309 case Opt_noquota: 310 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 311 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 312 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; 313 break; 314 case Opt_quota: 315 case Opt_uquota: 316 case Opt_usrquota: 317 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | 318 XFS_UQUOTA_ENFD); 319 break; 320 case Opt_qnoenforce: 321 case Opt_uqnoenforce: 322 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); 323 mp->m_qflags &= ~XFS_UQUOTA_ENFD; 324 break; 325 case Opt_pquota: 326 case Opt_prjquota: 327 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | 328 XFS_PQUOTA_ENFD); 329 break; 330 case Opt_pqnoenforce: 331 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); 332 mp->m_qflags &= ~XFS_PQUOTA_ENFD; 333 break; 334 case Opt_gquota: 335 case Opt_grpquota: 336 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | 337 XFS_GQUOTA_ENFD); 338 break; 339 case Opt_gqnoenforce: 340 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); 341 mp->m_qflags &= ~XFS_GQUOTA_ENFD; 342 break; 343 case Opt_discard: 344 mp->m_flags |= XFS_MOUNT_DISCARD; 345 break; 346 case Opt_nodiscard: 347 mp->m_flags &= ~XFS_MOUNT_DISCARD; 348 break; 349 #ifdef CONFIG_FS_DAX 350 case Opt_dax: 351 mp->m_flags |= XFS_MOUNT_DAX; 352 break; 353 #endif 354 default: 355 xfs_warn(mp, "unknown mount option [%s].", p); 356 return -EINVAL; 357 } 358 } 359 360 /* 361 * no recovery flag requires a read-only mount 362 */ 363 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && 364 !(mp->m_flags & XFS_MOUNT_RDONLY)) { 365 xfs_warn(mp, "no-recovery mounts must be read-only."); 366 return -EINVAL; 367 } 368 369 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) { 370 xfs_warn(mp, 371 "sunit and swidth options incompatible with the noalign option"); 372 return -EINVAL; 373 } 374 375 #ifndef CONFIG_XFS_QUOTA 376 if (XFS_IS_QUOTA_RUNNING(mp)) { 377 xfs_warn(mp, "quota support not available in this kernel."); 378 return -EINVAL; 379 } 380 #endif 381 382 if ((dsunit && !dswidth) || (!dsunit && dswidth)) { 383 xfs_warn(mp, "sunit and swidth must be specified together"); 384 return -EINVAL; 385 } 386 387 if (dsunit && (dswidth % dsunit != 0)) { 388 xfs_warn(mp, 389 "stripe width (%d) must be a multiple of the stripe unit (%d)", 390 dswidth, dsunit); 391 return -EINVAL; 392 } 393 394 done: 395 if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) { 396 /* 397 * At this point the superblock has not been read 398 * in, therefore we do not know the block size. 399 * Before the mount call ends we will convert 400 * these to FSBs. 401 */ 402 mp->m_dalign = dsunit; 403 mp->m_swidth = dswidth; 404 } 405 406 if (mp->m_logbufs != -1 && 407 mp->m_logbufs != 0 && 408 (mp->m_logbufs < XLOG_MIN_ICLOGS || 409 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 410 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 411 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 412 return -EINVAL; 413 } 414 if (mp->m_logbsize != -1 && 415 mp->m_logbsize != 0 && 416 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 417 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 418 !is_power_of_2(mp->m_logbsize))) { 419 xfs_warn(mp, 420 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 421 mp->m_logbsize); 422 return -EINVAL; 423 } 424 425 if (iosizelog) { 426 if (iosizelog > XFS_MAX_IO_LOG || 427 iosizelog < XFS_MIN_IO_LOG) { 428 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 429 iosizelog, XFS_MIN_IO_LOG, 430 XFS_MAX_IO_LOG); 431 return -EINVAL; 432 } 433 434 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; 435 mp->m_readio_log = iosizelog; 436 mp->m_writeio_log = iosizelog; 437 } 438 439 return 0; 440 } 441 442 struct proc_xfs_info { 443 uint64_t flag; 444 char *str; 445 }; 446 447 STATIC void 448 xfs_showargs( 449 struct xfs_mount *mp, 450 struct seq_file *m) 451 { 452 static struct proc_xfs_info xfs_info_set[] = { 453 /* the few simple ones we can get from the mount struct */ 454 { XFS_MOUNT_IKEEP, ",ikeep" }, 455 { XFS_MOUNT_WSYNC, ",wsync" }, 456 { XFS_MOUNT_NOALIGN, ",noalign" }, 457 { XFS_MOUNT_SWALLOC, ",swalloc" }, 458 { XFS_MOUNT_NOUUID, ",nouuid" }, 459 { XFS_MOUNT_NORECOVERY, ",norecovery" }, 460 { XFS_MOUNT_ATTR2, ",attr2" }, 461 { XFS_MOUNT_FILESTREAMS, ",filestreams" }, 462 { XFS_MOUNT_GRPID, ",grpid" }, 463 { XFS_MOUNT_DISCARD, ",discard" }, 464 { XFS_MOUNT_SMALL_INUMS, ",inode32" }, 465 { XFS_MOUNT_DAX, ",dax" }, 466 { 0, NULL } 467 }; 468 static struct proc_xfs_info xfs_info_unset[] = { 469 /* the few simple ones we can get from the mount struct */ 470 { XFS_MOUNT_COMPAT_IOSIZE, ",largeio" }, 471 { XFS_MOUNT_SMALL_INUMS, ",inode64" }, 472 { 0, NULL } 473 }; 474 struct proc_xfs_info *xfs_infop; 475 476 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 477 if (mp->m_flags & xfs_infop->flag) 478 seq_puts(m, xfs_infop->str); 479 } 480 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) { 481 if (!(mp->m_flags & xfs_infop->flag)) 482 seq_puts(m, xfs_infop->str); 483 } 484 485 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) 486 seq_printf(m, ",allocsize=%dk", 487 (int)(1 << mp->m_writeio_log) >> 10); 488 489 if (mp->m_logbufs > 0) 490 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 491 if (mp->m_logbsize > 0) 492 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 493 494 if (mp->m_logname) 495 seq_show_option(m, "logdev", mp->m_logname); 496 if (mp->m_rtname) 497 seq_show_option(m, "rtdev", mp->m_rtname); 498 499 if (mp->m_dalign > 0) 500 seq_printf(m, ",sunit=%d", 501 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 502 if (mp->m_swidth > 0) 503 seq_printf(m, ",swidth=%d", 504 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 505 506 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) 507 seq_puts(m, ",usrquota"); 508 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 509 seq_puts(m, ",uqnoenforce"); 510 511 if (mp->m_qflags & XFS_PQUOTA_ACCT) { 512 if (mp->m_qflags & XFS_PQUOTA_ENFD) 513 seq_puts(m, ",prjquota"); 514 else 515 seq_puts(m, ",pqnoenforce"); 516 } 517 if (mp->m_qflags & XFS_GQUOTA_ACCT) { 518 if (mp->m_qflags & XFS_GQUOTA_ENFD) 519 seq_puts(m, ",grpquota"); 520 else 521 seq_puts(m, ",gqnoenforce"); 522 } 523 524 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 525 seq_puts(m, ",noquota"); 526 } 527 528 static uint64_t 529 xfs_max_file_offset( 530 unsigned int blockshift) 531 { 532 unsigned int pagefactor = 1; 533 unsigned int bitshift = BITS_PER_LONG - 1; 534 535 /* Figure out maximum filesize, on Linux this can depend on 536 * the filesystem blocksize (on 32 bit platforms). 