1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 #include "xfs_pwork.h" 39 #include "xfs_ag.h" 40 #include "xfs_defer.h" 41 #include "xfs_attr_item.h" 42 #include "xfs_xattr.h" 43 #include "xfs_iunlink_item.h" 44 #include "xfs_dahash_test.h" 45 #include "xfs_rtbitmap.h" 46 #include "xfs_exchmaps_item.h" 47 #include "xfs_parent.h" 48 #include "xfs_rtalloc.h" 49 #include "xfs_zone_alloc.h" 50 #include "scrub/stats.h" 51 #include "scrub/rcbag_btree.h" 52 53 #include <linux/magic.h> 54 #include <linux/fs_context.h> 55 #include <linux/fs_parser.h> 56 57 static const struct super_operations xfs_super_operations; 58 59 static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */ 60 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 61 #ifdef DEBUG 62 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 63 #endif 64 65 enum xfs_dax_mode { 66 XFS_DAX_INODE = 0, 67 XFS_DAX_ALWAYS = 1, 68 XFS_DAX_NEVER = 2, 69 }; 70 71 /* Were quota mount options provided? Must use the upper 16 bits of qflags. */ 72 #define XFS_QFLAGS_MNTOPTS (1U << 31) 73 74 static void 75 xfs_mount_set_dax_mode( 76 struct xfs_mount *mp, 77 enum xfs_dax_mode mode) 78 { 79 switch (mode) { 80 case XFS_DAX_INODE: 81 mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER); 82 break; 83 case XFS_DAX_ALWAYS: 84 mp->m_features |= XFS_FEAT_DAX_ALWAYS; 85 mp->m_features &= ~XFS_FEAT_DAX_NEVER; 86 break; 87 case XFS_DAX_NEVER: 88 mp->m_features |= XFS_FEAT_DAX_NEVER; 89 mp->m_features &= ~XFS_FEAT_DAX_ALWAYS; 90 break; 91 } 92 } 93 94 static const struct constant_table dax_param_enums[] = { 95 {"inode", XFS_DAX_INODE }, 96 {"always", XFS_DAX_ALWAYS }, 97 {"never", XFS_DAX_NEVER }, 98 {} 99 }; 100 101 /* 102 * Table driven mount option parser. 103 */ 104 enum { 105 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 106 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 107 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 108 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 109 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 110 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 111 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 112 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 113 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, Opt_max_open_zones, 114 Opt_lifetime, Opt_nolifetime, 115 }; 116 117 static const struct fs_parameter_spec xfs_fs_parameters[] = { 118 fsparam_u32("logbufs", Opt_logbufs), 119 fsparam_string("logbsize", Opt_logbsize), 120 fsparam_string("logdev", Opt_logdev), 121 fsparam_string("rtdev", Opt_rtdev), 122 fsparam_flag("wsync", Opt_wsync), 123 fsparam_flag("noalign", Opt_noalign), 124 fsparam_flag("swalloc", Opt_swalloc), 125 fsparam_u32("sunit", Opt_sunit), 126 fsparam_u32("swidth", Opt_swidth), 127 fsparam_flag("nouuid", Opt_nouuid), 128 fsparam_flag("grpid", Opt_grpid), 129 fsparam_flag("nogrpid", Opt_nogrpid), 130 fsparam_flag("bsdgroups", Opt_bsdgroups), 131 fsparam_flag("sysvgroups", Opt_sysvgroups), 132 fsparam_string("allocsize", Opt_allocsize), 133 fsparam_flag("norecovery", Opt_norecovery), 134 fsparam_flag("inode64", Opt_inode64), 135 fsparam_flag("inode32", Opt_inode32), 136 fsparam_flag("ikeep", Opt_ikeep), 137 fsparam_flag("noikeep", Opt_noikeep), 138 fsparam_flag("largeio", Opt_largeio), 139 fsparam_flag("nolargeio", Opt_nolargeio), 140 fsparam_flag("attr2", Opt_attr2), 141 fsparam_flag("noattr2", Opt_noattr2), 142 fsparam_flag("filestreams", Opt_filestreams), 143 fsparam_flag("quota", Opt_quota), 144 fsparam_flag("noquota", Opt_noquota), 145 fsparam_flag("usrquota", Opt_usrquota), 146 fsparam_flag("grpquota", Opt_grpquota), 147 fsparam_flag("prjquota", Opt_prjquota), 148 fsparam_flag("uquota", Opt_uquota), 149 fsparam_flag("gquota", Opt_gquota), 150 fsparam_flag("pquota", Opt_pquota), 151 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 152 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 153 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 154 fsparam_flag("qnoenforce", Opt_qnoenforce), 155 fsparam_flag("discard", Opt_discard), 156 fsparam_flag("nodiscard", Opt_nodiscard), 157 fsparam_flag("dax", Opt_dax), 158 fsparam_enum("dax", Opt_dax_enum, dax_param_enums), 159 fsparam_u32("max_open_zones", Opt_max_open_zones), 160 fsparam_flag("lifetime", Opt_lifetime), 161 fsparam_flag("nolifetime", Opt_nolifetime), 162 {} 163 }; 164 165 struct proc_xfs_info { 166 uint64_t flag; 167 char *str; 168 }; 169 170 static int 171 xfs_fs_show_options( 172 struct seq_file *m, 173 struct dentry *root) 174 { 175 static struct proc_xfs_info xfs_info_set[] = { 176 /* the few simple ones we can get from the mount struct */ 177 { XFS_FEAT_IKEEP, ",ikeep" }, 178 { XFS_FEAT_WSYNC, ",wsync" }, 179 { XFS_FEAT_NOALIGN, ",noalign" }, 180 { XFS_FEAT_SWALLOC, ",swalloc" }, 181 { XFS_FEAT_NOUUID, ",nouuid" }, 182 { XFS_FEAT_NORECOVERY, ",norecovery" }, 183 { XFS_FEAT_ATTR2, ",attr2" }, 184 { XFS_FEAT_FILESTREAMS, ",filestreams" }, 185 { XFS_FEAT_GRPID, ",grpid" }, 186 { XFS_FEAT_DISCARD, ",discard" }, 187 { XFS_FEAT_LARGE_IOSIZE, ",largeio" }, 188 { XFS_FEAT_DAX_ALWAYS, ",dax=always" }, 189 { XFS_FEAT_DAX_NEVER, ",dax=never" }, 190 { XFS_FEAT_NOLIFETIME, ",nolifetime" }, 191 { 0, NULL } 192 }; 193 struct xfs_mount *mp = XFS_M(root->d_sb); 194 struct proc_xfs_info *xfs_infop; 195 196 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 197 if (mp->m_features & xfs_infop->flag) 198 seq_puts(m, xfs_infop->str); 199 } 200 201 seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64); 202 203 if (xfs_has_allocsize(mp)) 204 seq_printf(m, ",allocsize=%dk", 205 (1 << mp->m_allocsize_log) >> 10); 206 207 if (mp->m_logbufs > 0) 208 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 209 if (mp->m_logbsize > 0) 210 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 211 212 if (mp->m_logname) 213 seq_show_option(m, "logdev", mp->m_logname); 214 if (mp->m_rtname) 215 seq_show_option(m, "rtdev", mp->m_rtname); 216 217 if (mp->m_dalign > 0) 218 seq_printf(m, ",sunit=%d", 219 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 220 if (mp->m_swidth > 0) 221 seq_printf(m, ",swidth=%d", 222 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 223 224 if (mp->m_qflags & XFS_UQUOTA_ENFD) 225 seq_puts(m, ",usrquota"); 226 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 227 seq_puts(m, ",uqnoenforce"); 228 229 if (mp->m_qflags & XFS_PQUOTA_ENFD) 230 seq_puts(m, ",prjquota"); 231 else if (mp->m_qflags & XFS_PQUOTA_ACCT) 232 seq_puts(m, ",pqnoenforce"); 233 234 if (mp->m_qflags & XFS_GQUOTA_ENFD) 235 seq_puts(m, ",grpquota"); 236 else if (mp->m_qflags & XFS_GQUOTA_ACCT) 237 seq_puts(m, ",gqnoenforce"); 238 239 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 240 seq_puts(m, ",noquota"); 241 242 if (mp->m_max_open_zones) 243 seq_printf(m, ",max_open_zones=%u", mp->m_max_open_zones); 244 245 return 0; 246 } 247 248 static bool 249 xfs_set_inode_alloc_perag( 250 struct xfs_perag *pag, 251 xfs_ino_t ino, 252 xfs_agnumber_t max_metadata) 253 { 254 if (!xfs_is_inode32(pag_mount(pag))) { 255 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 256 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 257 return false; 258 } 259 260 if (ino > XFS_MAXINUMBER_32) { 261 clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 262 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 263 return false; 264 } 265 266 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 267 if (pag_agno(pag) < max_metadata) 268 set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 269 else 270 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 271 return true; 272 } 273 274 /* 275 * Set parameters for inode allocation heuristics, taking into account 276 * filesystem size and inode32/inode64 mount options; i.e. specifically 277 * whether or not XFS_FEAT_SMALL_INUMS is set. 278 * 279 * Inode allocation patterns are altered only if inode32 is requested 280 * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large. 281 * If altered, XFS_OPSTATE_INODE32 is set as well. 282 * 283 * An agcount independent of that in the mount structure is provided 284 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 285 * to the potentially higher ag count. 286 * 287 * Returns the maximum AG index which may contain inodes. 288 */ 289 xfs_agnumber_t 290 xfs_set_inode_alloc( 291 struct xfs_mount *mp, 292 xfs_agnumber_t agcount) 293 { 294 xfs_agnumber_t index; 295 xfs_agnumber_t maxagi = 0; 296 xfs_sb_t *sbp = &mp->m_sb; 297 xfs_agnumber_t max_metadata; 298 xfs_agino_t agino; 299 xfs_ino_t ino; 300 301 /* 302 * Calculate how much should be reserved for inodes to meet 303 * the max inode percentage. Used only for inode32. 304 */ 305 if (M_IGEO(mp)->maxicount) { 306 uint64_t icount; 307 308 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 309 do_div(icount, 100); 310 icount += sbp->sb_agblocks - 1; 311 do_div(icount, sbp->sb_agblocks); 312 max_metadata = icount; 313 } else { 314 max_metadata = agcount; 315 } 316 317 /* Get the last possible inode in the filesystem */ 318 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 319 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 320 321 /* 322 * If user asked for no more than 32-bit inodes, and the fs is 323 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter 324 * the allocator to accommodate the request. 