1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_rmap_item.h" 18 #include "xfs_log.h" 19 #include "xfs_rmap.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 struct kmem_cache *xfs_rui_cache; 25 struct kmem_cache *xfs_rud_cache; 26 27 static const struct xfs_item_ops xfs_rui_item_ops; 28 29 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_rui_log_item, rui_item); 32 } 33 34 STATIC void 35 xfs_rui_item_free( 36 struct xfs_rui_log_item *ruip) 37 { 38 kmem_free(ruip->rui_item.li_lv_shadow); 39 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) 40 kmem_free(ruip); 41 else 42 kmem_cache_free(xfs_rui_cache, ruip); 43 } 44 45 /* 46 * Freeing the RUI requires that we remove it from the AIL if it has already 47 * been placed there. However, the RUI may not yet have been placed in the AIL 48 * when called by xfs_rui_release() from RUD processing due to the ordering of 49 * committed vs unpin operations in bulk insert operations. Hence the reference 50 * count to ensure only the last caller frees the RUI. 51 */ 52 STATIC void 53 xfs_rui_release( 54 struct xfs_rui_log_item *ruip) 55 { 56 ASSERT(atomic_read(&ruip->rui_refcount) > 0); 57 if (!atomic_dec_and_test(&ruip->rui_refcount)) 58 return; 59 60 xfs_trans_ail_delete(&ruip->rui_item, 0); 61 xfs_rui_item_free(ruip); 62 } 63 64 STATIC void 65 xfs_rui_item_size( 66 struct xfs_log_item *lip, 67 int *nvecs, 68 int *nbytes) 69 { 70 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 71 72 *nvecs += 1; 73 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); 74 } 75 76 /* 77 * This is called to fill in the vector of log iovecs for the 78 * given rui log item. We use only 1 iovec, and we point that 79 * at the rui_log_format structure embedded in the rui item. 80 * It is at this point that we assert that all of the extent 81 * slots in the rui item have been filled. 82 */ 83 STATIC void 84 xfs_rui_item_format( 85 struct xfs_log_item *lip, 86 struct xfs_log_vec *lv) 87 { 88 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 89 struct xfs_log_iovec *vecp = NULL; 90 91 ASSERT(atomic_read(&ruip->rui_next_extent) == 92 ruip->rui_format.rui_nextents); 93 94 ruip->rui_format.rui_type = XFS_LI_RUI; 95 ruip->rui_format.rui_size = 1; 96 97 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, 98 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); 99 } 100 101 /* 102 * The unpin operation is the last place an RUI is manipulated in the log. It is 103 * either inserted in the AIL or aborted in the event of a log I/O error. In 104 * either case, the RUI transaction has been successfully committed to make it 105 * this far. Therefore, we expect whoever committed the RUI to either construct 106 * and commit the RUD or drop the RUD's reference in the event of error. Simply 107 * drop the log's RUI reference now that the log is done with it. 108 */ 109 STATIC void 110 xfs_rui_item_unpin( 111 struct xfs_log_item *lip, 112 int remove) 113 { 114 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 115 116 xfs_rui_release(ruip); 117 } 118 119 /* 120 * The RUI has been either committed or aborted if the transaction has been 121 * cancelled. If the transaction was cancelled, an RUD isn't going to be 122 * constructed and thus we free the RUI here directly. 123 */ 124 STATIC void 125 xfs_rui_item_release( 126 struct xfs_log_item *lip) 127 { 128 xfs_rui_release(RUI_ITEM(lip)); 129 } 130 131 /* 132 * Allocate and initialize an rui item with the given number of extents. 