537 * __block_write_begin does this in an [unsigned] long long... 538 * page->index << (PAGE_SHIFT - bbits) 539 * So, for page sized blocks (4K on 32 bit platforms), 540 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is 541 * (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1) 542 * but for smaller blocksizes it is less (bbits = log2 bsize). 543 */ 544 545 #if BITS_PER_LONG == 32 546 ASSERT(sizeof(sector_t) == 8); 547 pagefactor = PAGE_SIZE; 548 bitshift = BITS_PER_LONG; 549 #endif 550 551 return (((uint64_t)pagefactor) << bitshift) - 1; 552 } 553 554 /* 555 * Set parameters for inode allocation heuristics, taking into account 556 * filesystem size and inode32/inode64 mount options; i.e. specifically 557 * whether or not XFS_MOUNT_SMALL_INUMS is set. 558 * 559 * Inode allocation patterns are altered only if inode32 is requested 560 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. 561 * If altered, XFS_MOUNT_32BITINODES is set as well. 562 * 563 * An agcount independent of that in the mount structure is provided 564 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 565 * to the potentially higher ag count. 566 * 567 * Returns the maximum AG index which may contain inodes. 568 */ 569 xfs_agnumber_t 570 xfs_set_inode_alloc( 571 struct xfs_mount *mp, 572 xfs_agnumber_t agcount) 573 { 574 xfs_agnumber_t index; 575 xfs_agnumber_t maxagi = 0; 576 xfs_sb_t *sbp = &mp->m_sb; 577 xfs_agnumber_t max_metadata; 578 xfs_agino_t agino; 579 xfs_ino_t ino; 580 581 /* 582 * Calculate how much should be reserved for inodes to meet 583 * the max inode percentage. Used only for inode32. 584 */ 585 if (mp->m_maxicount) { 586 uint64_t icount; 587 588 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 589 do_div(icount, 100); 590 icount += sbp->sb_agblocks - 1; 591 do_div(icount, sbp->sb_agblocks); 592 max_metadata = icount; 593 } else { 594 max_metadata = agcount; 595 } 596 597 /* Get the last possible inode in the filesystem */ 598 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 599 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 600 601 /* 602 * If user asked for no more than 32-bit inodes, and the fs is 603 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter 604 * the allocator to accommodate the request. 605 */ 606 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 607 mp->m_flags |= XFS_MOUNT_32BITINODES; 608 else 609 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 610 611 for (index = 0; index < agcount; index++) { 612 struct xfs_perag *pag; 613 614 ino = XFS_AGINO_TO_INO(mp, index, agino); 615 616 pag = xfs_perag_get(mp, index); 617 618 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 619 if (ino > XFS_MAXINUMBER_32) { 620 pag->pagi_inodeok = 0; 621 pag->pagf_metadata = 0; 622 } else { 623 pag->pagi_inodeok = 1; 624 maxagi++; 625 if (index < max_metadata) 626 pag->pagf_metadata = 1; 627 else 628 pag->pagf_metadata = 0; 629 } 630 } else { 631 pag->pagi_inodeok = 1; 632 pag->pagf_metadata = 0; 633 } 634 635 xfs_perag_put(pag); 636 } 637 638 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; 639 } 640 641 STATIC int 642 xfs_blkdev_get( 643 xfs_mount_t *mp, 644 const char *name, 645 struct block_device **bdevp) 646 { 647 int error = 0; 648 649 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 650 mp); 651 if (IS_ERR(*bdevp)) { 652 error = PTR_ERR(*bdevp); 653 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 654 } 655 656 return error; 657 } 658 659 STATIC void 660 xfs_blkdev_put( 661 struct block_device *bdev) 662 { 663 if (bdev) 664 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 665 } 666 667 void 668 xfs_blkdev_issue_flush( 669 xfs_buftarg_t *buftarg) 670 { 671 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); 672 } 673 674 STATIC void 675 xfs_close_devices( 676 struct xfs_mount *mp) 677 { 678 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; 679 680 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 681 struct block_device *logdev = mp->m_logdev_targp->bt_bdev; 682 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; 683 684 xfs_free_buftarg(mp->m_logdev_targp); 685 xfs_blkdev_put(logdev); 686 fs_put_dax(dax_logdev); 687 } 688 if (mp->m_rtdev_targp) { 689 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; 690 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; 691 692 xfs_free_buftarg(mp->m_rtdev_targp); 693 xfs_blkdev_put(rtdev); 694 fs_put_dax(dax_rtdev); 695 } 696 xfs_free_buftarg(mp->m_ddev_targp); 697 fs_put_dax(dax_ddev); 698 } 699 700 /* 701 * The file system configurations are: 702 * (1) device (partition) with data and internal log 703 * (2) logical volume with data and log subvolumes. 704 * (3) logical volume with data, log, and realtime subvolumes. 705 * 706 * We only have to handle opening the log and realtime volumes here if 707 * they are present. The data subvolume has already been opened by 708 * get_sb_bdev() and is stored in sb->s_bdev. 709 */ 710 STATIC int 711 xfs_open_devices( 712 struct xfs_mount *mp) 713 { 714 struct block_device *ddev = mp->m_super->s_bdev; 715 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); 716 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; 717 struct block_device *logdev = NULL, *rtdev = NULL; 718 int error; 719 720 /* 721 * Open real time and log devices - order is important. 722 */ 723 if (mp->m_logname) { 724 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 725 if (error) 726 goto out; 727 dax_logdev = fs_dax_get_by_bdev(logdev); 728 } 729 730 if (mp->m_rtname) { 731 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 732 if (error) 733 goto out_close_logdev; 734 735 if (rtdev == ddev || rtdev == logdev) { 736 xfs_warn(mp, 737 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 738 error = -EINVAL; 739 goto out_close_rtdev; 740 } 741 dax_rtdev = fs_dax_get_by_bdev(rtdev); 742 } 743 744 /* 745 * Setup xfs_mount buffer target pointers 746 */ 747 error = -ENOMEM; 748 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); 749 if (!mp->m_ddev_targp) 750 goto out_close_rtdev; 751 752 if (rtdev) { 753 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); 754 if (!mp->m_rtdev_targp) 755 goto out_free_ddev_targ; 756 } 757 758 if (logdev && logdev != ddev) { 759 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); 760 if (!mp->m_logdev_targp) 761 goto out_free_rtdev_targ; 762 } else { 763 mp->m_logdev_targp = mp->m_ddev_targp; 764 } 765 766 return 0; 767 768 out_free_rtdev_targ: 769 if (mp->m_rtdev_targp) 770 xfs_free_buftarg(mp->m_rtdev_targp); 771 out_free_ddev_targ: 772 xfs_free_buftarg(mp->m_ddev_targp); 773 out_close_rtdev: 774 xfs_blkdev_put(rtdev); 775 fs_put_dax(dax_rtdev); 776 out_close_logdev: 777 if (logdev && logdev != ddev) { 778 xfs_blkdev_put(logdev); 779 fs_put_dax(dax_logdev); 780 } 781 out: 782 fs_put_dax(dax_ddev); 783 return error; 784 } 785 786 /* 787 * Setup xfs_mount buffer target pointers based on superblock 788 */ 789 STATIC int 790 xfs_setup_devices( 791 struct xfs_mount *mp) 792 { 793 int error; 794 795 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 796 if (error) 797 return error; 798 799 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 800 unsigned int log_sector_size = BBSIZE; 801 802 if (xfs_sb_version_hassector(&mp->m_sb)) 803 log_sector_size = mp->m_sb.sb_logsectsize; 804 error = xfs_setsize_buftarg(mp->m_logdev_targp, 805 log_sector_size); 806 if (error) 807 return error; 808 } 809 if (mp->m_rtdev_targp) { 810 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 811 mp->m_sb.sb_sectsize); 812 if (error) 813 return error; 814 } 815 816 return 0; 817 } 818 819 STATIC int 820 xfs_init_mount_workqueues( 821 struct xfs_mount *mp) 822 { 823 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 824 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname); 825 if (!mp->m_buf_workqueue) 826 goto out; 827 828 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 829 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); 830 if (!mp->m_unwritten_workqueue) 831 goto out_destroy_buf; 832 833 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", 834 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); 835 if (!mp->m_cil_workqueue) 836 goto out_destroy_unwritten; 837 838 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 839 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); 840 if (!mp->m_reclaim_workqueue) 841 goto out_destroy_cil; 842 843 mp->m_log_workqueue = alloc_workqueue("xfs-log/%s", 844 WQ_MEM_RECLAIM|WQ_FREEZABLE|WQ_HIGHPRI, 0, 845 mp->m_fsname); 846 if (!mp->m_log_workqueue) 847 goto out_destroy_reclaim; 848 849 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", 850 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); 851 if (!mp->m_eofblocks_workqueue) 852 goto out_destroy_log; 853 854 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, 855 mp->m_fsname); 856 if (!mp->m_sync_workqueue) 857 goto out_destroy_eofb; 858 859 return 0; 860 861 out_destroy_eofb: 862 destroy_workqueue(mp->m_eofblocks_workqueue); 863 out_destroy_log: 864 destroy_workqueue(mp->m_log_workqueue); 865 out_destroy_reclaim: 866 destroy_workqueue(mp->m_reclaim_workqueue); 867 out_destroy_cil: 868 destroy_workqueue(mp->m_cil_workqueue); 869 out_destroy_unwritten: 870 destroy_workqueue(mp->m_unwritten_workqueue); 871 out_destroy_buf: 872 destroy_workqueue(mp->m_buf_workqueue); 873 out: 874 return -ENOMEM; 875 } 876 877 STATIC void 878 xfs_destroy_mount_workqueues( 879 struct xfs_mount *mp) 880 { 881 destroy_workqueue(mp->m_sync_workqueue); 882 destroy_workqueue(mp->m_eofblocks_workqueue); 883 destroy_workqueue(mp->m_log_workqueue); 884 destroy_workqueue(mp->m_reclaim_workqueue); 885 destroy_workqueue(mp->m_cil_workqueue); 886 destroy_workqueue(mp->m_unwritten_workqueue); 887 destroy_workqueue(mp->m_buf_workqueue); 888 } 889 890 /* 891 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 892 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 893 * for IO to complete so that we effectively throttle multiple callers to the 894 * rate at which IO is completing. 895 */ 896 void 897 xfs_flush_inodes( 898 struct xfs_mount *mp) 899 { 900 struct super_block *sb = mp->m_super; 901 902 if (down_read_trylock(&sb->s_umount)) { 903 sync_inodes_sb(sb); 904 up_read(&sb->s_umount); 905 } 906 } 907 908 /* Catch misguided souls that try to use this interface on XFS */ 909 STATIC struct inode * 910 xfs_fs_alloc_inode( 911 struct super_block *sb) 912 { 913 BUG(); 914 return NULL; 915 } 916 917 #ifdef DEBUG 918 static void 919 xfs_check_delalloc( 920 struct xfs_inode *ip, 921 int whichfork) 922 { 923 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 924 struct xfs_bmbt_irec got; 925 struct xfs_iext_cursor icur; 926 927 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 928 return; 929 do { 930 if (isnullstartblock(got.br_startblock)) { 931 xfs_warn(ip->i_mount, 932 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 933 ip->i_ino, 934 whichfork == XFS_DATA_FORK ? "data" : "cow", 935 got.br_startoff, got.br_blockcount); 936 } 937 } while (xfs_iext_next_extent(ifp, &icur, &got)); 938 } 939 #else 940 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 941 #endif 942 943 /* 944 * Now that the generic code is guaranteed not to be accessing 945 * the linux inode, we can inactivate and reclaim the inode. 946 */ 947 STATIC void 948 xfs_fs_destroy_inode( 949 struct inode *inode) 950 { 951 struct xfs_inode *ip = XFS_I(inode); 952 953 trace_xfs_destroy_inode(ip); 954 955 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 956 XFS_STATS_INC(ip->i_mount, vn_rele); 957 XFS_STATS_INC(ip->i_mount, vn_remove); 958 959 xfs_inactive(ip); 960 961 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { 962 xfs_check_delalloc(ip, XFS_DATA_FORK); 963 xfs_check_delalloc(ip, XFS_COW_FORK); 964 ASSERT(0); 965 } 966 967 XFS_STATS_INC(ip->i_mount, vn_reclaim); 968 969 /* 970 * We should never get here with one of the reclaim flags already set. 971 */ 972 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); 973 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 974 975 /* 976 * We always use background reclaim here because even if the 977 * inode is clean, it still may be under IO and hence we have 978 * to take the flush lock. The background reclaim path handles 979 * this more efficiently than we can here, so simply let background 980 * reclaim tear down all inodes. 981 */ 982 xfs_inode_set_reclaim_tag(ip); 983 } 984 985 static void 986 xfs_fs_dirty_inode( 987 struct inode *inode, 988 int flag) 989 { 990 struct xfs_inode *ip = XFS_I(inode); 991 struct xfs_mount *mp = ip->i_mount; 992 struct xfs_trans *tp; 993 994 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 995 return; 996 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) 997 return; 998 999 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 1000 return; 1001 xfs_ilock(ip, XFS_ILOCK_EXCL); 1002 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1003 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 1004 xfs_trans_commit(tp); 1005 } 1006 1007 /* 1008 * Slab object creation initialisation for the XFS inode. 1009 * This covers only the idempotent fields in the XFS inode; 1010 * all other fields need to be initialised on allocation 1011 * from the slab. This avoids the need to repeatedly initialise 1012 * fields in the xfs inode that left in the initialise state 1013 * when freeing the inode. 