325 */ 326 if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32) 327 xfs_set_inode32(mp); 328 else 329 xfs_clear_inode32(mp); 330 331 for (index = 0; index < agcount; index++) { 332 struct xfs_perag *pag; 333 334 ino = XFS_AGINO_TO_INO(mp, index, agino); 335 336 pag = xfs_perag_get(mp, index); 337 if (xfs_set_inode_alloc_perag(pag, ino, max_metadata)) 338 maxagi++; 339 xfs_perag_put(pag); 340 } 341 342 return xfs_is_inode32(mp) ? maxagi : agcount; 343 } 344 345 static int 346 xfs_setup_dax_always( 347 struct xfs_mount *mp) 348 { 349 if (!mp->m_ddev_targp->bt_daxdev && 350 (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) { 351 xfs_alert(mp, 352 "DAX unsupported by block device. Turning off DAX."); 353 goto disable_dax; 354 } 355 356 if (mp->m_super->s_blocksize != PAGE_SIZE) { 357 xfs_alert(mp, 358 "DAX not supported for blocksize. Turning off DAX."); 359 goto disable_dax; 360 } 361 362 if (xfs_has_reflink(mp) && 363 bdev_is_partition(mp->m_ddev_targp->bt_bdev)) { 364 xfs_alert(mp, 365 "DAX and reflink cannot work with multi-partitions!"); 366 return -EINVAL; 367 } 368 369 return 0; 370 371 disable_dax: 372 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); 373 return 0; 374 } 375 376 STATIC int 377 xfs_blkdev_get( 378 xfs_mount_t *mp, 379 const char *name, 380 struct file **bdev_filep) 381 { 382 int error = 0; 383 384 *bdev_filep = bdev_file_open_by_path(name, 385 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 386 mp->m_super, &fs_holder_ops); 387 if (IS_ERR(*bdev_filep)) { 388 error = PTR_ERR(*bdev_filep); 389 *bdev_filep = NULL; 390 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 391 } 392 393 return error; 394 } 395 396 STATIC void 397 xfs_shutdown_devices( 398 struct xfs_mount *mp) 399 { 400 /* 401 * Udev is triggered whenever anyone closes a block device or unmounts 402 * a file systemm on a block device. 403 * The default udev rules invoke blkid to read the fs super and create 404 * symlinks to the bdev under /dev/disk. For this, it uses buffered 405 * reads through the page cache. 406 * 407 * xfs_db also uses buffered reads to examine metadata. There is no 408 * coordination between xfs_db and udev, which means that they can run 409 * concurrently. Note there is no coordination between the kernel and 410 * blkid either. 411 * 412 * On a system with 64k pages, the page cache can cache the superblock 413 * and the root inode (and hence the root directory) with the same 64k 414 * page. If udev spawns blkid after the mkfs and the system is busy 415 * enough that it is still running when xfs_db starts up, they'll both 416 * read from the same page in the pagecache. 417 * 418 * The unmount writes updated inode metadata to disk directly. The XFS 419 * buffer cache does not use the bdev pagecache, so it needs to 420 * invalidate that pagecache on unmount. If the above scenario occurs, 421 * the pagecache no longer reflects what's on disk, xfs_db reads the 422 * stale metadata, and fails to find /a. Most of the time this succeeds 423 * because closing a bdev invalidates the page cache, but when processes 424 * race, everyone loses. 425 */ 426 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 427 blkdev_issue_flush(mp->m_logdev_targp->bt_bdev); 428 invalidate_bdev(mp->m_logdev_targp->bt_bdev); 429 } 430 if (mp->m_rtdev_targp) { 431 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 432 invalidate_bdev(mp->m_rtdev_targp->bt_bdev); 433 } 434 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 435 invalidate_bdev(mp->m_ddev_targp->bt_bdev); 436 } 437 438 /* 439 * The file system configurations are: 440 * (1) device (partition) with data and internal log 441 * (2) logical volume with data and log subvolumes. 442 * (3) logical volume with data, log, and realtime subvolumes. 443 * 444 * We only have to handle opening the log and realtime volumes here if 445 * they are present. The data subvolume has already been opened by 446 * get_sb_bdev() and is stored in sb->s_bdev. 447 */ 448 STATIC int 449 xfs_open_devices( 450 struct xfs_mount *mp) 451 { 452 struct super_block *sb = mp->m_super; 453 struct block_device *ddev = sb->s_bdev; 454 struct file *logdev_file = NULL, *rtdev_file = NULL; 455 int error; 456 457 /* 458 * Open real time and log devices - order is important. 459 */ 460 if (mp->m_logname) { 461 error = xfs_blkdev_get(mp, mp->m_logname, &logdev_file); 462 if (error) 463 return error; 464 } 465 466 if (mp->m_rtname) { 467 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_file); 468 if (error) 469 goto out_close_logdev; 470 471 if (file_bdev(rtdev_file) == ddev || 472 (logdev_file && 473 file_bdev(rtdev_file) == file_bdev(logdev_file))) { 474 xfs_warn(mp, 475 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 476 error = -EINVAL; 477 goto out_close_rtdev; 478 } 479 } 480 481 /* 482 * Setup xfs_mount buffer target pointers 483 */ 484 error = -ENOMEM; 485 mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_file); 486 if (!mp->m_ddev_targp) 487 goto out_close_rtdev; 488 489 if (rtdev_file) { 490 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_file); 491 if (!mp->m_rtdev_targp) 492 goto out_free_ddev_targ; 493 } 494 495 if (logdev_file && file_bdev(logdev_file) != ddev) { 496 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_file); 497 if (!mp->m_logdev_targp) 498 goto out_free_rtdev_targ; 499 } else { 500 mp->m_logdev_targp = mp->m_ddev_targp; 501 /* Handle won't be used, drop it */ 502 if (logdev_file) 503 bdev_fput(logdev_file); 504 } 505 506 return 0; 507 508 out_free_rtdev_targ: 509 if (mp->m_rtdev_targp) 510 xfs_free_buftarg(mp->m_rtdev_targp); 511 out_free_ddev_targ: 512 xfs_free_buftarg(mp->m_ddev_targp); 513 out_close_rtdev: 514 if (rtdev_file) 515 bdev_fput(rtdev_file); 516 out_close_logdev: 517 if (logdev_file) 518 bdev_fput(logdev_file); 519 return error; 520 } 521 522 /* 523 * Setup xfs_mount buffer target pointers based on superblock 524 */ 525 STATIC int 526 xfs_setup_devices( 527 struct xfs_mount *mp) 528 { 529 int error; 530 531 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 532 if (error) 533 return error; 534 535 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 536 unsigned int log_sector_size = BBSIZE; 537 538 if (xfs_has_sector(mp)) 539 log_sector_size = mp->m_sb.sb_logsectsize; 540 error = xfs_setsize_buftarg(mp->m_logdev_targp, 541 log_sector_size); 542 if (error) 543 return error; 544 } 545 546 if (mp->m_sb.sb_rtstart) { 547 if (mp->m_rtdev_targp) { 548 xfs_warn(mp, 549 "can't use internal and external rtdev at the same time"); 550 return -EINVAL; 551 } 552 mp->m_rtdev_targp = mp->m_ddev_targp; 553 } else if (mp->m_rtname) { 554 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 555 mp->m_sb.sb_sectsize); 556 if (error) 557 return error; 558 } 559 560 return 0; 561 } 562 563 STATIC int 564 xfs_init_mount_workqueues( 565 struct xfs_mount *mp) 566 { 567 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 568 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 569 1, mp->m_super->s_id); 570 if (!mp->m_buf_workqueue) 571 goto out; 572 573 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 574 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 575 0, mp->m_super->s_id); 576 if (!mp->m_unwritten_workqueue) 577 goto out_destroy_buf; 578 579 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 580 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 581 0, mp->m_super->s_id); 582 if (!mp->m_reclaim_workqueue) 583 goto out_destroy_unwritten; 584 585 mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s", 586 XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM), 587 0, mp->m_super->s_id); 588 if (!mp->m_blockgc_wq) 589 goto out_destroy_reclaim; 590 591 mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s", 592 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 593 1, mp->m_super->s_id); 594 if (!mp->m_inodegc_wq) 595 goto out_destroy_blockgc; 596 597 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", 598 XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id); 599 if (!mp->m_sync_workqueue) 600 goto out_destroy_inodegc; 601 602 return 0; 603 604 out_destroy_inodegc: 605 destroy_workqueue(mp->m_inodegc_wq); 606 out_destroy_blockgc: 607 destroy_workqueue(mp->m_blockgc_wq); 608 out_destroy_reclaim: 609 destroy_workqueue(mp->m_reclaim_workqueue); 610 out_destroy_unwritten: 611 destroy_workqueue(mp->m_unwritten_workqueue); 612 out_destroy_buf: 613 destroy_workqueue(mp->m_buf_workqueue); 614 out: 615 return -ENOMEM; 616 } 617 618 STATIC void 619 xfs_destroy_mount_workqueues( 620 struct xfs_mount *mp) 621 { 622 destroy_workqueue(mp->m_sync_workqueue); 623 destroy_workqueue(mp->m_blockgc_wq); 624 destroy_workqueue(mp->m_inodegc_wq); 625 destroy_workqueue(mp->m_reclaim_workqueue); 626 destroy_workqueue(mp->m_unwritten_workqueue); 627 destroy_workqueue(mp->m_buf_workqueue); 628 } 629 630 static void 631 xfs_flush_inodes_worker( 632 struct work_struct *work) 633 { 634 struct xfs_mount *mp = container_of(work, struct xfs_mount, 635 m_flush_inodes_work); 636 struct super_block *sb = mp->m_super; 637 638 if (down_read_trylock(&sb->s_umount)) { 639 sync_inodes_sb(sb); 640 up_read(&sb->s_umount); 641 } 642 } 643 644 /* 645 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 646 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 647 * for IO to complete so that we effectively throttle multiple callers to the 648 * rate at which IO is completing. 