133 */ 134 STATIC struct xfs_rui_log_item * 135 xfs_rui_init( 136 struct xfs_mount *mp, 137 uint nextents) 138 139 { 140 struct xfs_rui_log_item *ruip; 141 142 ASSERT(nextents > 0); 143 if (nextents > XFS_RUI_MAX_FAST_EXTENTS) 144 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0); 145 else 146 ruip = kmem_cache_zalloc(xfs_rui_cache, 147 GFP_KERNEL | __GFP_NOFAIL); 148 149 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); 150 ruip->rui_format.rui_nextents = nextents; 151 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; 152 atomic_set(&ruip->rui_next_extent, 0); 153 atomic_set(&ruip->rui_refcount, 2); 154 155 return ruip; 156 } 157 158 /* 159 * Copy an RUI format buffer from the given buf, and into the destination 160 * RUI format structure. The RUI/RUD items were designed not to need any 161 * special alignment handling. 162 */ 163 STATIC int 164 xfs_rui_copy_format( 165 struct xfs_log_iovec *buf, 166 struct xfs_rui_log_format *dst_rui_fmt) 167 { 168 struct xfs_rui_log_format *src_rui_fmt; 169 uint len; 170 171 src_rui_fmt = buf->i_addr; 172 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); 173 174 if (buf->i_len != len) { 175 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 176 return -EFSCORRUPTED; 177 } 178 179 memcpy(dst_rui_fmt, src_rui_fmt, len); 180 return 0; 181 } 182 183 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) 184 { 185 return container_of(lip, struct xfs_rud_log_item, rud_item); 186 } 187 188 STATIC void 189 xfs_rud_item_size( 190 struct xfs_log_item *lip, 191 int *nvecs, 192 int *nbytes) 193 { 194 *nvecs += 1; 195 *nbytes += sizeof(struct xfs_rud_log_format); 196 } 197 198 /* 199 * This is called to fill in the vector of log iovecs for the 200 * given rud log item. We use only 1 iovec, and we point that 201 * at the rud_log_format structure embedded in the rud item. 202 * It is at this point that we assert that all of the extent 203 * slots in the rud item have been filled. 204 */ 205 STATIC void 206 xfs_rud_item_format( 207 struct xfs_log_item *lip, 208 struct xfs_log_vec *lv) 209 { 210 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 211 struct xfs_log_iovec *vecp = NULL; 212 213 rudp->rud_format.rud_type = XFS_LI_RUD; 214 rudp->rud_format.rud_size = 1; 215 216 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, 217 sizeof(struct xfs_rud_log_format)); 218 } 219 220 /* 221 * The RUD is either committed or aborted if the transaction is cancelled. If 222 * the transaction is cancelled, drop our reference to the RUI and free the 223 * RUD. 224 */ 225 STATIC void 226 xfs_rud_item_release( 227 struct xfs_log_item *lip) 228 { 229 struct xfs_rud_log_item *rudp = RUD_ITEM(lip); 230 231 xfs_rui_release(rudp->rud_ruip); 232 kmem_free(rudp->rud_item.li_lv_shadow); 233 kmem_cache_free(xfs_rud_cache, rudp); 234 } 235 236 static struct xfs_log_item * 237 xfs_rud_item_intent( 238 struct xfs_log_item *lip) 239 { 240 return &RUD_ITEM(lip)->rud_ruip->rui_item; 241 } 242 243 static const struct xfs_item_ops xfs_rud_item_ops = { 244 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 245 XFS_ITEM_INTENT_DONE, 246 .iop_size = xfs_rud_item_size, 247 .iop_format = xfs_rud_item_format, 248 .iop_release = xfs_rud_item_release, 249 .iop_intent = xfs_rud_item_intent, 250 }; 251 252 static struct xfs_rud_log_item * 253 xfs_trans_get_rud( 254 struct xfs_trans *tp, 255 struct xfs_rui_log_item *ruip) 256 { 257 struct xfs_rud_log_item *rudp; 258 259 rudp = kmem_cache_zalloc(xfs_rud_cache, GFP_KERNEL | __GFP_NOFAIL); 260 xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD, 261 &xfs_rud_item_ops); 262 rudp->rud_ruip = ruip; 263 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; 264 265 xfs_trans_add_item(tp, &rudp->rud_item); 266 return rudp; 267 } 268 269 /* Set the map extent flags for this reverse mapping. */ 270 static void 271 xfs_trans_set_rmap_flags( 272 struct xfs_map_extent *rmap, 273 enum xfs_rmap_intent_type type, 274 int whichfork, 275 xfs_exntst_t state) 276 { 277 rmap->me_flags = 0; 278 if (state == XFS_EXT_UNWRITTEN) 279 rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN; 280 if (whichfork == XFS_ATTR_FORK) 281 rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK; 282 switch (type) { 283 case XFS_RMAP_MAP: 284 rmap->me_flags |= XFS_RMAP_EXTENT_MAP; 285 break; 286 case XFS_RMAP_MAP_SHARED: 287 rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED; 288 break; 289 case XFS_RMAP_UNMAP: 290 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP; 291 break; 292 case XFS_RMAP_UNMAP_SHARED: 293 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED; 294 break; 295 case XFS_RMAP_CONVERT: 296 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT; 297 break; 298 case XFS_RMAP_CONVERT_SHARED: 299 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED; 300 break; 301 case XFS_RMAP_ALLOC: 302 rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC; 303 break; 304 case XFS_RMAP_FREE: 305 rmap->me_flags |= XFS_RMAP_EXTENT_FREE; 306 break; 307 default: 308 ASSERT(0); 309 } 310 } 311 312 /* 313 * Finish an rmap update and log it to the RUD. Note that the transaction is 314 * marked dirty regardless of whether the rmap update succeeds or fails to 315 * support the RUI/RUD lifecycle rules. 316 */ 317 static int 318 xfs_trans_log_finish_rmap_update( 319 struct xfs_trans *tp, 320 struct xfs_rud_log_item *rudp, 321 enum xfs_rmap_intent_type type, 322 uint64_t owner, 323 int whichfork, 324 xfs_fileoff_t startoff, 325 xfs_fsblock_t startblock, 326 xfs_filblks_t blockcount, 327 xfs_exntst_t state, 328 struct xfs_btree_cur **pcur) 329 { 330 int error; 331 332 error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff, 333 startblock, blockcount, state, pcur); 334 335 /* 336 * Mark the transaction dirty, even on error. This ensures the 337 * transaction is aborted, which: 338 * 339 * 1.) releases the RUI and frees the RUD 340 * 2.) shuts down the filesystem 341 */ 342 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 343 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags); 344 345 return error; 346 } 347 348 /* Sort rmap intents by AG. */ 349 static int 350 xfs_rmap_update_diff_items( 351 void *priv, 352 const struct list_head *a, 353 const struct list_head *b) 354 { 355 struct xfs_mount *mp = priv; 356 struct xfs_rmap_intent *ra; 357 struct xfs_rmap_intent *rb; 358 359 ra = container_of(a, struct xfs_rmap_intent, ri_list); 360 rb = container_of(b, struct xfs_rmap_intent, ri_list); 361 return XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) - 362 XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock); 363 } 364 365 /* Log rmap updates in the intent item. */ 366 STATIC void 367 xfs_rmap_update_log_item( 368 struct xfs_trans *tp, 369 struct xfs_rui_log_item *ruip, 370 struct xfs_rmap_intent *rmap) 371 { 372 uint next_extent; 373 struct xfs_map_extent *map; 374 375 tp->t_flags |= XFS_TRANS_DIRTY; 376 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags); 377 378 /* 379 * atomic_inc_return gives us the value after the