1014 */ 1015 STATIC void 1016 xfs_fs_inode_init_once( 1017 void *inode) 1018 { 1019 struct xfs_inode *ip = inode; 1020 1021 memset(ip, 0, sizeof(struct xfs_inode)); 1022 1023 /* vfs inode */ 1024 inode_init_once(VFS_I(ip)); 1025 1026 /* xfs inode */ 1027 atomic_set(&ip->i_pincount, 0); 1028 spin_lock_init(&ip->i_flags_lock); 1029 1030 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 1031 "xfsino", ip->i_ino); 1032 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 1033 "xfsino", ip->i_ino); 1034 } 1035 1036 /* 1037 * We do an unlocked check for XFS_IDONTCACHE here because we are already 1038 * serialised against cache hits here via the inode->i_lock and igrab() in 1039 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 1040 * racing with us, and it avoids needing to grab a spinlock here for every inode 1041 * we drop the final reference on. 1042 */ 1043 STATIC int 1044 xfs_fs_drop_inode( 1045 struct inode *inode) 1046 { 1047 struct xfs_inode *ip = XFS_I(inode); 1048 1049 /* 1050 * If this unlinked inode is in the middle of recovery, don't 1051 * drop the inode just yet; log recovery will take care of 1052 * that. See the comment for this inode flag. 1053 */ 1054 if (ip->i_flags & XFS_IRECOVERY) { 1055 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); 1056 return 0; 1057 } 1058 1059 return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); 1060 } 1061 1062 STATIC void 1063 xfs_free_fsname( 1064 struct xfs_mount *mp) 1065 { 1066 kfree(mp->m_fsname); 1067 kfree(mp->m_rtname); 1068 kfree(mp->m_logname); 1069 } 1070 1071 STATIC int 1072 xfs_fs_sync_fs( 1073 struct super_block *sb, 1074 int wait) 1075 { 1076 struct xfs_mount *mp = XFS_M(sb); 1077 1078 /* 1079 * Doing anything during the async pass would be counterproductive. 1080 */ 1081 if (!wait) 1082 return 0; 1083 1084 xfs_log_force(mp, XFS_LOG_SYNC); 1085 if (laptop_mode) { 1086 /* 1087 * The disk must be active because we're syncing. 1088 * We schedule log work now (now that the disk is 1089 * active) instead of later (when it might not be). 1090 */ 1091 flush_delayed_work(&mp->m_log->l_work); 1092 } 1093 1094 return 0; 1095 } 1096 1097 STATIC int 1098 xfs_fs_statfs( 1099 struct dentry *dentry, 1100 struct kstatfs *statp) 1101 { 1102 struct xfs_mount *mp = XFS_M(dentry->d_sb); 1103 xfs_sb_t *sbp = &mp->m_sb; 1104 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1105 uint64_t fakeinos, id; 1106 uint64_t icount; 1107 uint64_t ifree; 1108 uint64_t fdblocks; 1109 xfs_extlen_t lsize; 1110 int64_t ffree; 1111 1112 statp->f_type = XFS_SUPER_MAGIC; 1113 statp->f_namelen = MAXNAMELEN - 1; 1114 1115 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 1116 statp->f_fsid.val[0] = (u32)id; 1117 statp->f_fsid.val[1] = (u32)(id >> 32); 1118 1119 icount = percpu_counter_sum(&mp->m_icount); 1120 ifree = percpu_counter_sum(&mp->m_ifree); 1121 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 1122 1123 spin_lock(&mp->m_sb_lock); 1124 statp->f_bsize = sbp->sb_blocksize; 1125 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 1126 statp->f_blocks = sbp->sb_dblocks - lsize; 1127 spin_unlock(&mp->m_sb_lock); 1128 1129 statp->f_bfree = fdblocks - mp->m_alloc_set_aside; 1130 statp->f_bavail = statp->f_bfree; 1131 1132 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 1133 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 1134 if (mp->m_maxicount) 1135 statp->f_files = min_t(typeof(statp->f_files), 1136 statp->f_files, 1137 mp->m_maxicount); 1138 1139 /* If sb_icount overshot maxicount, report actual allocation */ 1140 statp->f_files = max_t(typeof(statp->f_files), 1141 statp->f_files, 1142 sbp->sb_icount); 1143 1144 /* make sure statp->f_ffree does not underflow */ 1145 ffree = statp->f_files - (icount - ifree); 1146 statp->f_ffree = max_t(int64_t, ffree, 0); 1147 1148 1149 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1150 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 1151 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 1152 xfs_qm_statvfs(ip, statp); 1153 1154 if (XFS_IS_REALTIME_MOUNT(mp) && 1155 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 1156 statp->f_blocks = sbp->sb_rblocks; 1157 statp->f_bavail = statp->f_bfree = 1158 sbp->sb_frextents * sbp->sb_rextsize; 1159 } 1160 1161 return 0; 1162 } 1163 1164 STATIC void 1165 xfs_save_resvblks(struct xfs_mount *mp) 1166 { 1167 uint64_t resblks = 0; 1168 1169 mp->m_resblks_save = mp->m_resblks; 1170 xfs_reserve_blocks(mp, &resblks, NULL); 1171 } 1172 1173 STATIC void 1174 xfs_restore_resvblks(struct xfs_mount *mp) 1175 { 1176 uint64_t resblks; 1177 1178 if (mp->m_resblks_save) { 1179 resblks = mp->m_resblks_save; 1180 mp->m_resblks_save = 0; 1181 } else 1182 resblks = xfs_default_resblks(mp); 1183 1184 xfs_reserve_blocks(mp, &resblks, NULL); 1185 } 1186 1187 /* 1188 * Trigger writeback of all the dirty metadata in the file system. 1189 * 1190 * This ensures that the metadata is written to their location on disk rather 1191 * than just existing in transactions in the log. This means after a quiesce 1192 * there is no log replay required to write the inodes to disk - this is the 1193 * primary difference between a sync and a quiesce. 1194 * 1195 * Note: xfs_log_quiesce() stops background log work - the callers must ensure 1196 * it is started again when appropriate. 1197 */ 1198 void 1199 xfs_quiesce_attr( 1200 struct xfs_mount *mp) 1201 { 1202 int error = 0; 1203 1204 /* wait for all modifications to complete */ 1205 while (atomic_read(&mp->m_active_trans) > 0) 1206 delay(100); 1207 1208 /* force the log to unpin objects from the now complete transactions */ 1209 xfs_log_force(mp, XFS_LOG_SYNC); 1210 1211 /* reclaim inodes to do any IO before the freeze completes */ 1212 xfs_reclaim_inodes(mp, 0); 1213 xfs_reclaim_inodes(mp, SYNC_WAIT); 1214 1215 /* Push the superblock and write an unmount record */ 1216 error = xfs_log_sbcount(mp); 1217 if (error) 1218 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " 1219 "Frozen image may not be consistent."); 1220 /* 1221 * Just warn here till VFS can correctly support 1222 * read-only remount without racing. 1223 */ 1224 WARN_ON(atomic_read(&mp->m_active_trans) != 0); 1225 1226 xfs_log_quiesce(mp); 1227 } 1228 1229 STATIC int 1230 xfs_test_remount_options( 1231 struct super_block *sb, 1232 char *options) 1233 { 1234 int error = 0; 1235 struct xfs_mount *tmp_mp; 1236 1237 tmp_mp = kmem_zalloc(sizeof(*tmp_mp), KM_MAYFAIL); 1238 if (!tmp_mp) 1239 return -ENOMEM; 1240 1241 tmp_mp->m_super = sb; 1242 error = xfs_parseargs(tmp_mp, options); 1243 xfs_free_fsname(tmp_mp); 1244 kmem_free(tmp_mp); 1245 1246 return error; 1247 } 1248 1249 STATIC int 1250 xfs_fs_remount( 1251 struct super_block *sb, 1252 int *flags, 1253 char *options) 1254 { 1255 struct xfs_mount *mp = XFS_M(sb); 1256 xfs_sb_t *sbp = &mp->m_sb; 1257 substring_t args[MAX_OPT_ARGS]; 1258 char *p; 1259 int error; 1260 1261 /* First, check for complete junk; i.e. invalid options */ 1262 error = xfs_test_remount_options(sb, options); 1263 if (error) 1264 return error; 1265 1266 sync_filesystem(sb); 1267 while ((p = strsep(&options, ",")) != NULL) { 1268 int token; 1269 1270 if (!