649 */ 650 void 651 xfs_flush_inodes( 652 struct xfs_mount *mp) 653 { 654 /* 655 * If flush_work() returns true then that means we waited for a flush 656 * which was already in progress. Don't bother running another scan. 657 */ 658 if (flush_work(&mp->m_flush_inodes_work)) 659 return; 660 661 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 662 flush_work(&mp->m_flush_inodes_work); 663 } 664 665 /* Catch misguided souls that try to use this interface on XFS */ 666 STATIC struct inode * 667 xfs_fs_alloc_inode( 668 struct super_block *sb) 669 { 670 BUG(); 671 return NULL; 672 } 673 674 /* 675 * Now that the generic code is guaranteed not to be accessing 676 * the linux inode, we can inactivate and reclaim the inode. 677 */ 678 STATIC void 679 xfs_fs_destroy_inode( 680 struct inode *inode) 681 { 682 struct xfs_inode *ip = XFS_I(inode); 683 684 trace_xfs_destroy_inode(ip); 685 686 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 687 XFS_STATS_INC(ip->i_mount, vn_rele); 688 XFS_STATS_INC(ip->i_mount, vn_remove); 689 xfs_inode_mark_reclaimable(ip); 690 } 691 692 static void 693 xfs_fs_dirty_inode( 694 struct inode *inode, 695 int flags) 696 { 697 struct xfs_inode *ip = XFS_I(inode); 698 struct xfs_mount *mp = ip->i_mount; 699 struct xfs_trans *tp; 700 701 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 702 return; 703 704 /* 705 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC) 706 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed 707 * in flags possibly together with I_DIRTY_SYNC. 708 */ 709 if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME)) 710 return; 711 712 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 713 return; 714 xfs_ilock(ip, XFS_ILOCK_EXCL); 715 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 716 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 717 xfs_trans_commit(tp); 718 } 719 720 /* 721 * Slab object creation initialisation for the XFS inode. 722 * This covers only the idempotent fields in the XFS inode; 723 * all other fields need to be initialised on allocation 724 * from the slab. This avoids the need to repeatedly initialise 725 * fields in the xfs inode that left in the initialise state 726 * when freeing the inode. 727 */ 728 STATIC void 729 xfs_fs_inode_init_once( 730 void *inode) 731 { 732 struct xfs_inode *ip = inode; 733 734 memset(ip, 0, sizeof(struct xfs_inode)); 735 736 /* vfs inode */ 737 inode_init_once(VFS_I(ip)); 738 739 /* xfs inode */ 740 atomic_set(&ip->i_pincount, 0); 741 spin_lock_init(&ip->i_flags_lock); 742 init_rwsem(&ip->i_lock); 743 } 744 745 /* 746 * We do an unlocked check for XFS_IDONTCACHE here because we are already 747 * serialised against cache hits here via the inode->i_lock and igrab() in 748 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 749 * racing with us, and it avoids needing to grab a spinlock here for every inode 750 * we drop the final reference on. 751 */ 752 STATIC int 753 xfs_fs_drop_inode( 754 struct inode *inode) 755 { 756 struct xfs_inode *ip = XFS_I(inode); 757 758 /* 759 * If this unlinked inode is in the middle of recovery, don't 760 * drop the inode just yet; log recovery will take care of 761 * that. See the comment for this inode flag. 762 */ 763 if (ip->i_flags & XFS_IRECOVERY) { 764 ASSERT(xlog_recovery_needed(ip->i_mount->m_log)); 765 return 0; 766 } 767 768 return generic_drop_inode(inode); 769 } 770 771 static void 772 xfs_mount_free( 773 struct xfs_mount *mp) 774 { 775 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 776 xfs_free_buftarg(mp->m_logdev_targp); 777 if (mp->m_rtdev_targp && mp->m_rtdev_targp != mp->m_ddev_targp) 778 xfs_free_buftarg(mp->m_rtdev_targp); 779 if (mp->m_ddev_targp) 780 xfs_free_buftarg(mp->m_ddev_targp); 781 782 debugfs_remove(mp->m_debugfs); 783 kfree(mp->m_rtname); 784 kfree(mp->m_logname); 785 kfree(mp); 786 } 787 788 STATIC int 789 xfs_fs_sync_fs( 790 struct super_block *sb, 791 int wait) 792 { 793 struct xfs_mount *mp = XFS_M(sb); 794 int error; 795 796 trace_xfs_fs_sync_fs(mp, __return_address); 797 798 /* 799 * Doing anything during the async pass would be counterproductive. 800 */ 801 if (!wait) 802 return 0; 803 804 error = xfs_log_force(mp, XFS_LOG_SYNC); 805 if (error) 806 return error; 807 808 if (laptop_mode) { 809 /* 810 * The disk must be active because we're syncing. 811 * We schedule log work now (now that the disk is 812 * active) instead of later (when it might not be). 813 */ 814 flush_delayed_work(&mp->m_log->l_work); 815 } 816 817 /* 818 * If we are called with page faults frozen out, it means we are about 819 * to freeze the transaction subsystem. Take the opportunity to shut 820 * down inodegc because once SB_FREEZE_FS is set it's too late to 821 * prevent inactivation races with freeze. The fs doesn't get called 822 * again by the freezing process until after SB_FREEZE_FS has been set, 823 * so it's now or never. Same logic applies to speculative allocation 824 * garbage collection. 825 * 826 * We don't care if this is a normal syncfs call that does this or 827 * freeze that does this - we can run this multiple times without issue 828 * and we won't race with a restart because a restart can only occur 829 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE. 830 */ 831 if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) { 832 xfs_inodegc_stop(mp); 833 xfs_blockgc_stop(mp); 834 xfs_zone_gc_stop(mp); 835 } 836 837 return 0; 838 } 839 840 static xfs_extlen_t 841 xfs_internal_log_size( 842 struct xfs_mount *mp) 843 { 844 if (!mp->m_sb.sb_logstart) 845 return 0; 846 return mp->m_sb.sb_logblocks; 847 } 848 849 static void 850 xfs_statfs_data( 851 struct xfs_mount *mp, 852 struct kstatfs *st) 853 { 854 int64_t fdblocks = 855 xfs_sum_freecounter(mp, XC_FREE_BLOCKS); 856 857 /* make sure st->f_bfree does not underflow */ 858 st->f_bfree = max(0LL, 859 fdblocks - xfs_freecounter_unavailable(mp, XC_FREE_BLOCKS)); 860 861 /* 862 * sb_dblocks can change during growfs, but nothing cares about reporting 863 * the old or new value during growfs. 864 */ 865 st->f_blocks = mp->m_sb.sb_dblocks - xfs_internal_log_size(mp); 866 } 867 868 /* 869 * When stat(v)fs is called on a file with the realtime bit set or a directory 870 * with the rtinherit bit, report freespace information for the RT device 871 * instead of the main data device. 872 */ 873 static void 874 xfs_statfs_rt( 875 struct xfs_mount *mp, 876 struct kstatfs *st) 877 { 878 st->f_bfree = xfs_rtbxlen_to_blen(mp, 879 xfs_sum_freecounter(mp, XC_FREE_RTEXTENTS)); 880 st->f_blocks = mp->m_sb.sb_rblocks - xfs_rtbxlen_to_blen(mp, 881 mp->m_free[XC_FREE_RTEXTENTS].res_total); 882 } 883 884 static void 885 xfs_statfs_inodes( 886 struct xfs_mount *mp, 887 struct kstatfs *st) 888 { 889 uint64_t icount = percpu_counter_sum(&mp->m_icount); 890 uint64_t ifree = percpu_counter_sum(&mp->m_ifree); 891 uint64_t fakeinos = XFS_FSB_TO_INO(mp, st->f_bfree); 892 893 st->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 894 if (M_IGEO(mp)->maxicount) 895 st->f_files = min_t(typeof(st->f_files), st->f_files, 896 M_IGEO(mp)->maxicount); 897 898 /* If sb_icount overshot maxicount, report actual allocation */ 899 st->f_files = max_t(typeof(st->f_files), st->f_files, 900 mp->m_sb.sb_icount); 901 902 /* Make sure st->f_ffree does not underflow */ 903 st->f_ffree = max_t(int64_t, 0, st->f_files - (icount - ifree)); 904 } 905 906 STATIC int 907 xfs_fs_statfs( 908 struct dentry *dentry, 909 struct kstatfs *st) 910 { 911 struct xfs_mount *mp = XFS_M(dentry->d_sb); 912 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 913 914 /* 915 * Expedite background inodegc but don't wait. We do not want to block 916 * here waiting hours for a billion extent file to be truncated. 917 */ 918 xfs_inodegc_push(mp); 919 920 st->f_type = XFS_SUPER_MAGIC; 921 st->f_namelen = MAXNAMELEN - 1; 922 st->f_bsize = mp->m_sb.sb_blocksize; 923 st->f_fsid = u64_to_fsid(huge_encode_dev(mp->m_ddev_targp->bt_dev)); 924 925 xfs_statfs_data(mp, st); 926 xfs_statfs_inodes(mp, st); 927 928 if (XFS_IS_REALTIME_MOUNT(mp) && 929 (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) 930 xfs_statfs_rt(mp, st); 931 932 if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) && 933 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 934 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 935 xfs_qm_statvfs(ip, st); 936 937 /* 938 * XFS does not distinguish between blocks available to privileged and 939 * unprivileged users. 940 */ 941 st->f_bavail = st->f_bfree; 942 return 0; 943 } 944 945 STATIC void 946 xfs_save_resvblks( 947 struct xfs_mount *mp) 948 { 949 enum xfs_free_counter i; 950 951 for (i = 0; i < XC_FREE_NR; i++) { 952 mp->m_free[i].res_saved = mp->m_free[i].res_total; 953 xfs_reserve_blocks(mp, i, 0); 954 } 955 } 956 957 STATIC void 958 xfs_restore_resvblks( 959 struct xfs_mount *mp) 960 { 961 uint64_t resblks; 962 enum xfs_free_counter i; 963 964 for (i = 0; i < XC_FREE_NR; i++) { 965 if (mp->m_free[i].res_saved) { 966 resblks = mp->m_free[i].res_saved; 967 mp->m_free[i].res_saved = 0; 968 } else 969 resblks = xfs_default_resblks(mp, i); 970 xfs_reserve_blocks(mp, i, resblks); 971 } 972 } 973 974 /* 975 * Second stage of a freeze. The data is already frozen so we only 976 * need to take care of the metadata. Once that's done sync the superblock 977 * to the log to dirty it in case of a crash while frozen. This ensures that we 978 * will recover the unlinked inode lists on the next mount. 979 */ 980 STATIC int 981 xfs_fs_freeze( 982 struct super_block *sb) 983 { 984 struct xfs_mount *mp = XFS_M(sb); 985 unsigned int flags; 986 int ret; 987 988 /* 989 * The filesystem is now frozen far enough that memory reclaim 990 * cannot safely operate on the filesystem. Hence we need to 991 * set a GFP_NOFS context here to avoid recursion deadlocks. 