increment; 380 * we want to use it as an array index so we need to subtract 1 from 381 * it. 382 */ 383 next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1; 384 ASSERT(next_extent < ruip->rui_format.rui_nextents); 385 map = &ruip->rui_format.rui_extents[next_extent]; 386 map->me_owner = rmap->ri_owner; 387 map->me_startblock = rmap->ri_bmap.br_startblock; 388 map->me_startoff = rmap->ri_bmap.br_startoff; 389 map->me_len = rmap->ri_bmap.br_blockcount; 390 xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork, 391 rmap->ri_bmap.br_state); 392 } 393 394 static struct xfs_log_item * 395 xfs_rmap_update_create_intent( 396 struct xfs_trans *tp, 397 struct list_head *items, 398 unsigned int count, 399 bool sort) 400 { 401 struct xfs_mount *mp = tp->t_mountp; 402 struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count); 403 struct xfs_rmap_intent *rmap; 404 405 ASSERT(count > 0); 406 407 xfs_trans_add_item(tp, &ruip->rui_item); 408 if (sort) 409 list_sort(mp, items, xfs_rmap_update_diff_items); 410 list_for_each_entry(rmap, items, ri_list) 411 xfs_rmap_update_log_item(tp, ruip, rmap); 412 return &ruip->rui_item; 413 } 414 415 /* Get an RUD so we can process all the deferred rmap updates. */ 416 static struct xfs_log_item * 417 xfs_rmap_update_create_done( 418 struct xfs_trans *tp, 419 struct xfs_log_item *intent, 420 unsigned int count) 421 { 422 return &xfs_trans_get_rud(tp, RUI_ITEM(intent))->rud_item; 423 } 424 425 /* Process a deferred rmap update. */ 426 STATIC int 427 xfs_rmap_update_finish_item( 428 struct xfs_trans *tp, 429 struct xfs_log_item *done, 430 struct list_head *item, 431 struct xfs_btree_cur **state) 432 { 433 struct xfs_rmap_intent *rmap; 434 int error; 435 436 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 437 error = xfs_trans_log_finish_rmap_update(tp, RUD_ITEM(done), 438 rmap->ri_type, rmap->ri_owner, rmap->ri_whichfork, 439 rmap->ri_bmap.br_startoff, rmap->ri_bmap.br_startblock, 440 rmap->ri_bmap.br_blockcount, rmap->ri_bmap.br_state, 441 state); 442 kmem_cache_free(xfs_rmap_intent_cache, rmap); 443 return error; 444 } 445 446 /* Abort all pending RUIs. */ 447 STATIC void 448 xfs_rmap_update_abort_intent( 449 struct xfs_log_item *intent) 450 { 451 xfs_rui_release(RUI_ITEM(intent)); 452 } 453 454 /* Cancel a deferred rmap update. */ 455 STATIC void 456 xfs_rmap_update_cancel_item( 457 struct list_head *item) 458 { 459 struct xfs_rmap_intent *rmap; 460 461 rmap = container_of(item, struct xfs_rmap_intent, ri_list); 462 kmem_cache_free(xfs_rmap_intent_cache, rmap); 463 } 464 465 const struct xfs_defer_op_type xfs_rmap_update_defer_type = { 466 .max_items = XFS_RUI_MAX_FAST_EXTENTS, 467 .create_intent = xfs_rmap_update_create_intent, 468 .abort_intent = xfs_rmap_update_abort_intent, 469 .create_done = xfs_rmap_update_create_done, 470 .finish_item = xfs_rmap_update_finish_item, 471 .finish_cleanup = xfs_rmap_finish_one_cleanup, 472 .cancel_item = xfs_rmap_update_cancel_item, 473 }; 474 475 /* Is this recovered RUI ok? */ 476 static inline bool 477 xfs_rui_validate_map( 478 struct xfs_mount *mp, 479 struct xfs_map_extent *rmap) 480 { 481 if (!xfs_has_rmapbt(mp)) 482 return false; 483 484 if (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS) 485 return false; 486 487 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 488 case XFS_RMAP_EXTENT_MAP: 489 case XFS_RMAP_EXTENT_MAP_SHARED: 490 case XFS_RMAP_EXTENT_UNMAP: 491 case XFS_RMAP_EXTENT_UNMAP_SHARED: 492 case XFS_RMAP_EXTENT_CONVERT: 