*p) 1271 continue; 1272 1273 token = match_token(p, tokens, args); 1274 switch (token) { 1275 case Opt_inode64: 1276 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; 1277 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1278 break; 1279 case Opt_inode32: 1280 mp->m_flags |= XFS_MOUNT_SMALL_INUMS; 1281 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); 1282 break; 1283 default: 1284 /* 1285 * Logically we would return an error here to prevent 1286 * users from believing they might have changed 1287 * mount options using remount which can't be changed. 1288 * 1289 * But unfortunately mount(8) adds all options from 1290 * mtab and fstab to the mount arguments in some cases 1291 * so we can't blindly reject options, but have to 1292 * check for each specified option if it actually 1293 * differs from the currently set option and only 1294 * reject it if that's the case. 1295 * 1296 * Until that is implemented we return success for 1297 * every remount request, and silently ignore all 1298 * options that we can't actually change. 1299 */ 1300 #if 0 1301 xfs_info(mp, 1302 "mount option \"%s\" not supported for remount", p); 1303 return -EINVAL; 1304 #else 1305 break; 1306 #endif 1307 } 1308 } 1309 1310 /* ro -> rw */ 1311 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & SB_RDONLY)) { 1312 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 1313 xfs_warn(mp, 1314 "ro->rw transition prohibited on norecovery mount"); 1315 return -EINVAL; 1316 } 1317 1318 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && 1319 xfs_sb_has_ro_compat_feature(sbp, 1320 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1321 xfs_warn(mp, 1322 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1323 (sbp->sb_features_ro_compat & 1324 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1325 return -EINVAL; 1326 } 1327 1328 mp->m_flags &= ~XFS_MOUNT_RDONLY; 1329 1330 /* 1331 * If this is the first remount to writeable state we 1332 * might have some superblock changes to update. 1333 */ 1334 if (mp->m_update_sb) { 1335 error = xfs_sync_sb(mp, false); 1336 if (error) { 1337 xfs_warn(mp, "failed to write sb changes"); 1338 return error; 1339 } 1340 mp->m_update_sb = false; 1341 } 1342 1343 /* 1344 * Fill out the reserve pool if it is empty. Use the stashed 1345 * value if it is non-zero, otherwise go with the default. 1346 */ 1347 xfs_restore_resvblks(mp); 1348 xfs_log_work_queue(mp); 1349 1350 /* Recover any CoW blocks that never got remapped. */ 1351 error = xfs_reflink_recover_cow(mp); 1352 if (error) { 1353 xfs_err(mp, 1354 "Error %d recovering leftover CoW allocations.", error); 1355 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1356 return error; 1357 } 1358 xfs_start_block_reaping(mp); 1359 1360 /* Create the per-AG metadata reservation pool .*/ 1361 error = xfs_fs_reserve_ag_blocks(mp); 1362 if (error && error != -ENOSPC) 1363 return error; 1364 } 1365 1366 /* rw -> ro */ 1367 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & SB_RDONLY)) { 1368 /* 1369 * Cancel background eofb scanning so it cannot race with the 1370 * final log force+buftarg wait and deadlock the remount. 1371 */ 1372 xfs_stop_block_reaping(mp); 1373 1374 /* Get rid of any leftover CoW reservations... */ 1375 error = xfs_icache_free_cowblocks(mp, NULL); 1376 if (error) { 1377 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1378 return error; 1379 } 1380 1381 /* Free the per-AG metadata reservation pool. */ 1382 error = xfs_fs_unreserve_ag_blocks(mp); 1383 if (error) { 1384 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1385 return error; 1386 } 1387 1388 /* 1389 * Before we sync the metadata, we need to free up the reserve 1390 * block pool so that the used block count in the superblock on 1391 * disk is correct at the end of the remount. Stash the current 1392 * reserve pool size so that if we get remounted rw, we can 1393 * return it to the same size. 1394 */ 1395 xfs_save_resvblks(mp); 1396 1397 xfs_quiesce_attr(mp); 1398 mp->m_flags |= XFS_MOUNT_RDONLY; 1399 } 1400 1401 return 0; 1402 } 1403 1404 /* 1405 * Second stage of a freeze. The data is already frozen so we only 1406 * need to take care of the metadata. Once that's done sync the superblock 1407 * to the log to dirty it in case of a crash while frozen. This ensures that we 1408 * will recover the unlinked inode lists on the next mount. 1409 */ 1410 STATIC int 1411 xfs_fs_freeze( 1412 struct super_block *sb) 1413 { 1414 struct xfs_mount *mp = XFS_M(sb); 1415 1416 xfs_stop_block_reaping(mp); 1417 xfs_save_resvblks(mp); 1418 xfs_quiesce_attr(mp); 1419 return xfs_sync_sb(mp, true); 1420 } 1421 1422 STATIC int 1423 xfs_fs_unfreeze( 1424 struct super_block *sb) 1425 { 1426 struct xfs_mount *mp = XFS_M(sb); 1427 1428 xfs_restore_resvblks(mp); 1429 xfs_log_work_queue(mp); 1430 xfs_start_block_reaping(mp); 1431 return 0; 1432 } 1433 1434 STATIC int 1435 xfs_fs_show_options( 1436 struct seq_file *m, 1437 struct dentry *root) 1438 { 1439 xfs_showargs(XFS_M(root->d_sb), m); 1440 return 0; 1441 } 1442 1443 /* 1444 * This function fills in xfs_mount_t fields based on mount args. 1445 * Note: the superblock _has_ now been read in. 1446 */ 1447 STATIC int 1448 xfs_finish_flags( 1449 struct xfs_mount *mp) 1450 { 1451 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); 1452 1453 /* Fail a mount where the logbuf is smaller than the log stripe */ 1454 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1455 if (mp->m_logbsize <= 0 && 1456 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 1457 mp->m_logbsize = mp->m_sb.sb_logsunit; 1458 } else if (mp->m_logbsize > 0 && 1459 mp->m_logbsize < mp->m_sb.sb_logsunit) { 1460 xfs_warn(mp, 1461 "logbuf size must be greater than or equal to log stripe size"); 1462 return -EINVAL; 1463 } 1464 } else { 1465 /* Fail a mount if the logbuf is larger than 32K */ 1466 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 1467 xfs_warn(mp, 1468 "logbuf size for version 1 logs must be 16K or 32K"); 1469 return -EINVAL; 1470 } 1471 } 1472 1473 /* 1474 * V5 filesystems always use attr2 format for attributes. 