992 */ 993 flags = memalloc_nofs_save(); 994 xfs_save_resvblks(mp); 995 ret = xfs_log_quiesce(mp); 996 memalloc_nofs_restore(flags); 997 998 /* 999 * For read-write filesystems, we need to restart the inodegc on error 1000 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not 1001 * going to be run to restart it now. We are at SB_FREEZE_FS level 1002 * here, so we can restart safely without racing with a stop in 1003 * xfs_fs_sync_fs(). 1004 */ 1005 if (ret && !xfs_is_readonly(mp)) { 1006 xfs_blockgc_start(mp); 1007 xfs_inodegc_start(mp); 1008 xfs_zone_gc_start(mp); 1009 } 1010 1011 return ret; 1012 } 1013 1014 STATIC int 1015 xfs_fs_unfreeze( 1016 struct super_block *sb) 1017 { 1018 struct xfs_mount *mp = XFS_M(sb); 1019 1020 xfs_restore_resvblks(mp); 1021 xfs_log_work_queue(mp); 1022 1023 /* 1024 * Don't reactivate the inodegc worker on a readonly filesystem because 1025 * inodes are sent directly to reclaim. Don't reactivate the blockgc 1026 * worker because there are no speculative preallocations on a readonly 1027 * filesystem. 1028 */ 1029 if (!xfs_is_readonly(mp)) { 1030 xfs_zone_gc_start(mp); 1031 xfs_blockgc_start(mp); 1032 xfs_inodegc_start(mp); 1033 } 1034 1035 return 0; 1036 } 1037 1038 /* 1039 * This function fills in xfs_mount_t fields based on mount args. 1040 * Note: the superblock _has_ now been read in. 1041 */ 1042 STATIC int 1043 xfs_finish_flags( 1044 struct xfs_mount *mp) 1045 { 1046 /* Fail a mount where the logbuf is smaller than the log stripe */ 1047 if (xfs_has_logv2(mp)) { 1048 if (mp->m_logbsize <= 0 && 1049 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 1050 mp->m_logbsize = mp->m_sb.sb_logsunit; 1051 } else if (mp->m_logbsize > 0 && 1052 mp->m_logbsize < mp->m_sb.sb_logsunit) { 1053 xfs_warn(mp, 1054 "logbuf size must be greater than or equal to log stripe size"); 1055 return -EINVAL; 1056 } 1057 } else { 1058 /* Fail a mount if the logbuf is larger than 32K */ 1059 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 1060 xfs_warn(mp, 1061 "logbuf size for version 1 logs must be 16K or 32K"); 1062 return -EINVAL; 1063 } 1064 } 1065 1066 /* 1067 * V5 filesystems always use attr2 format for attributes. 1068 */ 1069 if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) { 1070 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 1071 "attr2 is always enabled for V5 filesystems."); 1072 return -EINVAL; 1073 } 1074 1075 /* 1076 * prohibit r/w mounts of read-only filesystems 1077 */ 1078 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) { 1079 xfs_warn(mp, 1080 "cannot mount a read-only filesystem as read-write"); 1081 return -EROFS; 1082 } 1083 1084 if ((mp->m_qflags & XFS_GQUOTA_ACCT) && 1085 (mp->m_qflags & XFS_PQUOTA_ACCT) && 1086 !xfs_has_pquotino(mp)) { 1087 xfs_warn(mp, 1088 "Super block does not support project and group quota together"); 1089 return -EINVAL; 1090 } 1091 1092 if (!xfs_has_zoned(mp)) { 1093 if (mp->m_max_open_zones) { 1094 xfs_warn(mp, 1095 "max_open_zones mount option only supported on zoned file systems."); 1096 return -EINVAL; 1097 } 1098 if (mp->m_features & XFS_FEAT_NOLIFETIME) { 1099 xfs_warn(mp, 1100 "nolifetime mount option only supported on zoned file systems."); 1101 return -EINVAL; 1102 } 1103 } 1104 1105 return 0; 1106 } 1107 1108 static int 1109 xfs_init_percpu_counters( 1110 struct xfs_mount *mp) 1111 { 1112 int error; 1113 int i; 1114 1115 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1116 if (error) 1117 return -ENOMEM; 1118 1119 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1120 if (error) 1121 goto free_icount; 1122 1123 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1124 if (error) 1125 goto free_ifree; 1126 1127 error = percpu_counter_init(&mp->m_delalloc_rtextents, 0, GFP_KERNEL); 1128 if (error) 1129 goto free_delalloc; 1130 1131 for (i = 0; i < XC_FREE_NR; i++) { 1132 error = percpu_counter_init(&mp->m_free[i].count, 0, 1133 GFP_KERNEL); 1134 if (error) 1135 goto free_freecounters; 1136 } 1137 1138 return 0; 1139 1140 free_freecounters: 1141 while (--i > 0) 1142 percpu_counter_destroy(&mp->m_free[i].count); 1143 percpu_counter_destroy(&mp->m_delalloc_rtextents); 1144 free_delalloc: 1145 percpu_counter_destroy(&mp->m_delalloc_blks); 1146 free_ifree: 1147 percpu_counter_destroy(&mp->m_ifree); 1148 free_icount: 1149 percpu_counter_destroy(&mp->m_icount); 1150 return -ENOMEM; 1151 } 1152 1153 void 1154 xfs_reinit_percpu_counters( 1155 struct xfs_mount *mp) 1156 { 1157 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1158 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1159 xfs_set_freecounter(mp, XC_FREE_BLOCKS, mp->m_sb.sb_fdblocks); 1160 if (!xfs_has_zoned(mp)) 1161 xfs_set_freecounter(mp, XC_FREE_RTEXTENTS, 1162 mp->m_sb.sb_frextents); 1163 } 1164 1165 static void 1166 xfs_destroy_percpu_counters( 1167 struct xfs_mount *mp) 1168 { 1169 enum xfs_free_counter i; 1170 1171 for (i = 0; i < XC_FREE_NR; i++) 1172 percpu_counter_destroy(&mp->m_free[i].count); 1173 percpu_counter_destroy(&mp->m_icount); 1174 percpu_counter_destroy(&mp->m_ifree); 1175 ASSERT(xfs_is_shutdown(mp) || 1176 percpu_counter_sum(&mp->m_delalloc_rtextents) == 0); 1177 percpu_counter_destroy(&mp->m_delalloc_rtextents); 1178 ASSERT(xfs_is_shutdown(mp) || 1179 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1180 percpu_counter_destroy(&mp->m_delalloc_blks); 1181 } 1182 1183 static int 1184 xfs_inodegc_init_percpu( 1185 struct xfs_mount *mp) 1186 { 1187 struct xfs_inodegc *gc; 1188 int cpu; 1189 1190 mp->m_inodegc = alloc_percpu(struct xfs_inodegc); 1191 if (!mp->m_inodegc) 1192 return -ENOMEM; 1193 1194 for_each_possible_cpu(cpu) { 1195 gc = per_cpu_ptr(mp->m_inodegc, cpu); 1196 gc->cpu = cpu; 1197 gc->mp = mp; 1198 init_llist_head(&gc->list); 1199 gc->items = 0; 1200 gc->error = 0; 1201 INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker); 1202 } 1203 return 0; 1204 } 1205 1206 static void 1207 xfs_inodegc_free_percpu( 1208 struct xfs_mount *mp) 1209 { 1210 if (!mp->m_inodegc) 1211 return; 1212 free_percpu(mp->m_inodegc); 1213 } 1214 1215 static void 1216 xfs_fs_put_super( 1217 struct super_block *sb) 1218 { 1219 struct xfs_mount *mp = XFS_M(sb); 1220 1221 xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid); 1222 xfs_filestream_unmount(mp); 1223 xfs_unmountfs(mp); 1224 1225 xfs_rtmount_freesb(mp); 1226 xfs_freesb(mp); 1227 xchk_mount_stats_free(mp); 1228 free_percpu(mp->m_stats.xs_stats); 1229 xfs_inodegc_free_percpu(mp); 1230 xfs_destroy_percpu_counters(mp); 1231 xfs_destroy_mount_workqueues(mp); 1232 xfs_shutdown_devices(mp); 1233 } 1234 1235 static long 1236 xfs_fs_nr_cached_objects( 1237 struct super_block *sb, 1238 struct shrink_control *sc) 1239 { 1240 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1241 if (WARN_ON_ONCE(!sb->s_fs_info)) 1242 return 0; 1243 return xfs_reclaim_inodes_count(XFS_M(sb)); 1244 } 1245 1246 static long 1247 xfs_fs_free_cached_objects( 1248 struct super_block *sb, 1249 struct shrink_control *sc) 1250 { 1251 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1252 } 1253 1254 static void 1255 xfs_fs_shutdown( 1256 struct super_block *sb) 1257 { 1258 xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED); 1259 } 1260 1261 static int 1262 xfs_fs_show_stats( 1263 struct seq_file *m, 1264 struct dentry *root) 1265 { 1266 struct xfs_mount *mp = XFS_M(root->d_sb); 1267 1268 if (xfs_has_zoned(mp) && IS_ENABLED(CONFIG_XFS_RT)) 1269 xfs_zoned_show_stats(m, mp); 1270 return 0; 1271 } 1272 1273 static const struct super_operations xfs_super_operations = { 1274 .alloc_inode = xfs_fs_alloc_inode, 1275 .destroy_inode = xfs_fs_destroy_inode, 1276 .dirty_inode = xfs_fs_dirty_inode, 1277 .drop_inode = xfs_fs_drop_inode, 1278 .put_super = xfs_fs_put_super, 1279 .sync_fs = xfs_fs_sync_fs, 1280 .freeze_fs = xfs_fs_freeze, 1281 .unfreeze_fs = xfs_fs_unfreeze, 1282 .statfs = xfs_fs_statfs, 1283 .show_options = xfs_fs_show_options, 1284 .nr_cached_objects = xfs_fs_nr_cached_objects, 1285 .free_cached_objects = xfs_fs_free_cached_objects, 1286 .shutdown = xfs_fs_shutdown, 1287 .show_stats = xfs_fs_show_stats, 1288 }; 1289 1290 static int 1291 suffix_kstrtoint( 1292 const char *s, 1293 unsigned int base, 1294 int *res) 1295 { 1296 int last, shift_left_factor = 0, _res; 1297 char *value; 1298 int ret = 0; 1299 1300 value = kstrdup(s, GFP_KERNEL); 1301 if (!value) 1302 return -ENOMEM; 1303 1304 last = strlen(value) - 1; 1305 if (value[last] == 'K' || value[last] == 'k') { 1306 shift_left_factor = 10; 1307 value[last] = '\0'; 1308 } 1309 if (value[last] == 'M' || value[last] == 'm') { 1310 shift_left_factor = 20; 1311 value[last] = '\0'; 1312 } 1313 if (value[last] == 'G' || value[last] == 'g') { 1314 shift_left_factor = 30; 1315 value[last] = '\0'; 1316 } 1317 1318 if (kstrtoint(value, base, &_res)) 1319 ret = -EINVAL; 1320 kfree(value); 1321 *res = _res << shift_left_factor; 1322 return ret; 1323 } 1324 1325 static inline void 1326 xfs_fs_warn_deprecated( 1327 struct fs_context *fc, 1328 struct fs_parameter *param, 1329 uint64_t flag, 1330 bool value) 1331 { 1332 /* Don't print the warning if reconfiguring and current mount point 1333 * already had the flag set 1334 */ 1335 if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) && 1336 !!(XFS_M(fc->root->d_sb)->m_features & flag) == value) 1337 return; 1338 xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key); 1339 } 1340 1341 /* 1342 * Set mount state from a mount option. 