493 case XFS_RMAP_EXTENT_CONVERT_SHARED: 494 case XFS_RMAP_EXTENT_ALLOC: 495 case XFS_RMAP_EXTENT_FREE: 496 break; 497 default: 498 return false; 499 } 500 501 if (!XFS_RMAP_NON_INODE_OWNER(rmap->me_owner) && 502 !xfs_verify_ino(mp, rmap->me_owner)) 503 return false; 504 505 if (!xfs_verify_fileext(mp, rmap->me_startoff, rmap->me_len)) 506 return false; 507 508 return xfs_verify_fsbext(mp, rmap->me_startblock, rmap->me_len); 509 } 510 511 /* 512 * Process an rmap update intent item that was recovered from the log. 513 * We need to update the rmapbt. 514 */ 515 STATIC int 516 xfs_rui_item_recover( 517 struct xfs_log_item *lip, 518 struct list_head *capture_list) 519 { 520 struct xfs_rui_log_item *ruip = RUI_ITEM(lip); 521 struct xfs_map_extent *rmap; 522 struct xfs_rud_log_item *rudp; 523 struct xfs_trans *tp; 524 struct xfs_btree_cur *rcur = NULL; 525 struct xfs_mount *mp = lip->li_log->l_mp; 526 enum xfs_rmap_intent_type type; 527 xfs_exntst_t state; 528 int i; 529 int whichfork; 530 int error = 0; 531 532 /* 533 * First check the validity of the extents described by the 534 * RUI. If any are bad, then assume that all are bad and 535 * just toss the RUI. 536 */ 537 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 538 if (!xfs_rui_validate_map(mp, 539 &ruip->rui_format.rui_extents[i])) { 540 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 541 &ruip->rui_format, 542 sizeof(ruip->rui_format)); 543 return -EFSCORRUPTED; 544 } 545 } 546 547 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 548 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); 549 if (error) 550 return error; 551 rudp = xfs_trans_get_rud(tp, ruip); 552 553 for (i = 0; i < ruip->rui_format.rui_nextents; i++) { 554 rmap = &ruip->rui_format.rui_extents[i]; 555 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? 556 XFS_EXT_UNWRITTEN : XFS_EXT_NORM; 557 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? 558 XFS_ATTR_FORK : XFS_DATA_FORK; 559 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { 560 case XFS_RMAP_EXTENT_MAP: 561 type = XFS_RMAP_MAP; 562 break; 563 case XFS_RMAP_EXTENT_MAP_SHARED: 564 type = XFS_RMAP_MAP_SHARED; 565 break; 566 case XFS_RMAP_EXTENT_UNMAP: 567 type = XFS_RMAP_UNMAP; 568 break; 569 case XFS_RMAP_EXTENT_UNMAP_SHARED: 570 type = XFS_RMAP_UNMAP_SHARED; 571 break; 572 case XFS_RMAP_EXTENT_CONVERT: 573 type = XFS_RMAP_CONVERT; 574 break; 575 case XFS_RMAP_EXTENT_CONVERT_SHARED: 576 type = XFS_RMAP_CONVERT_SHARED; 577 break; 578 case XFS_RMAP_EXTENT_ALLOC: 579 type = XFS_RMAP_ALLOC; 580 break; 581 case XFS_RMAP_EXTENT_FREE: 582 type = XFS_RMAP_FREE; 583 break; 584 default: 585 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 586 error = -EFSCORRUPTED; 587 goto abort_error; 588 } 589 error = xfs_trans_log_finish_rmap_update(tp, rudp, type, 590 rmap->me_owner, whichfork, 591 rmap->me_startoff, rmap->me_startblock, 592 rmap->me_len, state, &rcur); 593 if (error == -EFSCORRUPTED) 594 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 595 rmap, sizeof(*rmap)); 596 if (error) 597 goto abort_error; 598 599 } 600 601 xfs_rmap_finish_one_cleanup(tp, rcur, error); 602 return xfs_defer_ops_capture_and_commit(tp, capture_list); 603 604 abort_error: 605 xfs_rmap_finish_one_cleanup(tp, rcur, error); 606 xfs_trans_cancel(tp); 607 return error; 608 } 609 610 STATIC bool 611 xfs_rui_item_match( 612 struct xfs_log_item *lip, 613 uint64_t intent_id) 614 { 615 return RUI_ITEM(lip)->rui_format.rui_id == intent_id; 616 } 617 618 /* Relog