1475 */ 1476 if (xfs_sb_version_hascrc(&mp->m_sb) && 1477 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1478 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 1479 "attr2 is always enabled for V5 filesystems."); 1480 return -EINVAL; 1481 } 1482 1483 /* 1484 * mkfs'ed attr2 will turn on attr2 mount unless explicitly 1485 * told by noattr2 to turn it off 1486 */ 1487 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1488 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1489 mp->m_flags |= XFS_MOUNT_ATTR2; 1490 1491 /* 1492 * prohibit r/w mounts of read-only filesystems 1493 */ 1494 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { 1495 xfs_warn(mp, 1496 "cannot mount a read-only filesystem as read-write"); 1497 return -EROFS; 1498 } 1499 1500 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && 1501 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && 1502 !xfs_sb_version_has_pquotino(&mp->m_sb)) { 1503 xfs_warn(mp, 1504 "Super block does not support project and group quota together"); 1505 return -EINVAL; 1506 } 1507 1508 return 0; 1509 } 1510 1511 static int 1512 xfs_init_percpu_counters( 1513 struct xfs_mount *mp) 1514 { 1515 int error; 1516 1517 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1518 if (error) 1519 return -ENOMEM; 1520 1521 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1522 if (error) 1523 goto free_icount; 1524 1525 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1526 if (error) 1527 goto free_ifree; 1528 1529 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1530 if (error) 1531 goto free_fdblocks; 1532 1533 return 0; 1534 1535 free_fdblocks: 1536 percpu_counter_destroy(&mp->m_fdblocks); 1537 free_ifree: 1538 percpu_counter_destroy(&mp->m_ifree); 1539 free_icount: 1540 percpu_counter_destroy(&mp->m_icount); 1541 return -ENOMEM; 1542 } 1543 1544 void 1545 xfs_reinit_percpu_counters( 1546 struct xfs_mount *mp) 1547 { 1548 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1549 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1550 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1551 } 1552 1553 static void 1554 xfs_destroy_percpu_counters( 1555 struct xfs_mount *mp) 1556 { 1557 percpu_counter_destroy(&mp->m_icount); 1558 percpu_counter_destroy(&mp->m_ifree); 1559 percpu_counter_destroy(&mp->m_fdblocks); 1560 ASSERT(XFS_FORCED_SHUTDOWN(mp) || 1561 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1562 percpu_counter_destroy(&mp->m_delalloc_blks); 1563 } 1564 1565 static struct xfs_mount * 1566 xfs_mount_alloc( 1567 struct super_block *sb) 1568 { 1569 struct xfs_mount *mp; 1570 1571 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL); 1572 if (!mp) 1573 return NULL; 1574 1575 mp->m_super = sb; 1576 spin_lock_init(&mp->m_sb_lock); 1577 spin_lock_init(&mp->m_agirotor_lock); 1578 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1579 spin_lock_init(&mp->m_perag_lock); 1580 mutex_init(&mp->m_growlock); 1581 atomic_set(&mp->m_active_trans, 0); 1582 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1583 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1584 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1585 mp->m_kobj.kobject.kset = xfs_kset; 1586 /* 1587 * We don't create the finobt per-ag space reservation until after log 1588 * recovery, so we must set this to true so that an ifree transaction 1589 * started during log recovery will not depend on space reservations 1590 * for finobt expansion. 1591 */ 1592 mp->m_finobt_nores = true; 1593 return mp; 1594 } 1595 1596 1597 STATIC int 1598 xfs_fs_fill_super( 1599 struct super_block *sb, 1600 void *data, 1601 int silent) 1602 { 1603 struct inode *root; 1604 struct xfs_mount *mp = NULL; 1605 int flags = 0, error = -ENOMEM; 1606 1607 /* 1608 * allocate mp and do all low-level struct initializations before we 1609 * attach it to the super 1610 */ 1611 mp = xfs_mount_alloc(sb); 1612 if (!mp) 1613 goto out; 1614 sb->s_fs_info = mp; 1615 1616 error = xfs_parseargs(mp, (char *)data); 1617 if (error) 1618 goto out_free_fsname; 1619 1620 sb_min_blocksize(sb, BBSIZE); 1621 sb->s_xattr = xfs_xattr_handlers; 1622 sb->s_export_op = &xfs_export_operations; 1623 #ifdef CONFIG_XFS_QUOTA 1624 sb->s_qcop = &xfs_quotactl_operations; 1625 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1626 #endif 1627 sb->s_op = &xfs_super_operations; 1628 1629 /* 1630 * Delay mount work if the debug hook is set. This is debug 1631 * instrumention to coordinate simulation of xfs mount failures with 1632 * VFS superblock operations 1633 */ 1634 if (xfs_globals.mount_delay) { 1635 xfs_notice(mp, "Delaying mount for %d seconds.", 1636 xfs_globals.mount_delay); 1637 msleep(xfs_globals.mount_delay * 1000); 1638 } 1639 1640 if (silent) 1641 flags |= XFS_MFSI_QUIET; 1642 1643 error = xfs_open_devices(mp); 1644 if (error) 1645 goto out_free_fsname; 1646 1647 error = xfs_init_mount_workqueues(mp); 1648 if (error) 1649 goto out_close_devices; 1650 1651 error = xfs_init_percpu_counters(mp); 1652 if (error) 1653 goto out_destroy_workqueues; 1654 1655 /* Allocate stats memory before we do operations that might use it */ 1656 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1657 if (!mp->m_stats.xs_stats) { 1658 error = -ENOMEM; 1659 goto out_destroy_counters; 1660 } 1661 1662 error = xfs_readsb(mp, flags); 1663 if (error) 1664 goto out_free_stats; 1665 1666 error = xfs_finish_flags(mp); 1667 if (error) 1668 goto out_free_sb; 1669 1670 error = xfs_setup_devices(mp); 1671 if (error) 1672 goto out_free_sb; 1673 1674 error = xfs_filestream_mount(mp); 1675 if (error) 1676 goto out_free_sb; 1677 1678 /* 1679 * we must configure the block size in the superblock before we run the 1680 * full mount process as the mount process can lookup and cache inodes. 1681 */ 1682 sb->s_magic = XFS_SUPER_MAGIC; 1683 sb->s_blocksize = mp->m_sb.sb_blocksize; 1684 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1685 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); 1686 sb->s_max_links = XFS_MAXLINK; 1687 sb->s_time_gran = 1; 1688 set_posix_acl_flag(sb); 1689 1690 /* version 5 superblocks support inode version counters. */ 1691 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1692 sb->s_flags |= SB_I_VERSION; 1693 1694 if (mp->m_flags & XFS_MOUNT_DAX) { 1695 bool rtdev_is_dax = false, datadev_is_dax; 1696 1697 xfs_warn(mp, 1698 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1699 1700 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, 1701 sb->s_blocksize); 1702 if (mp->m_rtdev_targp) 1703 rtdev_is_dax = bdev_dax_supported( 1704 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); 1705 if (!rtdev_is_dax && !datadev_is_dax) { 1706 xfs_alert(mp, 1707 "DAX unsupported by block device. Turning off DAX."); 1708 mp->m_flags &= ~XFS_MOUNT_DAX; 1709 } 1710 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1711 xfs_alert(mp, 1712 "DAX and reflink cannot be used together!"); 1713 error = -EINVAL; 1714 goto out_filestream_unmount; 1715 } 1716 } 1717 1718 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1719 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1720 1721 if (!blk_queue_discard(q)) { 1722 xfs_warn(mp, "mounting with \"discard\" option, but " 1723 "the device does not support discard"); 1724 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1725 } 1726 } 1727 1728 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1729 if (mp->m_sb.sb_rblocks) { 1730 xfs_alert(mp, 1731 "reflink not compatible with realtime device!"); 1732 error = -EINVAL; 1733 goto out_filestream_unmount; 1734 } 1735 1736 if (xfs_globals.always_cow) { 1737 xfs_info(mp, "using DEBUG-only always_cow mode."); 1738 mp->m_always_cow = true; 1739 } 1740 } 1741 1742 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1743 xfs_alert(mp, 1744 "reverse mapping btree not compatible with realtime device!"); 1745 error = -EINVAL; 1746 goto out_filestream_unmount; 1747 } 1748 1749 error = xfs_mountfs(mp); 1750 if (error) 1751 goto out_filestream_unmount; 1752 1753 root = igrab(VFS_I(mp->m_rootip)); 1754 if (!root) { 1755 error = -ENOENT; 1756 goto out_unmount; 1757 } 1758 sb->s_root = d_make_root(root); 1759 if (!sb->s_root) { 1760 error = -ENOMEM; 1761 goto out_unmount; 1762 } 1763 1764 return 0; 1765 1766 out_filestream_unmount: 1767 xfs_filestream_unmount(mp); 1768 out_free_sb: 1769 xfs_freesb(mp); 1770 out_free_stats: 1771 free_percpu(mp->m_stats.xs_stats); 1772 out_destroy_counters: 1773 xfs_destroy_percpu_counters(mp); 1774 out_destroy_workqueues: 1775 xfs_destroy_mount_workqueues(mp); 1776 out_close_devices: 1777 xfs_close_devices(mp); 1778 out_free_fsname: 1779 sb->s_fs_info = NULL; 1780 xfs_free_fsname(mp); 1781 kfree(mp); 1782 out: 1783 return error; 1784 1785 out_unmount: 1786 xfs_filestream_unmount(mp); 1787 xfs_unmountfs(mp); 1788 goto out_free_sb; 1789 } 1790 1791 STATIC void 1792 xfs_fs_put_super( 1793 struct super_block *sb) 1794 { 1795 struct xfs_mount *mp = XFS_M(sb); 1796 1797 /* if ->fill_super failed, we have no mount to tear down */ 1798 if (!sb->s_fs_info) 1799 return; 1800 1801 xfs_notice(mp, "Unmounting Filesystem"); 1802 xfs_filestream_unmount(mp); 1803 xfs_unmountfs(mp); 1804 1805 xfs_freesb(mp); 1806 free_percpu(mp->m_stats.xs_stats); 1807 xfs_destroy_percpu_counters(mp); 1808 xfs_destroy_mount_workqueues(mp); 1809 xfs_close_devices(mp); 1810 1811 sb->s_fs_info = NULL; 1812 xfs_free_fsname(mp); 1813 kfree(mp); 1814 } 1815 1816 STATIC struct dentry * 1817 xfs_fs_mount( 1818 struct file_system_type *fs_type, 1819 int flags, 1820 const char *dev_name, 1821 void *data) 1822 { 1823 return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super); 1824 } 1825 1826 static long 1827 xfs_fs_nr_cached_objects( 1828 struct super_block *sb, 1829 struct shrink_control *sc) 1830 { 1831 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1832 if (WARN_ON_ONCE(!sb->s_fs_info)) 1833 return 0; 1834 return xfs_reclaim_inodes_count(XFS_M(sb)); 1835 } 1836 1837 static long 1838 xfs_fs_free_cached_objects( 1839 struct super_block *sb, 1840 struct shrink_control *sc) 1841 { 1842 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1843 } 1844 1845 static const struct super_operations xfs_super_operations = { 1846 .alloc_inode = xfs_fs_alloc_inode, 1847 .destroy_inode = xfs_fs_destroy_inode, 1848 .dirty_inode = xfs_fs_dirty_inode, 1849 .drop_inode = xfs_fs_drop_inode, 1850 .put_super = xfs_fs_put_super, 1851 .sync_fs = xfs_fs_sync_fs, 1852 .freeze_fs = xfs_fs_freeze, 1853 .unfreeze_fs = xfs_fs_unfreeze, 1854 .statfs = xfs_fs_statfs, 1855 .remount_fs = xfs_fs_remount, 1856 .show_options = xfs_fs_show_options, 1857 .nr_cached_objects = xfs_fs_nr_cached_objects, 1858 .free_cached_objects = xfs_fs_free_cached_objects, 1859 }; 1860 1861 static struct file_system_type xfs_fs_type = { 1862 .owner = THIS_MODULE, 1863 .name = "xfs", 1864 .mount = xfs_fs_mount, 1865 .kill_sb = kill_block_super, 1866 .fs_flags = FS_REQUIRES_DEV, 1867 }; 1868 MODULE_ALIAS_FS("xfs"); 1869 1870 STATIC int __init 1871 xfs_init_zones(void) 1872 { 1873 if (bioset_init(&xfs_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1874 offsetof(struct xfs_ioend, io_inline_bio), 1875 BIOSET_NEED_BVECS)) 1876 goto out; 1877 1878 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t), 1879 "xfs_log_ticket"); 1880 if (!xfs_log_ticket_zone) 1881 goto out_free_ioend_bioset; 1882 1883 xfs_bmap_free_item_zone = kmem_zone_init( 1884 sizeof(struct xfs_extent_free_item), 1885 "xfs_bmap_free_item"); 1886 if (!xfs_bmap_free_item_zone) 1887 goto out_destroy_log_ticket_zone; 1888 1889 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t), 1890 "xfs_btree_cur"); 1891 if (!xfs_btree_cur_zone) 1892 goto out_destroy_bmap_free_item_zone; 1893 1894 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t), 1895 "xfs_da_state"); 1896 if (!xfs_da_state_zone) 1897 goto out_destroy_btree_cur_zone; 1898 1899 xfs_ifork_zone = kmem_zone_init(sizeof(struct xfs_ifork), "xfs_ifork"); 1900 if (!xfs_ifork_zone) 1901 goto out_destroy_da_state_zone; 1902 1903 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans"); 1904 if (!xfs_trans_zone) 1905 goto out_destroy_ifork_zone; 1906 1907 1908 /* 1909 * The size of the zone allocated buf log item is the maximum 1910 * size possible under XFS. This wastes a little bit of memory, 1911 * but it is much faster. 1912 */ 1913 xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item), 1914 "xfs_buf_item"); 1915 if (!xfs_buf_item_zone) 1916 goto out_destroy_trans_zone; 1917 1918 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) + 1919 ((XFS_EFD_MAX_FAST_EXTENTS - 1) * 1920 sizeof(xfs_extent_t))), "xfs_efd_item"); 1921 if (!xfs_efd_zone) 1922 goto out_destroy_buf_item_zone; 1923 1924 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) + 1925 ((XFS_EFI_MAX_FAST_EXTENTS - 1) * 1926 sizeof(xfs_extent_t))), "xfs_efi_item"); 1927 if (!xfs_efi_zone) 1928 goto out_destroy_efd_zone; 1929 1930 xfs_inode_zone = 1931 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode", 1932 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD | 1933 KM_ZONE_ACCOUNT, xfs_fs_inode_init_once); 1934 if (!xfs_inode_zone) 1935 goto out_destroy_efi_zone; 1936 1937 xfs_ili_zone = 1938 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili", 1939 KM_ZONE_SPREAD, NULL); 1940 if (!xfs_ili_zone) 1941 goto out_destroy_inode_zone; 1942 xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item), 1943 "xfs_icr"); 1944 if (!xfs_icreate_zone) 1945 goto out_destroy_ili_zone; 1946 1947 xfs_rud_zone = kmem_zone_init(sizeof(struct xfs_rud_log_item), 1948 "xfs_rud_item"); 1949 if (!xfs_rud_zone) 1950 goto out_destroy_icreate_zone; 1951 1952 xfs_rui_zone = kmem_zone_init( 1953 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 1954 "xfs_rui_item"); 1955 if (!xfs_rui_zone) 1956 goto out_destroy_rud_zone; 1957 1958 xfs_cud_zone = kmem_zone_init(sizeof(struct