1343 * 1344 * NOTE: mp->m_super is NULL here! 1345 */ 1346 static int 1347 xfs_fs_parse_param( 1348 struct fs_context *fc, 1349 struct fs_parameter *param) 1350 { 1351 struct xfs_mount *parsing_mp = fc->s_fs_info; 1352 struct fs_parse_result result; 1353 int size = 0; 1354 int opt; 1355 1356 BUILD_BUG_ON(XFS_QFLAGS_MNTOPTS & XFS_MOUNT_QUOTA_ALL); 1357 1358 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1359 if (opt < 0) 1360 return opt; 1361 1362 switch (opt) { 1363 case Opt_logbufs: 1364 parsing_mp->m_logbufs = result.uint_32; 1365 return 0; 1366 case Opt_logbsize: 1367 if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize)) 1368 return -EINVAL; 1369 return 0; 1370 case Opt_logdev: 1371 kfree(parsing_mp->m_logname); 1372 parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1373 if (!parsing_mp->m_logname) 1374 return -ENOMEM; 1375 return 0; 1376 case Opt_rtdev: 1377 kfree(parsing_mp->m_rtname); 1378 parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1379 if (!parsing_mp->m_rtname) 1380 return -ENOMEM; 1381 return 0; 1382 case Opt_allocsize: 1383 if (suffix_kstrtoint(param->string, 10, &size)) 1384 return -EINVAL; 1385 parsing_mp->m_allocsize_log = ffs(size) - 1; 1386 parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE; 1387 return 0; 1388 case Opt_grpid: 1389 case Opt_bsdgroups: 1390 parsing_mp->m_features |= XFS_FEAT_GRPID; 1391 return 0; 1392 case Opt_nogrpid: 1393 case Opt_sysvgroups: 1394 parsing_mp->m_features &= ~XFS_FEAT_GRPID; 1395 return 0; 1396 case Opt_wsync: 1397 parsing_mp->m_features |= XFS_FEAT_WSYNC; 1398 return 0; 1399 case Opt_norecovery: 1400 parsing_mp->m_features |= XFS_FEAT_NORECOVERY; 1401 return 0; 1402 case Opt_noalign: 1403 parsing_mp->m_features |= XFS_FEAT_NOALIGN; 1404 return 0; 1405 case Opt_swalloc: 1406 parsing_mp->m_features |= XFS_FEAT_SWALLOC; 1407 return 0; 1408 case Opt_sunit: 1409 parsing_mp->m_dalign = result.uint_32; 1410 return 0; 1411 case Opt_swidth: 1412 parsing_mp->m_swidth = result.uint_32; 1413 return 0; 1414 case Opt_inode32: 1415 parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS; 1416 return 0; 1417 case Opt_inode64: 1418 parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 1419 return 0; 1420 case Opt_nouuid: 1421 parsing_mp->m_features |= XFS_FEAT_NOUUID; 1422 return 0; 1423 case Opt_largeio: 1424 parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE; 1425 return 0; 1426 case Opt_nolargeio: 1427 parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE; 1428 return 0; 1429 case Opt_filestreams: 1430 parsing_mp->m_features |= XFS_FEAT_FILESTREAMS; 1431 return 0; 1432 case Opt_noquota: 1433 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1434 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1435 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1436 return 0; 1437 case Opt_quota: 1438 case Opt_uquota: 1439 case Opt_usrquota: 1440 parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD); 1441 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1442 return 0; 1443 case Opt_qnoenforce: 1444 case Opt_uqnoenforce: 1445 parsing_mp->m_qflags |= XFS_UQUOTA_ACCT; 1446 parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1447 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1448 return 0; 1449 case Opt_pquota: 1450 case Opt_prjquota: 1451 parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD); 1452 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1453 return 0; 1454 case Opt_pqnoenforce: 1455 parsing_mp->m_qflags |= XFS_PQUOTA_ACCT; 1456 parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1457 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1458 return 0; 1459 case Opt_gquota: 1460 case Opt_grpquota: 1461 parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD); 1462 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1463 return 0; 1464 case Opt_gqnoenforce: 1465 parsing_mp->m_qflags |= XFS_GQUOTA_ACCT; 1466 parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1467 parsing_mp->m_qflags |= XFS_QFLAGS_MNTOPTS; 1468 return 0; 1469 case Opt_discard: 1470 parsing_mp->m_features |= XFS_FEAT_DISCARD; 1471 return 0; 1472 case Opt_nodiscard: 1473 parsing_mp->m_features &= ~XFS_FEAT_DISCARD; 1474 return 0; 1475 #ifdef CONFIG_FS_DAX 1476 case Opt_dax: 1477 xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS); 1478 return 0; 1479 case Opt_dax_enum: 1480 xfs_mount_set_dax_mode(parsing_mp, result.uint_32); 1481 return 0; 1482 #endif 1483 /* Following mount options will be removed in September 2025 */ 1484 case Opt_ikeep: 1485 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true); 1486 parsing_mp->m_features |= XFS_FEAT_IKEEP; 1487 return 0; 1488 case Opt_noikeep: 1489 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false); 1490 parsing_mp->m_features &= ~XFS_FEAT_IKEEP; 1491 return 0; 1492 case Opt_attr2: 1493 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true); 1494 parsing_mp->m_features |= XFS_FEAT_ATTR2; 1495 return 0; 1496 case Opt_noattr2: 1497 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true); 1498 parsing_mp->m_features |= XFS_FEAT_NOATTR2; 1499 return 0; 1500 case Opt_max_open_zones: 1501 parsing_mp->m_max_open_zones = result.uint_32; 1502 return 0; 1503 case Opt_lifetime: 1504 parsing_mp->m_features &= ~XFS_FEAT_NOLIFETIME; 1505 return 0; 1506 case Opt_nolifetime: 1507 parsing_mp->m_features |= XFS_FEAT_NOLIFETIME; 1508 return 0; 1509 default: 1510 xfs_warn(parsing_mp, "unknown mount option [%s].", param->key); 1511 return -EINVAL; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static int 1518 xfs_fs_validate_params( 1519 struct xfs_mount *mp) 1520 { 1521 /* No recovery flag requires a read-only mount */ 1522 if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) { 1523 xfs_warn(mp, "no-recovery mounts must be read-only."); 1524 return -EINVAL; 1525 } 1526 1527 /* 1528 * We have not read the superblock at this point, so only the attr2 1529 * mount option can set the attr2 feature by this stage. 1530 */ 1531 if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) { 1532 xfs_warn(mp, "attr2 and noattr2 cannot both be specified."); 1533 return -EINVAL; 1534 } 1535 1536 1537 if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) { 1538 xfs_warn(mp, 1539 "sunit and swidth options incompatible with the noalign option"); 1540 return -EINVAL; 1541 } 1542 1543 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && 1544 (mp->m_qflags & ~XFS_QFLAGS_MNTOPTS)) { 1545 xfs_warn(mp, "quota support not available in this kernel."); 1546 return -EINVAL; 1547 } 1548 1549 if ((mp->m_dalign && !mp->m_swidth) || 1550 (!mp->m_dalign && mp->m_swidth)) { 1551 xfs_warn(mp, "sunit and swidth must be specified together"); 1552 return -EINVAL; 1553 } 1554 1555 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1556 xfs_warn(mp, 1557 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1558 mp->m_swidth, mp->m_dalign); 1559 return -EINVAL; 1560 } 1561 1562 if (mp->m_logbufs != -1 && 1563 mp->m_logbufs != 0 && 1564 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1565 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1566 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1567 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1568 return -EINVAL; 1569 } 1570 1571 if (mp->m_logbsize != -1 && 1572 mp->m_logbsize != 0 && 1573 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1574 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1575 !is_power_of_2(mp->m_logbsize))) { 1576 xfs_warn(mp, 1577 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1578 mp->m_logbsize); 1579 return -EINVAL; 1580 } 1581 1582 if (xfs_has_allocsize(mp) && 1583 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1584 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1585 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1586 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1587 return -EINVAL; 1588 } 1589 1590 return 0; 1591 } 1592 1593 struct dentry * 1594 xfs_debugfs_mkdir( 1595 const char *name, 1596 struct dentry *parent) 1597 { 1598 struct dentry *child; 1599 1600 /* Apparently we're expected to ignore error returns?? */ 1601 child = debugfs_create_dir(name, parent); 1602 if (IS_ERR(child)) 1603 return NULL; 1604 1605 return child; 1606 } 1607 1608 static int 1609 xfs_fs_fill_super( 1610 struct super_block *sb, 1611 struct fs_context *fc) 1612 { 1613 struct xfs_mount *mp = sb->s_fs_info; 1614 struct inode *root; 1615 int flags = 0, error; 1616 1617 mp->m_super = sb; 1618 1619 /* 1620 * Copy VFS mount flags from the context now that all parameter parsing 1621 * is guaranteed to have been completed by either the old mount API or 1622 * the newer fsopen/fsconfig API. 1623 */ 1624 if (fc->sb_flags & SB_RDONLY) 1625 xfs_set_readonly(mp); 1626 if (fc->sb_flags & SB_DIRSYNC) 1627 mp->m_features |= XFS_FEAT_DIRSYNC; 1628 if (fc->sb_flags & SB_SYNCHRONOUS) 1629 mp->m_features |= XFS_FEAT_WSYNC; 1630 1631 error = xfs_fs_validate_params(mp); 1632 if (error) 1633 return error; 1634 1635 sb_min_blocksize(sb, BBSIZE); 1636 sb->s_xattr = xfs_xattr_handlers; 1637 sb->s_export_op = &xfs_export_operations; 1638 #ifdef CONFIG_XFS_QUOTA 1639 sb->s_qcop = &xfs_quotactl_operations; 1640 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1641 #endif 1642 sb->s_op = &xfs_super_operations; 1643 1644 /* 1645 * Delay mount work if the debug hook is set. This is debug 1646 * instrumention to coordinate simulation of xfs mount failures with 1647 * VFS superblock operations 1648 */ 1649 if (xfs_globals.mount_delay) { 1650 xfs_notice(mp, "Delaying mount for %d seconds.", 1651 xfs_globals.mount_delay); 1652 msleep(xfs_globals.mount_delay * 1000); 1653 } 1654 1655 if (fc->sb_flags & SB_SILENT) 1656 flags |= XFS_MFSI_QUIET; 1657 1658 error = xfs_open_devices(mp); 1659 if (error) 1660 return error; 1661 1662 if (xfs_debugfs) { 1663 mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id, 1664 xfs_debugfs); 1665 } else { 1666 mp->m_debugfs = NULL; 1667 } 1668 1669 error = xfs_init_mount_workqueues(mp); 1670 if (error) 1671 goto out_shutdown_devices; 1672 1673 error = xfs_init_percpu_counters(mp); 1674 if (error) 1675 goto out_destroy_workqueues; 1676 1677 error = xfs_inodegc_init_percpu(mp); 1678 if (error) 1679 goto out_destroy_counters; 1680 1681 /* Allocate stats memory before we do operations that might use it */ 1682 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1683 if (!mp->m_stats.xs_stats) { 1684 error = -ENOMEM; 1685 goto out_destroy_inodegc; 1686 } 1687 1688 error = xchk_mount_stats_alloc(mp); 1689 if (error) 1690 goto out_free_stats; 1691 1692 error = xfs_readsb(mp, flags); 1693 if (error) 1694 goto out_free_scrub_stats; 1695 1696 error = xfs_finish_flags(mp); 1697 if (error) 1698 goto out_free_sb; 1699 1700 error = xfs_setup_devices(mp); 1701 if (error) 1702 goto out_free_sb; 1703 1704 /* 1705 * V4 support is undergoing deprecation. 