an intent item to push the log tail forward. */ 619 static struct xfs_log_item * 620 xfs_rui_item_relog( 621 struct xfs_log_item *intent, 622 struct xfs_trans *tp) 623 { 624 struct xfs_rud_log_item *rudp; 625 struct xfs_rui_log_item *ruip; 626 struct xfs_map_extent *extp; 627 unsigned int count; 628 629 count = RUI_ITEM(intent)->rui_format.rui_nextents; 630 extp = RUI_ITEM(intent)->rui_format.rui_extents; 631 632 tp->t_flags |= XFS_TRANS_DIRTY; 633 rudp = xfs_trans_get_rud(tp, RUI_ITEM(intent)); 634 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags); 635 636 ruip = xfs_rui_init(tp->t_mountp, count); 637 memcpy(ruip->rui_format.rui_extents, extp, count * sizeof(*extp)); 638 atomic_set(&ruip->rui_next_extent, count); 639 xfs_trans_add_item(tp, &ruip->rui_item); 640 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags); 641 return &ruip->rui_item; 642 } 643 644 static const struct xfs_item_ops xfs_rui_item_ops = { 645 .flags = XFS_ITEM_INTENT, 646 .iop_size = xfs_rui_item_size, 647 .iop_format = xfs_rui_item_format, 648 .iop_unpin = xfs_rui_item_unpin, 649 .iop_release = xfs_rui_item_release, 650 .iop_recover = xfs_rui_item_recover, 651 .iop_match = xfs_rui_item_match, 652 .iop_relog = xfs_rui_item_relog, 653 }; 654 655 /* 656 * This routine is called to create an in-core extent rmap update 657 * item from the rui format structure which was logged on disk. 658 * It allocates an in-core rui, copies the extents from the format 659 * structure into it, and adds the rui to the AIL with the given 660 * LSN. 661 */ 662 STATIC int 663 xlog_recover_rui_commit_pass2( 664 struct xlog *log, 665 struct list_head *buffer_list, 666 struct xlog_recover_item *item, 667 xfs_lsn_t lsn) 668 { 669 int error; 670 struct xfs_mount *mp = log->l_mp; 671 struct xfs_rui_log_item *ruip; 672 struct xfs_rui_log_format *rui_formatp; 673 674 rui_formatp = item->ri_buf[0].i_addr; 675 676 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 677 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 678 if (error) { 679 xfs_rui_item_free(ruip); 680 return error; 681 } 682 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 683 /* 684 * Insert the intent into the AIL directly and drop one reference so 685 * that finishing or canceling the work will drop the other. 686 */ 687 xfs_trans_ail_insert(log->l_ailp, &ruip->rui_item, lsn); 688 xfs_rui_release(ruip); 689 return 0; 690 } 691 692 const struct xlog_recover_item_ops xlog_rui_item_ops = { 693 .item_type = XFS_LI_RUI, 694 .commit_pass2 = xlog_recover_rui_commit_pass2, 695 }; 696 697 /* 698 * This routine is called when an RUD format structure is found in a committed 699 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 700 * was still in the log. To do this it searches the AIL for the RUI with an id 701 * equal to that in the RUD format structure. If we find it we drop the RUD 702 * reference, which removes the RUI from the AIL and frees it. 703 */ 704 STATIC int 705 xlog_recover_rud_commit_pass2( 706 struct xlog *log, 707 struct list_head *buffer_list, 708 struct xlog_recover_item *item, 709 xfs_lsn_t lsn) 710 { 711 struct xfs_rud_log_format *rud_formatp; 712 713 rud_formatp = item->ri_buf[0].i_addr; 714 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 715 716 xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id); 717 return 0; 718 } 719 720 const struct xlog_recover_item_ops xlog_rud_item_ops = { 721 .item_type = XFS_LI_RUD, 722 .commit_pass2 = xlog_recover_rud_commit_pass2, 723 }; 724