xfs_cud_log_item), 1959 "xfs_cud_item"); 1960 if (!xfs_cud_zone) 1961 goto out_destroy_rui_zone; 1962 1963 xfs_cui_zone = kmem_zone_init( 1964 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 1965 "xfs_cui_item"); 1966 if (!xfs_cui_zone) 1967 goto out_destroy_cud_zone; 1968 1969 xfs_bud_zone = kmem_zone_init(sizeof(struct xfs_bud_log_item), 1970 "xfs_bud_item"); 1971 if (!xfs_bud_zone) 1972 goto out_destroy_cui_zone; 1973 1974 xfs_bui_zone = kmem_zone_init( 1975 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 1976 "xfs_bui_item"); 1977 if (!xfs_bui_zone) 1978 goto out_destroy_bud_zone; 1979 1980 return 0; 1981 1982 out_destroy_bud_zone: 1983 kmem_zone_destroy(xfs_bud_zone); 1984 out_destroy_cui_zone: 1985 kmem_zone_destroy(xfs_cui_zone); 1986 out_destroy_cud_zone: 1987 kmem_zone_destroy(xfs_cud_zone); 1988 out_destroy_rui_zone: 1989 kmem_zone_destroy(xfs_rui_zone); 1990 out_destroy_rud_zone: 1991 kmem_zone_destroy(xfs_rud_zone); 1992 out_destroy_icreate_zone: 1993 kmem_zone_destroy(xfs_icreate_zone); 1994 out_destroy_ili_zone: 1995 kmem_zone_destroy(xfs_ili_zone); 1996 out_destroy_inode_zone: 1997 kmem_zone_destroy(xfs_inode_zone); 1998 out_destroy_efi_zone: 1999 kmem_zone_destroy(xfs_efi_zone); 2000 out_destroy_efd_zone: 2001 kmem_zone_destroy(xfs_efd_zone); 2002 out_destroy_buf_item_zone: 2003 kmem_zone_destroy(xfs_buf_item_zone); 2004 out_destroy_trans_zone: 2005 kmem_zone_destroy(xfs_trans_zone); 2006 out_destroy_ifork_zone: 2007 kmem_zone_destroy(xfs_ifork_zone); 2008 out_destroy_da_state_zone: 2009 kmem_zone_destroy(xfs_da_state_zone); 2010 out_destroy_btree_cur_zone: 2011 kmem_zone_destroy(xfs_btree_cur_zone); 2012 out_destroy_bmap_free_item_zone: 2013 kmem_zone_destroy(xfs_bmap_free_item_zone); 2014 out_destroy_log_ticket_zone: 2015 kmem_zone_destroy(xfs_log_ticket_zone); 2016 out_free_ioend_bioset: 2017 bioset_exit(&xfs_ioend_bioset); 2018 out: 2019 return -ENOMEM; 2020 } 2021 2022 STATIC void 2023 xfs_destroy_zones(void) 2024 { 2025 /* 2026 * Make sure all delayed rcu free are flushed before we 2027 * destroy caches. 2028 */ 2029 rcu_barrier(); 2030 kmem_zone_destroy(xfs_bui_zone); 2031 kmem_zone_destroy(xfs_bud_zone); 2032 kmem_zone_destroy(xfs_cui_zone); 2033 kmem_zone_destroy(xfs_cud_zone); 2034 kmem_zone_destroy(xfs_rui_zone); 2035 kmem_zone_destroy(xfs_rud_zone); 2036 kmem_zone_destroy(xfs_icreate_zone); 2037 kmem_zone_destroy(xfs_ili_zone); 2038 kmem_zone_destroy(xfs_inode_zone); 2039 kmem_zone_destroy(xfs_efi_zone); 2040 kmem_zone_destroy(xfs_efd_zone); 2041 kmem_zone_destroy(xfs_buf_item_zone); 2042 kmem_zone_destroy(xfs_trans_zone); 2043 kmem_zone_destroy(xfs_ifork_zone); 2044 kmem_zone_destroy(xfs_da_state_zone); 2045 kmem_zone_destroy(xfs_btree_cur_zone); 2046 kmem_zone_destroy(xfs_bmap_free_item_zone); 2047 kmem_zone_destroy(xfs_log_ticket_zone); 2048 bioset_exit(&xfs_ioend_bioset); 2049 } 2050 2051 STATIC int __init 2052 xfs_init_workqueues(void) 2053 { 2054 /* 2055 * The allocation workqueue can be used in memory reclaim situations 2056 * (writepage path), and parallelism is only limited by the number of 2057 * AGs in all the filesystems mounted. Hence use the default large 2058 * max_active value for this workqueue. 2059 */ 2060 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2061 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); 2062 if (!xfs_alloc_wq) 2063 return -ENOMEM; 2064 2065 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); 2066 if (!xfs_discard_wq) 2067 goto out_free_alloc_wq; 2068 2069 return 0; 2070 out_free_alloc_wq: 2071 destroy_workqueue(xfs_alloc_wq); 2072 return -ENOMEM; 2073 } 2074 2075 STATIC void 2076 xfs_destroy_workqueues(void) 2077 { 2078 destroy_workqueue(xfs_discard_wq); 2079 destroy_workqueue(xfs_alloc_wq); 2080 } 2081 2082 STATIC int __init 2083 init_xfs_fs(void) 2084 { 2085 int error; 2086 2087 xfs_check_ondisk_structs(); 2088 2089 printk(KERN_INFO XFS_VERSION_STRING " with " 2090 XFS_BUILD_OPTIONS " enabled\n"); 2091 2092 xfs_dir_startup(); 2093 2094 error = xfs_init_zones(); 2095 if (error) 2096 goto out; 2097 2098 error = xfs_init_workqueues(); 2099 if (error) 2100 goto out_destroy_zones; 2101 2102 error = xfs_mru_cache_init(); 2103 if (error) 2104 goto out_destroy_wq; 2105 2106 error = xfs_buf_init(); 2107 if (error) 2108 goto out_mru_cache_uninit; 2109 2110 error = xfs_init_procfs(); 2111 if (error) 2112 goto out_buf_terminate; 2113 2114 error = xfs_sysctl_register(); 2115 if (error) 2116 goto out_cleanup_procfs; 2117 2118 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2119 if (!xfs_kset) { 2120 error = -ENOMEM; 2121 goto out_sysctl_unregister; 2122 } 2123 2124 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2125 2126 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2127 if (!xfsstats.xs_stats) { 2128 error = -ENOMEM; 2129 goto out_kset_unregister; 2130 } 2131 2132 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2133 "stats"); 2134 if (error) 2135 goto out_free_stats; 2136 2137 #ifdef DEBUG 2138 xfs_dbg_kobj.kobject.kset = xfs_kset; 2139 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2140 if (error) 2141 goto out_remove_stats_kobj; 2142 #endif 2143 2144 error = xfs_qm_init(); 2145 if (error) 2146 goto out_remove_dbg_kobj; 2147 2148 error = register_filesystem(&xfs_fs_type); 2149 if (error) 2150 goto out_qm_exit; 2151 return 0; 2152 2153 out_qm_exit: 2154 xfs_qm_exit(); 2155 out_remove_dbg_kobj: 2156 #ifdef DEBUG 2157 xfs_sysfs_del(&xfs_dbg_kobj); 2158 out_remove_stats_kobj: 2159 #endif 2160 xfs_sysfs_del(&xfsstats.xs_kobj); 2161 out_free_stats: 2162 free_percpu(xfsstats.xs_stats); 2163 out_kset_unregister: 2164 kset_unregister(xfs_kset); 2165 out_sysctl_unregister: 2166 xfs_sysctl_unregister(); 2167 out_cleanup_procfs: 2168 xfs_cleanup_procfs(); 2169 out_buf_terminate: 2170 xfs_buf_terminate(); 2171 out_mru_cache_uninit: 2172 xfs_mru_cache_uninit(); 2173 out_destroy_wq: 2174 xfs_destroy_workqueues(); 2175 out_destroy_zones: 2176 xfs_destroy_zones(); 2177 out: 2178 return error; 2179 } 2180 2181 STATIC void __exit 2182 exit_xfs_fs(void) 2183 { 2184 xfs_qm_exit(); 2185 unregister_filesystem(&xfs_fs_type); 2186 #ifdef DEBUG 2187 xfs_sysfs_del(&xfs_dbg_kobj); 2188 #endif 2189 xfs_sysfs_del(&xfsstats.xs_kobj); 2190 free_percpu(xfsstats.xs_stats); 2191 kset_unregister(xfs_kset); 2192 xfs_sysctl_unregister(); 2193 xfs_cleanup_procfs(); 2194 xfs_buf_terminate(); 2195 xfs_mru_cache_uninit(); 2196 xfs_destroy_workqueues(); 2197 xfs_destroy_zones(); 2198 xfs_uuid_table_free(); 2199 } 2200 2201 module_init(init_xfs_fs); 2202 module_exit(exit_xfs_fs); 2203 2204 MODULE_AUTHOR("Silicon Graphics, Inc."); 2205 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2206 MODULE_LICENSE("GPL"); 2207