1706 * 1707 * Note: this has to use an open coded m_features check as xfs_has_crc 1708 * always returns false for !CONFIG_XFS_SUPPORT_V4. 1709 */ 1710 if (!(mp->m_features & XFS_FEAT_CRC)) { 1711 if (!IS_ENABLED(CONFIG_XFS_SUPPORT_V4)) { 1712 xfs_warn(mp, 1713 "Deprecated V4 format (crc=0) not supported by kernel."); 1714 error = -EINVAL; 1715 goto out_free_sb; 1716 } 1717 xfs_warn_once(mp, 1718 "Deprecated V4 format (crc=0) will not be supported after September 2030."); 1719 } 1720 1721 /* ASCII case insensitivity is undergoing deprecation. */ 1722 if (xfs_has_asciici(mp)) { 1723 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI 1724 xfs_warn_once(mp, 1725 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030."); 1726 #else 1727 xfs_warn(mp, 1728 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel."); 1729 error = -EINVAL; 1730 goto out_free_sb; 1731 #endif 1732 } 1733 1734 /* 1735 * Filesystem claims it needs repair, so refuse the mount unless 1736 * norecovery is also specified, in which case the filesystem can 1737 * be mounted with no risk of further damage. 1738 */ 1739 if (xfs_has_needsrepair(mp) && !xfs_has_norecovery(mp)) { 1740 xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair."); 1741 error = -EFSCORRUPTED; 1742 goto out_free_sb; 1743 } 1744 1745 /* 1746 * Don't touch the filesystem if a user tool thinks it owns the primary 1747 * superblock. mkfs doesn't clear the flag from secondary supers, so 1748 * we don't check them at all. 1749 */ 1750 if (mp->m_sb.sb_inprogress) { 1751 xfs_warn(mp, "Offline file system operation in progress!"); 1752 error = -EFSCORRUPTED; 1753 goto out_free_sb; 1754 } 1755 1756 if (mp->m_sb.sb_blocksize > PAGE_SIZE) { 1757 size_t max_folio_size = mapping_max_folio_size_supported(); 1758 1759 if (!xfs_has_crc(mp)) { 1760 xfs_warn(mp, 1761 "V4 Filesystem with blocksize %d bytes. Only pagesize (%ld) or less is supported.", 1762 mp->m_sb.sb_blocksize, PAGE_SIZE); 1763 error = -ENOSYS; 1764 goto out_free_sb; 1765 } 1766 1767 if (mp->m_sb.sb_blocksize > max_folio_size) { 1768 xfs_warn(mp, 1769 "block size (%u bytes) not supported; Only block size (%zu) or less is supported", 1770 mp->m_sb.sb_blocksize, max_folio_size); 1771 error = -ENOSYS; 1772 goto out_free_sb; 1773 } 1774 1775 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_LBS); 1776 } 1777 1778 /* Ensure this filesystem fits in the page cache limits */ 1779 if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) || 1780 xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) { 1781 xfs_warn(mp, 1782 "file system too large to be mounted on this system."); 1783 error = -EFBIG; 1784 goto out_free_sb; 1785 } 1786 1787 /* 1788 * XFS block mappings use 54 bits to store the logical block offset. 1789 * This should suffice to handle the maximum file size that the VFS 1790 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1791 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1792 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1793 * to check this assertion. 1794 * 1795 * Avoid integer overflow by comparing the maximum bmbt offset to the 1796 * maximum pagecache offset in units of fs blocks. 1797 */ 1798 if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) { 1799 xfs_warn(mp, 1800 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1801 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1802 XFS_MAX_FILEOFF); 1803 error = -EINVAL; 1804 goto out_free_sb; 1805 } 1806 1807 error = xfs_rtmount_readsb(mp); 1808 if (error) 1809 goto out_free_sb; 1810 1811 error = xfs_filestream_mount(mp); 1812 if (error) 1813 goto out_free_rtsb; 1814 1815 /* 1816 * we must configure the block size in the superblock before we run the 1817 * full mount process as the mount process can lookup and cache inodes. 1818 */ 1819 sb->s_magic = XFS_SUPER_MAGIC; 1820 sb->s_blocksize = mp->m_sb.sb_blocksize; 1821 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1822 sb->s_maxbytes = MAX_LFS_FILESIZE; 1823 sb->s_max_links = XFS_MAXLINK; 1824 sb->s_time_gran = 1; 1825 if (xfs_has_bigtime(mp)) { 1826 sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN); 1827 sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX); 1828 } else { 1829 sb->s_time_min = XFS_LEGACY_TIME_MIN; 1830 sb->s_time_max = XFS_LEGACY_TIME_MAX; 1831 } 1832 trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max); 1833 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM; 1834 1835 set_posix_acl_flag(sb); 1836 1837 /* version 5 superblocks support inode version counters. */ 1838 if (xfs_has_crc(mp)) 1839 sb->s_flags |= SB_I_VERSION; 1840 1841 if (xfs_has_dax_always(mp)) { 1842 error = xfs_setup_dax_always(mp); 1843 if (error) 1844 goto out_filestream_unmount; 1845 } 1846 1847 if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) { 1848 xfs_warn(mp, 1849 "mounting with \"discard\" option, but the device does not support discard"); 1850 mp->m_features &= ~XFS_FEAT_DISCARD; 1851 } 1852 1853 if (xfs_has_zoned(mp)) { 1854 if (!xfs_has_metadir(mp)) { 1855 xfs_alert(mp, 1856 "metadir feature required for zoned realtime devices."); 1857 error = -EINVAL; 1858 goto out_filestream_unmount; 1859 } 1860 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_ZONED); 1861 } else if (xfs_has_metadir(mp)) { 1862 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_METADIR); 1863 } 1864 1865 if (xfs_has_reflink(mp)) { 1866 if (xfs_has_realtime(mp) && 1867 !xfs_reflink_supports_rextsize(mp, mp->m_sb.sb_rextsize)) { 1868 xfs_alert(mp, 1869 "reflink not compatible with realtime extent size %u!", 1870 mp->m_sb.sb_rextsize); 1871 error = -EINVAL; 1872 goto out_filestream_unmount; 1873 } 1874 1875 if (xfs_has_zoned(mp)) { 1876 xfs_alert(mp, 1877 "reflink not compatible with zoned RT device!"); 1878 error = -EINVAL; 1879 goto out_filestream_unmount; 1880 } 1881 1882 if (xfs_globals.always_cow) { 1883 xfs_info(mp, "using DEBUG-only always_cow mode."); 1884 mp->m_always_cow = true; 1885 } 1886 } 1887 1888 1889 if (xfs_has_exchange_range(mp)) 1890 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_EXCHRANGE); 1891 1892 if (xfs_has_parent(mp)) 1893 xfs_warn_experimental(mp, XFS_EXPERIMENTAL_PPTR); 1894 1895 /* 1896 * If no quota mount options were provided, maybe we'll try to pick 1897 * up the quota accounting and enforcement flags from the ondisk sb. 1898 */ 1899 if (!(mp->m_qflags & XFS_QFLAGS_MNTOPTS)) 1900 xfs_set_resuming_quotaon(mp); 1901 mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS; 1902 1903 error = xfs_mountfs(mp); 1904 if (error) 1905 goto out_filestream_unmount; 1906 1907 root = igrab(VFS_I(mp->m_rootip)); 1908 if (!root) { 1909 error = -ENOENT; 1910 goto out_unmount; 1911 } 1912 sb->s_root = d_make_root(root); 1913 if (!sb->s_root) { 1914 error = -ENOMEM; 1915 goto out_unmount; 1916 } 1917 1918 return 0; 1919 1920 out_filestream_unmount: 1921 xfs_filestream_unmount(mp); 1922 out_free_rtsb: 1923 xfs_rtmount_freesb(mp); 1924 out_free_sb: 1925 xfs_freesb(mp); 1926 out_free_scrub_stats: 1927 xchk_mount_stats_free(mp); 1928 out_free_stats: 1929 free_percpu(mp->m_stats.xs_stats); 1930 out_destroy_inodegc: 1931 xfs_inodegc_free_percpu(mp); 1932 out_destroy_counters: 1933 xfs_destroy_percpu_counters(mp); 1934 out_destroy_workqueues: 1935 xfs_destroy_mount_workqueues(mp); 1936 out_shutdown_devices: 1937 xfs_shutdown_devices(mp); 1938 return error; 1939 1940 out_unmount: 1941 xfs_filestream_unmount(mp); 1942 xfs_unmountfs(mp); 1943 goto out_free_rtsb; 1944 } 1945 1946 static int 1947 xfs_fs_get_tree( 1948 struct fs_context *fc) 1949 { 1950 return get_tree_bdev(fc, xfs_fs_fill_super); 1951 } 1952 1953 static int 1954 xfs_remount_rw( 1955 struct xfs_mount *mp) 1956 { 1957 struct xfs_sb *sbp = &mp->m_sb; 1958 int error; 1959 1960 if (xfs_has_norecovery(mp)) { 1961 xfs_warn(mp, 1962 "ro->rw transition prohibited on norecovery mount"); 1963 return -EINVAL; 1964 } 1965 1966 if (xfs_sb_is_v5(sbp) && 1967 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1968 xfs_warn(mp, 1969 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1970 (sbp->sb_features_ro_compat & 1971 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1972 return -EINVAL; 1973 } 1974 1975 xfs_clear_readonly(mp); 1976 1977 /* 1978 * If this is the first remount to writeable state we might have some 1979 * superblock changes to update. 1980 */ 1981 if (mp->m_update_sb) { 1982 error = xfs_sync_sb(mp, false); 1983 if (error) { 1984 xfs_warn(mp, "failed to write sb changes"); 1985 return error; 1986 } 1987 mp->m_update_sb = false; 1988 } 1989 1990 /* 1991 * Fill out the reserve pool if it is empty. Use the stashed value if 1992 * it is non-zero, otherwise go with the default. 1993 */ 1994 xfs_restore_resvblks(mp); 1995 xfs_log_work_queue(mp); 1996 xfs_blockgc_start(mp); 1997 1998 /* Create the per-AG metadata reservation pool .*/ 1999 error = xfs_fs_reserve_ag_blocks(mp); 2000 if (error && error != -ENOSPC) 2001 return error; 2002 2003 /* Re-enable the background inode inactivation worker. */ 2004 xfs_inodegc_start(mp); 2005 2006 /* Restart zone reclaim */ 2007 xfs_zone_gc_start(mp); 2008 2009 return 0; 2010 } 2011 2012 static int 2013 xfs_remount_ro( 2014 struct xfs_mount *mp) 2015 { 2016 struct xfs_icwalk icw = { 2017 .icw_flags = XFS_ICWALK_FLAG_SYNC, 2018 }; 2019 int error; 2020 2021 /* Flush all the dirty data to disk. */ 2022 error = sync_filesystem(mp->m_super); 2023 if (error) 2024 return error; 2025 2026 /* 2027 * Cancel background eofb scanning so it cannot race with the final 2028 * log force+buftarg wait and deadlock the remount. 2029 */ 2030 xfs_blockgc_stop(mp); 2031 2032 /* 2033 * Clear out all remaining COW staging extents and speculative post-EOF 2034 * preallocations so that we don't leave inodes requiring inactivation 2035 * cleanups during reclaim on a read-only mount. We must process every 2036 * cached inode, so this requires a synchronous cache scan. 2037 */ 2038 error = xfs_blockgc_free_space(mp, &icw); 2039 if (error) { 2040 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2041 return error; 2042 } 2043 2044 /* 2045 * Stop the inodegc background worker. xfs_fs_reconfigure already 2046 * flushed all pending inodegc work when it sync'd the filesystem. 2047 * The VFS holds s_umount, so we know that inodes cannot enter 2048 * xfs_fs_destroy_inode during a remount operation. In readonly mode 2049 * we send inodes straight to reclaim, so no inodes will be queued. 2050 */ 2051 xfs_inodegc_stop(mp); 2052 2053 /* Stop zone reclaim */ 2054 xfs_zone_gc_stop(mp); 2055 2056 /* Free the per-AG metadata reservation pool. */ 2057 xfs_fs_unreserve_ag_blocks(mp); 2058 2059 /* 2060 * Before we sync the metadata, we need to free up the reserve block 2061 * pool so that the used block count in the superblock on disk is 2062 * correct at the end of the remount. Stash the current* reserve pool 2063 * size so that if we get remounted rw, we can return it to the same 2064 * size. 2065 */ 2066 xfs_save_resvblks(mp); 2067 2068 xfs_log_clean(mp); 2069 xfs_set_readonly(mp); 2070 2071 return 0; 2072 } 2073 2074 /* 2075 * Logically we would return an error here to prevent users from believing 2076 * they might have changed mount options using remount which can't be changed. 2077 * 2078 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 2079 * arguments in some cases so we can't blindly reject options, but have to 2080 * check for each specified option if it actually differs from the currently 2081 * set option and only reject it if that's the case. 2082 * 2083 * Until that is implemented we return success for every remount request, and 2084 * silently ignore all options that we can't actually change. 2085 */ 2086 static int 2087 xfs_fs_reconfigure( 2088 struct fs_context *fc) 2089 { 2090 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 2091 struct xfs_mount *new_mp = fc->s_fs_info; 2092 int flags = fc->sb_flags; 2093 int error; 2094 2095 new_mp->m_qflags &= ~XFS_QFLAGS_MNTOPTS; 2096 2097 /* version 5 superblocks always support version counters. */ 2098 if (xfs_has_crc(mp)) 2099 fc->sb_flags |= SB_I_VERSION; 2100 2101 error = xfs_fs_validate_params(new_mp); 2102 if (error) 2103 return error; 2104 2105 /* inode32 -> inode64 */ 2106 if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) { 2107 mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 2108 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 2109 } 2110 2111 /* inode64 -> inode32 */ 2112 if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) { 2113 mp->m_features |= XFS_FEAT_SMALL_INUMS; 2114 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 2115 } 2116 2117 /* ro -> rw */ 2118 if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) { 2119 error = xfs_remount_rw(mp); 2120 if (error) 2121 return error; 2122 } 2123 2124 /* rw -> ro */ 2125 if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) { 2126 error = xfs_remount_ro(mp); 2127 if (error) 2128 return error; 2129 } 2130 2131 return 0; 2132 } 2133 2134 static void 2135 xfs_fs_free( 2136 struct fs_context *fc) 2137 { 2138 struct xfs_mount *mp = fc->s_fs_info; 2139 2140 /* 2141 * mp is stored in the fs_context when it is initialized. 2142 * mp is transferred to the superblock on a successful mount, 2143 * but if an error occurs before the transfer we have to free 2144 * it here. 2145 */ 2146 if (mp) 2147 xfs_mount_free(mp); 2148 } 2149 2150 static const struct fs_context_operations xfs_context_ops = { 2151 .parse_param = xfs_fs_parse_param, 2152 .get_tree = xfs_fs_get_tree, 2153 .reconfigure = xfs_fs_reconfigure, 2154 .free = xfs_fs_free, 2155 }; 2156 2157 /* 2158 * WARNING: do not initialise any parameters in this function that depend on 2159 * mount option parsing having already been performed as this can be called from 2160 * fsopen() before any parameters have been set. 2161 */ 2162 static int 2163 xfs_init_fs_context( 2164 struct fs_context *fc) 2165 { 2166 struct xfs_mount *mp; 2167 int i; 2168 2169 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL | __GFP_NOFAIL); 2170 if (!mp) 2171 return -ENOMEM; 2172 2173 spin_lock_init(&mp->m_sb_lock); 2174 for (i = 0; i < XG_TYPE_MAX; i++) 2175 xa_init(&mp->m_groups[i].xa); 2176 mutex_init(&mp->m_growlock); 2177 mutex_init(&mp->m_metafile_resv_lock); 2178 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 2179 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 2180 mp->m_kobj.kobject.kset = xfs_kset; 2181 /* 2182 * We don't create the finobt per-ag space reservation until after log 2183 * recovery, so we must set this to true so that an ifree transaction 2184 * started during log recovery will not depend on space reservations 2185 * for finobt expansion. 2186 */ 2187 mp->m_finobt_nores = true; 2188 2189 /* 2190 * These can be overridden by the mount option parsing. 2191 */ 2192 mp->m_logbufs = -1; 2193 mp->m_logbsize = -1; 2194 mp->m_allocsize_log = 16; /* 64k */ 2195 2196 xfs_hooks_init(&mp->m_dir_update_hooks); 2197 2198 fc->s_fs_info = mp; 2199 fc->ops = &xfs_context_ops; 2200 2201 return 0; 2202 } 2203 2204 static void 2205 xfs_kill_sb( 2206 struct super_block *sb) 2207 { 2208 kill_block_super(sb); 2209 xfs_mount_free(XFS_M(sb)); 2210 } 2211 2212 static struct file_system_type xfs_fs_type = { 2213 .owner = THIS_MODULE, 2214 .name = "xfs", 2215 .init_fs_context = xfs_init_fs_context, 2216 .parameters = xfs_fs_parameters, 2217 .kill_sb = xfs_kill_sb, 2218 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME | 2219 FS_LBS, 2220 }; 2221 MODULE_ALIAS_FS("xfs"); 2222 2223 STATIC int __init 2224 xfs_init_caches(void) 2225 { 2226 int error; 2227 2228 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2229 SLAB_HWCACHE_ALIGN | 2230 SLAB_RECLAIM_ACCOUNT, 2231 NULL); 2232 if (!xfs_buf_cache) 2233 goto out; 2234 2235 xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket", 2236 sizeof(struct xlog_ticket), 2237 0, 0, NULL); 2238 if (!xfs_log_ticket_cache) 2239 goto out_destroy_buf_cache; 2240 2241 error = xfs_btree_init_cur_caches(); 2242 if (error) 2243 goto out_destroy_log_ticket_cache; 2244 2245 error = rcbagbt_init_cur_cache(); 2246 if (error) 2247 goto out_destroy_btree_cur_cache; 2248 2249 error = xfs_defer_init_item_caches(); 2250 if (error) 2251 goto out_destroy_rcbagbt_cur_cache; 2252 2253 xfs_da_state_cache = kmem_cache_create("xfs_da_state", 2254 sizeof(struct xfs_da_state), 2255 0, 0, NULL); 2256 if (!xfs_da_state_cache) 2257 goto out_destroy_defer_item_cache; 2258 2259 xfs_ifork_cache = kmem_cache_create("xfs_ifork", 2260 sizeof(struct xfs_ifork), 2261 0, 0, NULL); 2262 if (!xfs_ifork_cache) 2263 goto out_destroy_da_state_cache; 2264 2265 xfs_trans_cache = kmem_cache_create("xfs_trans", 2266 sizeof(struct xfs_trans), 2267 0, 0, NULL); 2268 if (!xfs_trans_cache) 2269 goto out_destroy_ifork_cache; 2270 2271 2272 /* 2273 * The size of the cache-allocated buf log item is the maximum 2274 * size possible under XFS. This wastes a little bit of memory, 2275 * but it is much faster. 2276 */ 2277 xfs_buf_item_cache = kmem_cache_create("xfs_buf_item", 2278 sizeof(struct xfs_buf_log_item), 2279 0, 0, NULL); 2280 if (!xfs_buf_item_cache) 2281 goto out_destroy_trans_cache; 2282 2283 xfs_efd_cache = kmem_cache_create("xfs_efd_item", 2284 xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS), 2285 0, 0, NULL); 2286 if (!xfs_efd_cache) 2287 goto out_destroy_buf_item_cache; 2288 2289 xfs_efi_cache = kmem_cache_create("xfs_efi_item", 2290 xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS), 2291 0, 0, NULL); 2292 if (!xfs_efi_cache) 2293 goto out_destroy_efd_cache; 2294 2295 xfs_inode_cache = kmem_cache_create("xfs_inode", 2296 sizeof(struct xfs_inode), 0, 2297 (SLAB_HWCACHE_ALIGN | 2298 SLAB_RECLAIM_ACCOUNT | 2299 SLAB_ACCOUNT), 2300 xfs_fs_inode_init_once); 2301 if (!xfs_inode_cache) 2302 goto out_destroy_efi_cache; 2303 2304 xfs_ili_cache = kmem_cache_create("xfs_ili", 2305 sizeof(struct xfs_inode_log_item), 0, 2306 SLAB_RECLAIM_ACCOUNT, 2307 NULL); 2308 if (!xfs_ili_cache) 2309 goto out_destroy_inode_cache; 2310 2311 xfs_icreate_cache = kmem_cache_create("xfs_icr", 2312 sizeof(struct xfs_icreate_item), 2313 0, 0, NULL); 2314 if (!xfs_icreate_cache) 2315 goto out_destroy_ili_cache; 2316 2317 xfs_rud_cache = kmem_cache_create("xfs_rud_item", 2318 sizeof(struct xfs_rud_log_item), 2319 0, 0, NULL); 2320 if (!xfs_rud_cache) 2321 goto out_destroy_icreate_cache; 2322 2323 xfs_rui_cache = kmem_cache_create("xfs_rui_item", 2324 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 2325 0, 0, NULL); 2326 if (!xfs_rui_cache) 2327 goto out_destroy_rud_cache; 2328 2329 xfs_cud_cache = kmem_cache_create("xfs_cud_item", 2330 sizeof(struct xfs_cud_log_item), 2331 0, 0, NULL); 2332 if (!xfs_cud_cache) 2333 goto out_destroy_rui_cache; 2334 2335 xfs_cui_cache = kmem_cache_create("xfs_cui_item", 2336 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 2337 0, 0, NULL); 2338 if (!xfs_cui_cache) 2339 goto out_destroy_cud_cache; 2340 2341 xfs_bud_cache = kmem_cache_create("xfs_bud_item", 2342 sizeof(struct xfs_bud_log_item), 2343 0, 0, NULL); 2344 if (!xfs_bud_cache) 2345 goto out_destroy_cui_cache; 2346 2347 xfs_bui_cache = kmem_cache_create("xfs_bui_item", 2348 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 2349 0, 0, NULL); 2350 if (!xfs_bui_cache) 2351 goto out_destroy_bud_cache; 2352 2353 xfs_attrd_cache = kmem_cache_create("xfs_attrd_item", 2354 sizeof(struct xfs_attrd_log_item), 2355 0, 0, NULL); 2356 if (!xfs_attrd_cache) 2357 goto out_destroy_bui_cache; 2358 2359 xfs_attri_cache = kmem_cache_create("xfs_attri_item", 2360 sizeof(struct xfs_attri_log_item), 2361 0, 0, NULL); 2362 if (!xfs_attri_cache) 2363 goto out_destroy_attrd_cache; 2364 2365 xfs_iunlink_cache = kmem_cache_create("xfs_iul_item", 2366 sizeof(struct xfs_iunlink_item), 2367 0, 0, NULL); 2368 if (!xfs_iunlink_cache) 2369 goto out_destroy_attri_cache; 2370 2371 xfs_xmd_cache = kmem_cache_create("xfs_xmd_item", 2372 sizeof(struct xfs_xmd_log_item), 2373 0, 0, NULL); 2374 if (!xfs_xmd_cache) 2375 goto out_destroy_iul_cache; 2376 2377 xfs_xmi_cache = kmem_cache_create("xfs_xmi_item", 2378 sizeof(struct xfs_xmi_log_item), 2379 0, 0, NULL); 2380 if (!xfs_xmi_cache) 2381 goto out_destroy_xmd_cache; 2382 2383 xfs_parent_args_cache = kmem_cache_create("xfs_parent_args", 2384 sizeof(struct xfs_parent_args), 2385 0, 0, NULL); 2386 if (!xfs_parent_args_cache) 2387 goto out_destroy_xmi_cache; 2388 2389 return 0; 2390 2391 out_destroy_xmi_cache: 2392 kmem_cache_destroy(xfs_xmi_cache); 2393 out_destroy_xmd_cache: 2394 kmem_cache_destroy(xfs_xmd_cache); 2395 out_destroy_iul_cache: 2396 kmem_cache_destroy(xfs_iunlink_cache); 2397 out_destroy_attri_cache: 2398 kmem_cache_destroy(xfs_attri_cache); 2399 out_destroy_attrd_cache: 2400 kmem_cache_destroy(xfs_attrd_cache); 2401 out_destroy_bui_cache: 2402 kmem_cache_destroy(xfs_bui_cache); 2403 out_destroy_bud_cache: 2404 kmem_cache_destroy(xfs_bud_cache); 2405 out_destroy_cui_cache: 2406 kmem_cache_destroy(xfs_cui_cache); 2407 out_destroy_cud_cache: 2408 kmem_cache_destroy(xfs_cud_cache); 2409 out_destroy_rui_cache: 2410 kmem_cache_destroy(xfs_rui_cache); 2411 out_destroy_rud_cache: 2412 kmem_cache_destroy(xfs_rud_cache); 2413 out_destroy_icreate_cache: 2414 kmem_cache_destroy(xfs_icreate_cache); 2415 out_destroy_ili_cache: 2416 kmem_cache_destroy(xfs_ili_cache); 2417 out_destroy_inode_cache: 2418 kmem_cache_destroy(xfs_inode_cache); 2419 out_destroy_efi_cache: 2420 kmem_cache_destroy(xfs_efi_cache); 2421 out_destroy_efd_cache: 2422 kmem_cache_destroy(xfs_efd_cache); 2423 out_destroy_buf_item_cache: 2424 kmem_cache_destroy(xfs_buf_item_cache); 2425 out_destroy_trans_cache: 2426 kmem_cache_destroy(xfs_trans_cache); 2427 out_destroy_ifork_cache: 2428 kmem_cache_destroy(xfs_ifork_cache); 2429 out_destroy_da_state_cache: 2430 kmem_cache_destroy(xfs_da_state_cache); 2431 out_destroy_defer_item_cache: 2432 xfs_defer_destroy_item_caches(); 2433 out_destroy_rcbagbt_cur_cache: 2434 rcbagbt_destroy_cur_cache(); 2435 out_destroy_btree_cur_cache: 2436 xfs_btree_destroy_cur_caches(); 2437 out_destroy_log_ticket_cache: 2438 kmem_cache_destroy(xfs_log_ticket_cache); 2439 out_destroy_buf_cache: 2440 kmem_cache_destroy(xfs_buf_cache); 2441 out: 2442 return -ENOMEM; 2443 } 2444 2445 STATIC void 2446 xfs_destroy_caches(void) 2447 { 2448 /* 2449 * Make sure all delayed rcu free are flushed before we 2450 * destroy caches. 2451 */ 2452 rcu_barrier(); 2453 kmem_cache_destroy(xfs_parent_args_cache); 2454 kmem_cache_destroy(xfs_xmd_cache); 2455 kmem_cache_destroy(xfs_xmi_cache); 2456 kmem_cache_destroy(xfs_iunlink_cache); 2457 kmem_cache_destroy(xfs_attri_cache); 2458 kmem_cache_destroy(xfs_attrd_cache); 2459 kmem_cache_destroy(xfs_bui_cache); 2460 kmem_cache_destroy(xfs_bud_cache); 2461 kmem_cache_destroy(xfs_cui_cache); 2462 kmem_cache_destroy(xfs_cud_cache); 2463 kmem_cache_destroy(xfs_rui_cache); 2464 kmem_cache_destroy(xfs_rud_cache); 2465 kmem_cache_destroy(xfs_icreate_cache); 2466 kmem_cache_destroy(xfs_ili_cache); 2467 kmem_cache_destroy(xfs_inode_cache); 2468 kmem_cache_destroy(xfs_efi_cache); 2469 kmem_cache_destroy(xfs_efd_cache); 2470 kmem_cache_destroy(xfs_buf_item_cache); 2471 kmem_cache_destroy(xfs_trans_cache); 2472 kmem_cache_destroy(xfs_ifork_cache); 2473 kmem_cache_destroy(xfs_da_state_cache); 2474 xfs_defer_destroy_item_caches(); 2475 rcbagbt_destroy_cur_cache(); 2476 xfs_btree_destroy_cur_caches(); 2477 kmem_cache_destroy(xfs_log_ticket_cache); 2478 kmem_cache_destroy(xfs_buf_cache); 2479 } 2480 2481 STATIC int __init 2482 xfs_init_workqueues(void) 2483 { 2484 /* 2485 * The allocation workqueue can be used in memory reclaim situations 2486 * (writepage path), and parallelism is only limited by the number of 2487 * AGs in all the filesystems mounted. Hence use the default large 2488 * max_active value for this workqueue. 2489 */ 2490 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2491 XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0); 2492 if (!xfs_alloc_wq) 2493 return -ENOMEM; 2494 2495 xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND), 2496 0); 2497 if (!xfs_discard_wq) 2498 goto out_free_alloc_wq; 2499 2500 return 0; 2501 out_free_alloc_wq: 2502 destroy_workqueue(xfs_alloc_wq); 2503 return -ENOMEM; 2504 } 2505 2506 STATIC void 2507 xfs_destroy_workqueues(void) 2508 { 2509 destroy_workqueue(xfs_discard_wq); 2510 destroy_workqueue(xfs_alloc_wq); 2511 } 2512 2513 STATIC int __init 2514 init_xfs_fs(void) 2515 { 2516 int error; 2517 2518 xfs_check_ondisk_structs(); 2519 2520 error = xfs_dahash_test(); 2521 if (error) 2522 return error; 2523 2524 printk(KERN_INFO XFS_VERSION_STRING " with " 2525 XFS_BUILD_OPTIONS " enabled\n"); 2526 2527 xfs_dir_startup(); 2528 2529 error = xfs_init_caches(); 2530 if (error) 2531 goto out; 2532 2533 error = xfs_init_workqueues(); 2534 if (error) 2535 goto out_destroy_caches; 2536 2537 error = xfs_mru_cache_init(); 2538 if (error) 2539 goto out_destroy_wq; 2540 2541 error = xfs_init_procfs(); 2542 if (error) 2543 goto out_mru_cache_uninit; 2544 2545 error = xfs_sysctl_register(); 2546 if (error) 2547 goto out_cleanup_procfs; 2548 2549 xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL); 2550 2551 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2552 if (!xfs_kset) { 2553 error = -ENOMEM; 2554 goto out_debugfs_unregister; 2555 } 2556 2557 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2558 2559 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2560 if (!xfsstats.xs_stats) { 2561 error = -ENOMEM; 2562 goto out_kset_unregister; 2563 } 2564 2565 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2566 "stats"); 2567 if (error) 2568 goto out_free_stats; 2569 2570 error = xchk_global_stats_setup(xfs_debugfs); 2571 if (error) 2572 goto out_remove_stats_kobj; 2573 2574 #ifdef DEBUG 2575 xfs_dbg_kobj.kobject.kset = xfs_kset; 2576 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2577 if (error) 2578 goto out_remove_scrub_stats; 2579 #endif 2580 2581 error = xfs_qm_init(); 2582 if (error) 2583 goto out_remove_dbg_kobj; 2584 2585 error = register_filesystem(&xfs_fs_type); 2586 if (error) 2587 goto out_qm_exit; 2588 return 0; 2589 2590 out_qm_exit: 2591 xfs_qm_exit(); 2592 out_remove_dbg_kobj: 2593 #ifdef DEBUG 2594 xfs_sysfs_del(&xfs_dbg_kobj); 2595 out_remove_scrub_stats: 2596 #endif 2597 xchk_global_stats_teardown(); 2598 out_remove_stats_kobj: 2599 xfs_sysfs_del(&xfsstats.xs_kobj); 2600 out_free_stats: 2601 free_percpu(xfsstats.xs_stats); 2602 out_kset_unregister: 2603 kset_unregister(xfs_kset); 2604 out_debugfs_unregister: 2605 debugfs_remove(xfs_debugfs); 2606 xfs_sysctl_unregister(); 2607 out_cleanup_procfs: 2608 xfs_cleanup_procfs(); 2609 out_mru_cache_uninit: 2610 xfs_mru_cache_uninit(); 2611 out_destroy_wq: 2612 xfs_destroy_workqueues(); 2613 out_destroy_caches: 2614 xfs_destroy_caches(); 2615 out: 2616 return error; 2617 } 2618 2619 STATIC void __exit 2620 exit_xfs_fs(void) 2621 { 2622 xfs_qm_exit(); 2623 unregister_filesystem(&xfs_fs_type); 2624 #ifdef DEBUG 2625 xfs_sysfs_del(&xfs_dbg_kobj); 2626 #endif 2627 xchk_global_stats_teardown(); 2628 xfs_sysfs_del(&xfsstats.xs_kobj); 2629 free_percpu(xfsstats.xs_stats); 2630 kset_unregister(xfs_kset); 2631 debugfs_remove(xfs_debugfs); 2632 xfs_sysctl_unregister(); 2633 xfs_cleanup_procfs(); 2634 xfs_mru_cache_uninit(); 2635 xfs_destroy_workqueues(); 2636 xfs_destroy_caches(); 2637 xfs_uuid_table_free(); 2638 } 2639 2640 module_init(init_xfs_fs); 2641 module_exit(exit_xfs_fs); 2642 2643 MODULE_AUTHOR("Silicon Graphics, Inc."); 2644 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2645 MODULE_LICENSE("GPL"); 2646